ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 41, Number 4, 2011

DELOCALIZED BETTI NUMBERS
AND MORSE TYPE INEQUALITIES

MOSTAFA ESFAHANI ZADEH

ABSTRACT. In this paper we state and prove delocal-
ized Morse type inequalities for Morse functions as well as
for closed differential 1-forms. These inequalities involve de-
localized Betti numbers. As an immediate consequence, we
prove the vanishing of delocalized Betti numbers of manifolds
fibering over the circle under a vanishing condition on the
delocalizing conjugacy class.

1. Introduction. Given a manifold M and a real Morse function f
on M the following Morse inequalities establish relations between the
topology of M and the number of critical points of order j denoted by
C; (ck. [7)

Cp— Cpo1 4+ £Co > pF =¥ ... £ 8°

Here 7 = dim H/(M,R) is the j-th Betti number of M. These
relations have been the subject of many significant generalizations.
Novikov and Shubin have proved in [9] that these inequalities hold
if the Betti numbers are replaced by the L2-Betti numbers. The L2-
Betti numbers (or von Neumann Betti numbers) were introduced by
Atiyah in his investigation on equivariant index theorem (see [1]). The
Morse theory for closed 1-forms has been introduced by Novikov and
he has proved in [8] that the Morse inequalities can be generalized
to closed 1-forms if one replaces the Betti numbers by the so-called
Novikov numbers. In [3, Theorem 1] it is shown that the Novikov-
Shubin inequalities hold as well for closed 1-forms. In this paper we are
interested in the delocalized Betti numbers which were introduced by
Lott in [5]. These delocalized Betti numbers are not yet well studied
and enjoy properties which are not satisfied by the ordinary or L2-
Betti numbers, e.g., the delocalized Betti numbers of any manifold with
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free abelian fundamental group and of hyperbolic manifolds vanish. In
this paper we show that some appropriate combinations of delocalized
Betti numbers satisfy the Novikov-Shubin and the Farber inequalities
(see Theorems 3 and 5). We prove the delocalized Novikov-Shubin
inequalities following Roe’s account [11] of the Witten approach to
Morse theory [12]. As a consequence of this method we reprove
the vanishing of the delocalized Euler character of M. To prove
the delocalized Morse inequalities for closed 1-forms we assume that
closed 1-form vanishes on the delocalizing conjugacy class. Then we
use the Morse inequalities for Morse functions and a method invented
by .Farber. As a consequence of the Morse inequalities for closed 1-
forms, it turns out that the delocalized Betti numbers of a fibration
M % S vanish provided that the conjugacy class belongs to the kernel
of p. : m1 (M) — m1(S?). This vanishing theorem for L?-Betti numbers
was conjectured by Gromov and proved by Liick in [6].

In Section 2 we state and prove the Morse inequalities in a very
general analytic framework. In Section 3 we use these inequalities to
prove the Morse inequalities for Morse functions and delocalized Betti
numbers. In these two sections we follow closely the methods used by
Roe in [11, Chapter 14]. We use the main theorem of Section 3 to
prove the Morse inequalities for closed 1-forms and delocalized Betti
numbers in Section 4.

2. General analytic Morse inequalities. Let (M,g) be a
closed, oriented Riemannian manifold, and denote by AF the Laplacian
operator acting on differential k-forms on M. Let (M,g) be the
Riemannian universal covering of M with g = 7*g, where 7 is the
covering map. We denote by G the fundamental group of M and by
AF = d*d+dd* the Laplacian operator acting on L?-elements of Q% (M).
For 0 < k < n, let Ty be a real valued non-negative continuous trace
on the space of all smoothing G-invariant operators on L?(M, A*T'M).
The continuity is understood with respect to the uniform convergence
of Schwartz kernels on compact subsets of M x M. We usually omit the
subfix k and denote these traces by the same symbol T. Let P* denote
the orthogonal projection on ker A* which is a smoothing operator on
L*(M,A*TM), cf., [1]. We define the k-th T-Betti number by the

following relation

(2.1) Bk .= T(P).
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For ¢ a rapidly decreasing non-negative smooth function on R2° with
#(0) = 1, the operator ¢(AF) is a smoothing operator and so we can
define pk. = T(¢(A¥)). Notice that 8% and uk are both non-negative
real numbers.

Theorem 1 (analytic Morse inequalities). For 0 < k < n = dim M
we have the following inequalities

e R e

and the equality holds for k = n.

Proof. Let {¢m}m be a sequence of non-negative rapidly decreasing
smooth functions on RZ® which converges to zero outside of 0 € R
and ¢,,(0) = 1. The operators ¢,,(A*) are non-negative smoothing
operators with smooth Schwartz kernel K,,. The sequence of kernels
K, converges uniformly on compact subsets of M x M to the kernel
K of the _projection P*. In fact the spectral theorem for self-adjoint
operator AF (see, e.g., [10, Theorem VIIL. 5]) implies that ¢, (AF)w —
PFw for any L2-differential k-form w, i.e., qﬁm(Ak) — P* weakly in
L(D,D'). Since the strong and the weak topology of L(D,D’) coincide
on bounded subsets, we conclude the convergence ¢,,(A*) — P* in
the topological space L£(D,D’) with strong topology. The Schwartz
kernel theorem asserts that this topological space is isomorphic to
D'(M x M,AFT*M x AkT*M). With respect to this isomorphism,
the convergence ¢,, (Ak) — P* means the convergence of the kernels

K,, — K which implies the assertion. Therefore by continuity of 7" we
obtain

(2:2) Br = lim T(¢m(A¥)).

The function ¢ — ¢,, is non-negative, rapidly decreasing and vanishing
at 0, so it takes the form zv?2 (x) where 1, is non-negative and rapidly
decreasing. We have

T(dd* 92, (A%)) = T(¥m (AF)d d* b (AF))
= T(d"Y% (A*) d)

T(d"dy7, (AF1)).
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In the last step we have used the commutation relation Ak d = dAk-1,
Therefore

(1 = TP (AR) = (5T =T (i (AF 1) + -+ & () — T(drn(A%)
= T(d*dym(AF)?)).

Since d*d ¥, (ﬁk)2 is a non-negative smoothing operator, the right side
of the above equality is non-negative for k¥ < n and is zero for k = n.
By tending m toward infinity and using relation (2.2) we get the desired
inequalities. u]

3. Delocalized Novikov-Shubin inequalities. We recall the
definition of delocalized Betti numbers as they are introduced by Lott in
[5]. We keep the notation of the previous section. Let P be a smoothing
G-invariant operator acting on ART* M with Schwartz kernel K which
is rapidly decreasing far from the diagonal of M x M. For each z € M
and h € G one can identify both AkT;*M and AkT}:‘ ~M with AFT* M

where z = 7(%). Henceforth K (%, h.F) can be considered as an element
of End (A*T* M). Consequently, given a conjugacy class (g) of G the
SUILL D ), e (0 K*(%, h.%) is finite and, as a function of 7 € M, is invariant
with respect to the action of G. Therefore this function pushes down
and defines a smooth section K4 of the bundle End (AF(T*M)) over

M. The following relation defines the delocalized trace Tr .
(31) Tr<g> (P) = /M tr K<g> d,ug.

As in the previous section, let AF denote the Laplacian operator acting
on L2-sections of A¥T'M. The orthogonal projection P* on ker (Ek) is
a smoothing G-invariant operator on L2(]\7, AkTM) with kernel K*.
The k-th delocalized Betti number ,BZ» is defined as follows

(3.2) B,y = Tr (g (PF).

Equivalently if ¢,, is a sequence of real functions as in Theorem 1, e.g.,
Gm(x) = e %/™, then by (2.2)

(3.3) B = lim Tr(g)(dm(AF).
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Remark 1. Notice that the trace Tr(, is not always finite since it is
not known weather the kernel K (g) 1s rapidly decreasing far from the
diagonal of M x M. Nevertheless if (g) is a finite set, then the above

delocalized Betti numbers are well defined. This is why we restrict
ourself, from now on, to the class C(G) of finite conjugacy classes.

Since the delocalized traces Tr(4 are not in general non-negative, we
cannot apply Theorem 1 to these traces (except for k = n). Instead we
consider the following linear functional which are introduced in [4] and
are proved to be non-negative traces

(34) T<g> = TI‘<E> + TI‘<

9)

b
{9l

Lemma 2. The linear functional T,y is a non-negative trace on the
space of the G-invariant smoothing operator.

Proof. For each g € G the linear functional Tr,) is a trace (cf., [5,
Lemma 2]) so T ) is also a trace. Below we show that it is non-negative,

ie, Tiy(P) 2 0if P = Q*Q where Q is a G invariant smoothing

operator on H := L2(J\7, AkT*]\Aj). Let {0r}ren be an orthonormal
basis for H, and for h € G put (h.0)(Z) := 0(h.T). We identify M with

a distinguished fundamental domain of G in M. With this identification
we have

T (P =3 | (@.@.08. @) di
_ (; [ (@0 @G0 @) ) -
S (; [ @0 @.00 @) -
- (Z [ (@0 @G0 @) a5 "

N ~ 1/2
X (zk: /M<Q9k (h.7), Ok (h.F)) dﬂ,§>
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;( / (00 (@ Qek()>dﬂ~>1/2

X<%f@“hﬂ@%wam%yﬂ

Here the third equality follows from the G-invariance of the Rieman-
nian volume element, while the last inequality is the Cauchy-Schwarz
inequality for L?-sequences. The following pairing is a symmetric bi-
linear function on H

i) = [ (@)@ dis;

By applying the Cauchy-Schwarz inequality arising from this bilinear
function to the last expression in the above, we obtain

Tr (o) (P 7), Q8 (h.x)) dps .

This inequality with the following relation
= 3 % [ (@ @. @0 (o) di;
he(g) k

implies the following relation which proves the assertion of the lemma

(g)| Tty (P) > [Ty (P)]. O

Using the trace T,y we define the following combination of delocal-
ized Betti numbers

L ok

ko Sky _ nk
Mgy = T(g>(P ) = 5(6) + |<g>|ﬂ<g>'

Now let f be a Morse function on M, and denote by f its lifting to
M. For s >0 put ds := e_sfdes’c and d} := esfd* —sf and define the
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Witten deformed Laplacian, acting on L2-elements of QF (1\7 ), by the
following relation
AFdgdr + did,.

This deformed Laplacian is a perturbation of the Laplacian Ak by
differential operators of order zero. So it is an elliptic second order
differential operator and its L2-kernel consists of smooth differential k-
forms and the projection on this kernel is a smoothing operator, cf., [1].
Just as above we can define the deformed k-th delocalized Betti number
ﬂfw(s). In fact these deformed delocalized Betti numbers ,Bé“w(s) are
independent of s. To see that consider the deformed de-Rham complex
of L?-differential forms

— k —
o QR (T M) L QRN M) — -

This complex is equivariant with respect to the action of the group G,
so the k-th cohomology vector space of this complex HF(M,R) is
a G-vector space. This real G-vector space is isomorphic to the
kernel of A¥. The isomorphism associates to an element in ker A¥ its
class in HF (1\7 ,R) and is clearly G-equivariant. Moreover the above
deformed complex is isomorphic to the ordinary de-Rham complex
(corresponding to s = 0) through conjugation with e*/ which is
G-equivariant as well. We conclude that there is a G-equivariant
isomorphism between ker A¥ and ker A*. Since the action of G on
L2-differential form is symmetric, this implies that the orthogonal
projections on ker A¥ and on ker A* are G-similar. Therefore by taking
the Tr(4 we conclude that the deformed Betti numbers are actually
independent of s. In particular

(3:5) V() = 0<k<n.

These relations and Theorem 1 applied to the deformed Laplacian imply
the following inequalities (equality holds for k = n)

k k—1 0 k k—1 0
(3:6) iy (8) =gy () + -~ F iy (s) Z v =7y + 7 T gy

where u’gg> (s) == T<g>¢(£§). We shall study the behavior of u’gg> (s)
when s goes to infinity in order to prove the following theorem.
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Theorem 3 (delocalized Novikov-Shubin inequalities). Let f be a
Morse function on M, and denote by Cy, the number of critical points
of Morse index k. For 0 < k < n = dim M, we have the following
inequalities

(3.7) Cr = Cr14---£Co 27y — i+ £y,

and the equality holds for k = n.

Proof. At first we recall from [11] that the deformed Laplacian has
the following form

(3.8) AF = A* 4 5Ly + $2|df|?

where Ly is a zeroth order operator and |dﬂ is the endomorphism given
by the multiplication by \di\ There is a positive constant C' such that
|df(Z)] > C when 7 is outside the union U, of the r-neighborhoods
of critical points of f Here r is sufficiently small so that the 4r-
neighborhoods of critical points are disjoint. For the proof of the
following lemma we refer to [11, Lemma 12.10] where the proof is given
for compact manifolds but remain true for non-compact manifolds as
well.

Lemma 4. Let ¢ be a rapidly decreasing function as above such
that the Fourier transform of the function ¢ defined by v(t) := ¢(t?) is
supported in (—r,r). Let K denote the kernel of the smoothing operator
d(AF). Then K(.,.) tends uniformly to zero on M\ Uz, x M \ Uy, when
s goes to infinity.

On the other hand, the Schwartz kernel of ¢(A¥) is supported in the
distance r of the diagonal of M x M. So if w is a differential k-form
which is supported within the distance 2r of a critical point of f, then
#(A¥)w is supported within the distance 37 of the same critical point.
To see this, let D := ds + d¥; then V, = (55)2 and by the condition
on the support of 121\ we have

(39) (AR w(@) = (D) w@) = [ BH)e "Pew (@) dt.

—r



DELOCALIZED BETTI NUMBERS 1369

This relation and the unit propagation speed property for the deformed
Dirac operator D, imply that ¢(A¥)w is supported within distance 3r
of the support of w. Since the action of G on M is uniformly properly
discontinuous, for r sufficiently small and for a non-trivial element
h € G, the element (Z, h.Z) is not in the distance 2r of the diagonal of
M x M. Consequently the previous lemma and the above discussion
show that for a non-trivial conjugacy class (g) the delocalized traces
Tr(gy have no contribution to the value of lim T<g>¢(£’§) when s goes
to infinity, so

(3.10) Tim i) (5) = Tim Trg)6(A5).

Now we shall to prove the following equality which prove the desired
inequalities of the theorem

(3.11) lim Try¢(AF) = Cy.

S—r00

For this purpose Let ,8 p*3 be a G-invariant smooth function on M
which is supported in U3T and is equal to 1 on Uzr Lemma 4 shows
that

(3.12) lim Tr()¢(A%) = lim Tr,(B4(A1)),

S— 00

where ﬂ is the pointwise multiplication by ﬂ So, the next step is
to study the asymptotic behavior of Tr (,qu(Ak)) when s goes to
infinity. Since the kernel of qﬁ(A’;) is supported in the distance r of the
diagonal, the differential forms which are supported outside [74r have
no contribution in the value of the expression in the right hand side of
(3.12). So to evaluate the value of this expression we can consider only
those differential forms which are supported in Uy In fact Lemma 4
and the condition on the support and values of 3 show that we may
consider those differential forms which are supported in Us,.. As for A¥,
the kernel of ¢(AF) is supported in the distance 7 of the diagonal of
M x M. So for r sufficiently small one can lift the smoothing operator
#(AF) to M. We have the following equality

(3.13) H(AF) w = p*p(AF) w; supp (w) C Us,.
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To prove this equality, by relations (3.9), it suffices to show that

e Py = p*e P w; —r<t<o

It is clear that we may assume that the support of w is included in a
small ball of radius 3r. For |t| < r both sides of the above equality define
smooth differential forms which are solutions of the wave equation
0y + iDs = 0. Moreover they have the same initial condition w for
t = 0. Therefore by uniqueness of wave operator we get the desired

equality. Consequently
(3.14) Tr () (BO(A)) = Tr(op* (BS(AL)) = Tr (BS(AL)).

Now the argument leading to relation (3.12) can be applied to A¥ to
deduce

lim Tr (8¢(AY)) = lim Tr¢(AY) = Cy.

s§—00 §—r00

The last equality is the main step of the analytical proof of the Morse
inequalities for the Morse function f on M, cf., [11, page 192]. This
equality and the above discussion prove the relation (3.11). This
complete the proof of the theorem. i

Inequality (3.7) can be written in the following form
(3.15) Gk —Chor+---£Co > By — By + - £ B + By,

where 1
) 21—
9 gl

Inequalities (3.15) without the term Bfm at the right hand side are the

Morse inequalities for L2-Betti numbers established by Novikov and
Shubin [9]. The proof of Theorem 3 can be applied to the localized
trace Try and provides an analytical proof for the Novikov-Shubin
inequalities.

k k—1 0
(Bigy = Bigy + £ Bigy)-

Remark 2. 1t is clear from its proof that when k£ = n the equality of
Theorem 1 holds even if the trace T is not real. If we apply this equality
to Trg and follow the proof of Theorem 3 we get the vanishing of the
delocalized Euler character

. an n—1 _
Xg) (M) := By = By " -+ £ By, = 0.
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Of course this result can be proved by the local properties of heat
equation [2, Chapter 2].

4. Delocalized Morse inequalities for closed 1-forms. In
this section we use the main theorem of the previous section to prove
a delocalized version of the Morse inequalities for closed 1-forms.
Following [3] we then use these inequalities to prove the vanishing of
the delocalized Betti numbers for spaces which fiber over the circle.
Vanishing of the L2-Betti numbers of such spaces was conjectured by
Gromov and proved by Liick [6].

Let w be a closed differential 1-form on M. In a small open subset
U one has w = dfy, where fy is a smooth function on U uniquely
determined up to an additive constant. A point p € U is a non-
degenerate critical point of w with index j if it is a non-degenerate
critical point of fy with index j. As in the previous section we denote
by C; the number of these points. Since w is closed the map

(4.1) v 5 / w

defines a homeomorphism between the fundamental groups G and the
additive group (R, +).

As in the previous section let C'; denote the number of critical points
of index j. The following theorem reduces to Theorem 3 if w is an exact
form.

Theorem 5 (delocalized Morse inequalities for closed 1-forms). Let
w be a closed Morse 1-form on M and {(g) a finite conjugacy class
in G = m(M). If w vanishes on (g), i.e, £&(g) = 0, then for
0<k<n=dimM the following inequalities hold
(4.2) O = Crr 4+ £ Co 27y =+ £y
and the equality takes place for k = n.

Proof. For m € ZZ°, define the normal subgroup G,, of G by
Gm := € 1(mZ). Let M, denote the corresponding cyclic m-sheeted
normal covering space of M with 7 (M,,) = G,,. Denote by w,, the
lifting of w to M,,,. We have clearly

Cj(wm) = m.Cj(w).
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The relevance of these covering spaces is that the number of critical
points of w,, can be approximated by the number of critical points of an
exact form on M,,. More precisely there is a constant C, independent
of m, and an exact Morse 1-form w,, on M, such that

(43) Cj(wm) < Cj(am) < Cj(wm) + C; for 0 < Jj<n

For the proof of this fact we refer to [3, Section 2]. The Morse theory
for the exact 1-form w,, = dfm is exactly the Morse theory for the
Morse function f,,. Notice that the linear map ¢ on (g) is constant,
so &(g) = 0 implies the inclusion (g) C G, for m € Z; in other words,
(9) € m1(My,). Therefore in relation (3.1) we can (instead of M)
integrate over the m-sheeted covering M,, to get a non-negative trace
T(4y,m on the space of G-invariant smoothing operators on M. Let

P be a smoothing G-invariant operator on M with kernel K. Fix m
elements of G which represent the classes in the quotient G/G,,. The
symbol k stands for each one of these elements. After identifying M,
and M with fundamental domains in M, we have

T(g),m(P) =/ Z K(z,h.z)

th
= (z, h.z)
ZAMhe<g
= Z/ > K(k.x,kh.z)
kM he(g)
=m. Z/ Z (z, h.z).
k he(g)

Therefore T(gy ,,,(P) = m.T 4 (P) which implies that the delocalized
Betti numbers defined by Ty ,, are m-times the delocalized Betti
numbers defined by T . The arguments leading to Theorem 3 can
be applied to this situation as well and the resulting Morse inequalities
take the following form (with equality for k = n)

Cr(@m) = Cr—1(@m) + -+ - £ Co (W) > m-%}) - mﬁé;l +- =k m-’Y?_,;)-
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Using these inequalities and relations (4.3), we get

k k
_ 1 _
D (=105 (w) = EZ(—l)k 1Cj(wm)
j=0 7=0
1< k+1
> _1YVeio(o)y - 2T
> =3 (DG @) - S
7=0
~ k41
> Y0,y - e
=

Now, taking the limit when m goes to infinity, we obtain the claim of
the theorem. O

Corollary 6 (Vanishing theorem). Let M 2 S be a fibration, and
let (g) be a finite conjugacy class in m (M). If p.(g) = 0 € m1(S?),
then the delocalized Betti numbers ,Bfg> vanish.

Proof. The pull-back l-form w = p*(df) on M has no critical
point. Applying the inequalities of Theorem 5 we obtain the following
vanishing result for 0 < j < n

. . 1 .
J — J
V(M) = Biey + 17557510 = O

Since ﬂ{e> = 0 by the previously mentioned result of Liick, we conclude
that ,B{g> =0. 0o
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