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ABSTRACT. Let W be a Weyl group, and consider W C
GI(V) acting in the usual way as a crystallographic reflection
group on the rational vector space V. Associated with A € V
is a certain toric projective variety X (J) with W-action. It
turns out that X (J) depends only upon the isotropy group Wy
of A\. X (J) is closely related to a certain family of J-irreducible
reductive monoids. Using what is known about these monoids
we assess the following issues. (a) The T-orbit structure of
X(J). (b) The exact combinatorial conditions on A € V so
that X (J) is rationally smooth. (c) The Betti numbers of
X (J) in terms of a certain augmented poset (W7, <, {vs}).

0. Introduction. Let (W, S) be a finite Weyl group, and let w € W.
It is widely appreciated that the descent set

D(w) ={s € S| l(ws) < l(w)}

determines an important chapter in the study of Coxeter groups. In
[13] the author generalized some of these results to the situation where
we replace W by W7 = {w € W | l(ws) > [(w) for all s € J}. Here J is
any proper subset of S. Associated with J is a certain torus embedding
X (J). We would like to calculate the Betti numbers of X (JJ). The main
point here is to find the proper generalization S” C W of the subset
S C W. Theresulting descent system (W, S”) encodes all the relevant
information about ascent and descent in 7. One of the interesting
outcomes of [13] is the determination of all subsets J C S of S such
that X (J) is quasi-smooth in the sense of Danilov [4].

In this paper we use our results about (W7, S7) to study this torus
embedding X (J), which is possibly singular. To do this we employ a
“monoid BB-theory.” This provides a useful combinatorial replacement
for the infinitesimal plus-minus method of “nonsingular” B B-theory. It
allows us to properly analyze the cell structure of X (J). Our discussion
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is guided by the W-structure and the T-structure of X (J), which was
determined by Putcha and the author in [11]. We use the results of
[11] to obtain the structure and dimensions of the monoid BB-cells of
X (J) in terms of the descent system (W7, S”7). These cells are well-
behaved if X (J) is rationally smooth. From there we can write down
the Poincaré polynomial of X(J) in terms of (W7, S7). We illustrate
our method with several examples. The first one is (W, S) of type
Ay, where J = {s3,...,8,} C {s1,...,8,} = S. The other one is
(W, S) of type B,,, where J = {s1,...,8-1} C{s1,...,8} =S and g
corresponds to the short root.

1. The structure of X(J) via J-irreducible monoids. Let
W be a Weyl group, and let r : W — GI(V) be the usual reflection
representation of W. Along with this goes the Weyl chamber C C V
and the corresponding set of simple reflections S C W. W is generated
by S, and C is a fundamental domain for the action of W on V. See
[7] for details.

Let A € C. In this section we describe the face lattice F) of the
rational polytope Py = Conv(W - X), the convex hull of W-Ain V. It
turns out that F depends only on Wy = {w e W |w(A) = A} = Wy =
(s|sedJ), where J = {s € S| s(A\) = A}. Thus we describe F) = F,
completely in terms of J C S. Closely associated with these polytopes
is a certain class of reductive algebraic monoids. We use what is known
about these monoids to calculate F; in terms of J and the underlying
Dynkin diagram of W.

We also construct a certain projective variety X (J) from the polytope
Py. It turns out that X (J) depends only on J, and not on A.

We now recall some results first recorded in [11]. Throughout
the paper we use the language and techniques of linear algebraic
monoids. Luckily the main results and constructions have recently been
assembled in [12]. Let M be an irreducible, normal algebraic monoid
with reductive unit group G. We refer to such monoids as reductive.
The reader can find any unproved statements about reductive monoids
in [12].

If M is a reductive monoid with unit group G we let B C G be a
Borel subgroup of G and 7' C B a maximal torus of G. T is the Zariski
closure of T in M. T is a normal, affine torus embedding. The set of
idempotents E(T) of T is defined to be
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E(T)={ee€T|e =e}.

There is exactly one idempotent in each T-orbit on T. The set of these
orbits is in one-to-one correspondence with the set of faces of a certain

rational polytope. We let Ey = E1(T) = {e € E(T) | dim (Te) = 1}.
The G x G-orbits of M are particularly interesting in this paper. Let

A={e€T|eB=eBe}

be the cross section lattice of M relative to T' and B. It is a basic fact
that
M= | | GeG.
ecEA
See [10].
As above we let S C W be the set of simple reflections of W relative

to T and B. We regard S as a graph with edges {(s,t) | st # ts}. Thus
we may speak of the connected components of any subset of S.

A reductive monoid M with 0 € M is called J-irreducible if M\{0}
has exactly one minimal G x G-orbit.

Theorem 1.1. Let M be a reductive monoid. The following are
equivalent.

1. M is J-irreducible.

2. There is an irreducible rational representation p : M — End (V)
which is finite as a morphism of algebraic varieties.

3. If T C M is the Zariski closure in M of a mazimal torus T C G,
then the Weyl group W of T' acts transitively on the set of minimal
nonzero idempotents of T'.

See Corollary 6.8 of [10] and Lemma 7.8 of [12].

Notice in particular that one can construct, up to finite morphism, all
J-irreducible monoids from irreducible representations of a semisimple
group. Indeed, let Gy be semisimple, and let p : Gy — End (V) be
an irreducible representation. Define M; C End (V) to be the Zariski
closure of K*p(Gy) where K* C End (V) is the set of homotheties.
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Finally, let M(p) be the normalization of M;. Then, according to
Theorem 1.1, M(p) is J-irreducible.

It turns out that, if M is J-irreducible, there is a unique minimal
nonzero idempotent e € E(T) such that eB = eBe, where B is the
given Borel subgroup containing T'. If M is J-irreducible we say that

M is J-irreducible of type J if, for this idempotent e,
J={seS|se=es}

where S is the set of simple involutions relative to T and B. The
set J can be determined in terms of any irreducible representation
satisfying condition 2 of Theorem 1.1. Indeed, let A € X(7T'); be any
highest weight such that {s € S | s*(A\) = A} = J. Then M(p,) is
J-irreducible of type J where p) is the irreducible representation of Gy
with highest weight A\. Furthermore, any two J-irreducible monoids
with a finite morphism between them are of the same type. If e is
the above-mentioned minimal idempotent then L = e(V) C V is the
one-dimensional py(B)-stable subspace of V with weight \. Finally,
P ={g e Gy|pr(g)(L) =L} is a parabolic subgroup of Gy of type J.

We now describe the G x G-orbit structure of a J-irreducible monoid
of type J C S. The following result was first recorded in [11].

Theorem 1.2. Let M be a J-irreducible monoid of type J C S.

1. There is a canonical one-to-one correspondence between the set
of G x G-orbits acting on M\{0} and the set of W-orbits acting on
the set of idempotents of T. This set is canonically identified with
A= {e€ E(T)|eB = eBe}.

2. A\{0} 2 {I C S|no connected component of I is contained entire-
ly in J} in such a way that e corresponds to I C S if [ ={s€ S | se =
es # e}.

3. If e € A\{0} corresponds to I, as in 2 above, then Cy (e) = Wk
where K =TU{s e J|st=ts forallteI}.

See subsection 7.3 of [12] for a systematic discussion of J-irreducible
monoids.

Let M be a J-irreducible monoid of type J C S, and assume that
p: M — End(V) is an irreducible representation which is finite as
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a morphism. Let Gy be the semisimple part of G with maximal torus
To = GoNT, and let p) = p|Gp, with highest weight A € €, the rational
Weyl chamber of Gy. Then, as above, J = {s € S| s*(A) = A}. Define

Py = Conv (W - )

the convex hull of W - X in X (Tp) ® Q.

We return to the situation of the beginning of this section, i.e., just
reflection groups, no reductive monoids.

Corollary 1.3. Let W be a Weyl group, and let r : W —
GL(V) be the usual reflection representation of W. Let € C V
be the rational Weyl chamber, and let A € C. Assume that J =
{s € S | s*(\) = A}. Then the set of orbits of W on the face
lattice Fy of Px is in one-to-one correspondence with {I C S |
no connected component of I is contained entirely in J}.

The subset I C S corresponds to the unique face F € F), with
I ={s €S| s(F) = F and s|F # id} whose relative interior F°
has nonempty intersection with C.

Let M be a J-irreducible monoid of type J C S, and let T be the
closure in M of a maximal torus T' of G. By part b) of Theorem 5.4 of
[12], T is a normal variety. We define

X(J) = (T\{o})/K".

The terminology is justified since X (J) depends only on J and not
on M. The set of J-irreducible monoids associated with X (J) can be
identified with the set @/ = {\ € €| Cs()\) = J}. Torus embeddings
are usually defined in terms of “fans,” a collection of cones in the dual
of X(T). This is an ideal way to discuss cycles, divisors and sheaves
on a torus embedding. However, we have nothing to gain by fostering
that point of view. Our main purpose here is to uncover combinatorial
information about X (J).

We are very interested in the structure of X(J), both geometrically
and combinatorially, and the extent to which it is encoded by the
descent system (W7, S7). Some of the key questions here are, “When
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is X (J) rationally smooth?,” “what are its Betti numbers?” and “how
can they be described in terms of (W7, S7)?”

The situation X (¢) has been studied previously by several authors.
Procesi [8] was the first to define and study this variety. In [15]
Stanley proves that the h-vector of any simplicial, convex polytope
is a symmetric, unimodal sequence. Stembridge [16] proves that
the canonical representation of W on H*(X(¢); Q) is a permutation
representation and, with the help of Dolgachev-Lunts [5], he computes
this representation. In [3] Brenti studies these descent polynomials
(i.e., the Poincaré polynomials of X(¢)) as analogues of the Eulerian
polynomials. He also looks at the g-analogues of these polynomials.

2. Monoid BB-decompositions. BB-cells are often described in
terms of the fixed point set along with the plus-minus decomposition of
the tangent space at a fixed point. In many situations this is adequate.
But in our situation, the infinitesimal method of [1] does not yield the
desired information since we are dealing with singular varieties. The
cells themselves are well-behaved topologically but the tangent space
is not. Thus we are led to quantify the cells of X (J) in terms of
idempotents, B x B-orbits and other natural monoid notions. We first
assemble some useful information about J-irreducible monoids.

If M is a reductive monoid, then there is a perfect analogue of the
Bruhat decomposition. See Chapter 8 of [12]. If R = N¢(T') (Zariski
closure) then, for any « € R, T = T'xz. Thus we let

R=R/T =R\T.
R is a finite, inverse monoid with the agreeable property that

M= || BrB.
TER

See Theorem 8.8 of [12].

Proposition 2.1. Let M be J-irreducible, and let f € E(T). Then
there is a unique e € Ey(T) such that eBf = eBe. In particular,

ef =e.
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Proof. By Proposition 6.27 of [10], fM f is a J-irreducible monoid
with identity element f and unit group Hy, while fBf C Hy is a
Borel subgroup of Hy with maximal torus f1' = f1'f. Since fMf is
J-irreducible, there is a unique e € E(fT) such that efBf C fBfe.
But this implies that eBf = eBe and conversely. See [11] for more
information about J-irreducible monoids. O

Let R% = R\ {0}.

Corollary 2.2. For any r € R* there is a unique e € E1(R) such
that eBr = eBer # 0.

Proof. Write r = fo where 0 € W and f € E(T). O

Corollary 2.3. If € M and x # 0, then there is a unique e € E;
such that eBx = eBex # 0.

Proof. This follows directly from Proposition 2.1 and Corollary 2.2. O

For the remainder of this section we describe the BB-decomposition
of X(J) for an appropriate one-parameter subgroup of 7. As we have
pointed out, X (J) is closely related to a certain family of J-irreducible
reductive monoids {M) | A € €7}, where ¢/ = {\ € € | Cs()\) =
J}. We obtain a useful description of the decomposition of X (J) by
analyzing the corresponding decomposition of M. This leads to the
important “augmented” poset structure of W that we shall discuss in
the next section.

We first prove a technical lemma that allows us to describe, in some
cases, a BB-decomposition in terms of the rank-one idempotents of a
certain D-monoid 7.

Let X be a normal, projective variety and assume that S = K* acts
on X. If F; ¢ X*° is a connected component of the fixed point set X5
we define, following [1],
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This decomposes X as a disjoint union
X=|]x
of locally closed subsets. Furthermore we have the BB-maps
TG : Xz — Fi

defined by m;(z) = lim;,o(t - ). See [1] for more details. In that
paper the author assumes that X is nonsingular. Then he proves his
much-celebrated results (see Theorem 4.3 of [1]).

However, many of his ideas can be extended to the nonsingular case.
On the other hand, the purpose of our discussion is to describe this BB-
decomposition in terms of the system of idempotents of an appropriate
algebraic monoid.

Lemma 2.4. Let X C PV be a closed irreducible subvariety with
affine cone Y C KN*L. Let T C Glny1(K) be a torus containing the
group of invertible scalar matrices Z C T. Assume that T acts on X.
Let M be the closure of T in End (K[Y]). For e € Ey = E{(M) let
eY CY be the closed subset defined by

eY ={yeY|e(y) =y}
Let XT C X be the set of fized points for the action of T on X. Assume
that
XT=|]ex
eck;
where eX = (eY'\{0})/Z C X.

Let [z] € X, and let V = T -[z] C X with cone V=T-zCY.
Define

My = {t|V |t € T} C End (V).
Then 6 : M — My, defined by 6(f) = f | V, induces a surjection
E]_(M) — El(MV)

such that 6(e) # 0 if and only if VNney £0.
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Proof. If f € E1(My), we then let fV = (fV \ {0})/Z C V. By
Proposition 3.22 of [12], dim (fMy ) = 1 since My is a D-monoid. But
My is identified bijectively with V' via the morphism

¢:MV—>T7,

defined by ¢(y) = yz. Furthermore, p(zy) = z(¢(y)) for any y,z €
My,. Thus

1 = dim (fMy) = dim (p(fMy)) = dim (fo(My)) = dim (£7).

But f‘7 is also closed in ‘A/, irreducible and Z-stable. Hence fTA/ =
Zv U{0} for some v € fV. We conclude that

vV =All},

a singleton. Furthermore, fV C X7, so that (by assumption) v €
€Y \{0}, for some e € E; M. Hence we consider g = f(e) = e | Ve My.
Then g # 0 since g(v) = e(v) = v # 0.

Now 6 : M — My is dominant so §(E1(M)) C E;(My)U{0}. (Proof:
if 8(e) # 0 then O(e) € E(My) \ {0}, so that 1 < dim (6(e)0(T)) <
dim (eT) = 1. Thus 6(e) € Ei(M) by Proposition 3.22 of [12]).
Thus we now have v = f(v) = g(v), where f,g € E;(My). But
then f(g(v)) = f(v) = v # 0, so that fg # 0 in My. But also
f,g9 € My are minimal nonzero idempotents where the partial ordering
on idempotents is defined by

€1 S €2 if €1€2 = €1.-

Thus f = g. But, by definition, g = §(e). Hence f = g = 6(e).

Finally, notice that: if eV # 0, then f(e) # 0; and if eV = 0,
then 6(e) = 0. But also eV = 0 if and only if VNeY = 0 (since
eV=VneY). o

Lemma 2.5. Let X,KM,I/',I7,Z, etc., be as in Lemma 2.4. Let
o : K* = T be such that XT = {z € X | ¢(t)[z] = [z] for all t € K*},
and let X(e) = {z € X | limio(pe([z])) € eX}. Then the BB-
map m, : X(e) = eX, m([z]) = lmo(p:([z])), is determined by

me([z]) = [e(2)]-
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Proof. Let [x] € X(e), and let lim;_o(p¢([z])) = [z]o € VT NeX.
Thus, by Lemma 2.4, e | v # 0. But then ex # 0 (since otherwise
etx =tex = 0 for all t € T, and thus e | T2 = 0 so that e | V =0, since
Tz C V is dense, a contradiction).

But eV = Ze(x) U {0}, and so finally we obtain that

lim (¢([2])) € VT NeX = {[e(z)]}.

t—0

This completes the proof. ]

Lemma 2.6. Let M be a J-irreducible monoid with unit group G
and mazimal torus T C G. Let Z C G be the connected component of
the center of G. Then

{z e M\{0} | Zz=Ta} = |J eM.
ecE; (T)

Consequently, if X = (M\{0})/K* and eX = (eM\{0})/K™*, then

XT=|]ex
ecFE,

for the action T x X — X given by (¢, [z])~[tz].

Proof. Let x € M \ {0} be such that Zz = T'z. Since x # 0 there
is (by Corollary 2.3) a unique e € F; such that eBx = eBex # 0. In
particular ex # 0. By the Bruhat decomposition we can write z = brbd’
where b,b' € B and r € R. Then we let y = 2b' ! = br. Write r = fw
where f € E(T) and w € W. Then fy = fbr = fbfr = fcr = fcw for
some ¢ € Cp(f). In particular fy € fG. Thus, by Proposition 3.22 of
[12], if f ¢ Ey then dim (T'fy) > 1. Thus Zfy C T'fy. Thus Zy C Ty
since dim (T'y) > dim (T'fy). This is impossible. We conclude that
f =e € Ey. Thus, if t € T and tbe = be, then tebe = etbe = ebe. In
particular te = e. But dim{t € T | the = be} = dim{t € T | te = e} =
dimT — 1. In particular T, C {t € T | the = be}, and consequently
e € {t € T | the = be}. Thus ebe = be. Therefore y € eM, and finally
z=yb €eM. O
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Theorem 2.7. Let M be a J-irreducible monoid with unit group G,
connected center Z C G, Borel subgroup B C G and maximal torus
T C B. Let B, C B be the subgroup of unipotent elements of B.
Choose a one-parameter subgroup X\ : K* — T such that

1. limy_yo(tut ') =1 for all u € B,.
2. {z e M\{0} | M(¢t)x € Zz for allt € K*} =U
Let X = (M\{0})/K*, and let
X=|] X(e)
ecE;

be the BB-decomposition of X relative to A so that X(e) = {z € X |
lime_,o[Ae(2)] € eX}.

Then, for all e € Eq(T),
X(e) ={[y] € X | eBy = eBey C eG}.

ecE; (T) eM.

Proof. Let Y(e) = {y € M\ {0} | [y] € X(e)}, and let [y] € X (e).
Notice that ey # 0. Now, by definition, [y]o = lim;—o(A(¢)[y]) € eX.
But, by Lemma 2.5, [y]o = [ey]. By our assumptions on A we obtain
that, for all u € By, [y]o = [uylo. Hence [ey] = [euy]. Therefore we
obtain that eBy = Zey = eBey and thus X(e) C X, = {[y] € X |
eBy = eBey C eG}, since, by Corollary 2.2, we have the unique e € Ey
with eBy = eBey # 0. Notice also that if ey # 0 then ey € eG, since
e is a minimal, nonzero idempotent.

Let Y. = {y € M\ {0} | eBy = eBey C eG}. Then M\{0} is
the disjoint union of the Y, as well as of the Y (e) while, from above,

X(e) C X.. Thus, for each e € FEy, Y. = Y(e). The conclusion
follows. O

Remark 2.8. It is interesting to notice that the cells are independent
of A.

We now look at things on the level of the torus embedding X (J).

As above, let M be J-irreducible of type J C .S with connected center
Z C M, and let E; = E;(T). Choose a one-parameter subgroup
A K* — T such that
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1. limy_,o(tut 1) =1 for all u € B,.
2. {z € T\{0} | \(t)z € Zz for all t € K*} = Ueer, (7)€L
Recall that

X(J) = (T\{0})/K*

and write

X)) = L] x(e)

ecE;

as the BB-decomposition of X (J) relative to A.

Definition 2.9. Let e, e/| € E1(T). We say that e < ¢’ if eBe' # 0
and e # €.

By the results of [13] the poset (E1, <) is anti-isomorphic to the poset
(W7, <). This allows us to obtain control of the BB-cell decomposition
of X(J) in terms of the idempotents of 7T'.

Definition 2.10. For e € E1(T') we let

X.={f€E(T)|ef =eand €f =0 for all ¢’ > ¢}.

By Theorem 2.5 of [13],

EM\{0}= || X

eEE’l(T)
and X(J) = UeeEl(T)X(J)(e) where X (J)(e) = ufexeT[f]'

Theorem 2.11. The following are equivalent.

1. [fl € X(J)(e).
2. fe' =0 foralle’ > e and fe =e.

Proof. This follows from Theorem 2.7 above and Theorem 2.5 of
[13]. O
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3. Rationally smooth Torus embeddings. In this section we
describe, in terms of J C S, when X(J) is a rationally smooth torus
embedding.

Definition 3.1. We refer to J C S as combinatorially smooth if
X (J) is a rationally smooth torus embedding.

The following theorem indicates exactly how to detect this very
interesting condition.

Theorem 3.2. Let A € C, and let J = {s € S| s*(A\) = A\}. The
following are equivalent.

1. J C S is combinatorially smooth.

2. Py is a simple polytope.

3. There are exactly |S| edges of P meeting at \.
4. J={s € S| s(A) = A} has the properties

(a) If s € S\J, and J Z Cw(s), then there is a unique t € J such
that st # ts. If C € my(J) is the unique connected component of J with
t € C, then C\{t} C C is a setup of type A;_1 C A,.

(b) For each C € mo(J) there is a unique s € S\J such that st # ts
for some t € C.

The reader is directed to Theorem 3.2 of [13] for the proof. Using
Theorem 3.2 one can obtain a complete list of the different possibilities
for each Weyl group (W, S). See Corollary 3.5 of [13]. For example, if
(W, S) is a Weyl group of type Eg, there are 22 different, combinatori-
ally smooth subsets J C S.

Assume now that Y is a rationally smooth, projective torus embed-
ding for the action TxY — Y. Let F C Y be the set of T-fixed points.
Choose a generic 1-psg A : K* — T so that Y has BB-decomposition

Y = |_|Ya.

acF

Proposition 3.3. Let U, = {zx € Y | a € Tx}. Then Y, is the
closure in Uy of a T-orbit. In particular, Y, is irreducible.
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Proof. Now T acts on U, and o € U, is the unique fixed point for
this action. Since Y is combinatorially smooth, so too is U,. Thus
there exists a finite, dominant, flat T-equivariant morphism

Pa i Uy — K"

where n = dim (Y'), and K™ has the usual structure of an affine torus

embedding for the n-torus. Thus we may write p,(z) = (21,... ,2,)
and A\¢(z1,...,2n) = (t*@q,...,tx,). Thus, by definition of the
BB-cell,

Yo={z €Uy |z; =0if a; <0}
=p'{(z1,... ,2,) € K" | 2; = 0 if a; < 0}).

This is the closure of a T-orbit in U, since p, induces a bijection on
T-orbits. a

Let X be a normal, affine torus embedding with 0. Thus X is a
D-monoid in the sense of Chapter 3 of [12]. We phrase our results
in terms of D-monoids, idempotents and so on, since this is the most
convenient method to obtain the desired information about the cells
of X(J). We need a combinatorial substitute for the infinitesimal
method that often accompanies the BB-method applied to K*-actions
on nonsingular varieties. We then provide a “dictionary” in Remark 3.7
to help the reader translate between the results about (W7, S”7) and
the results about X (J). If e € E1(X) let

U, ={z € X | ex # 0}.

U, is a D-monoid with unit group 7' and minimal idempotent e. Let
Ex(Ue) = E2(X)NE(U,). If X\ {0} is rationally smooth then, for any
ee By (X),

|E2(Ue)| = dim (X) — 1.

Indeed, this is one characterization of the property “X\ {0} is rationally
smooth.” See Theorem 3.2 above for a formal result for the cases of
interest in this paper.

Lemma 3.4. Assume that X\{0} is rationally smooth and let U C X
be an open subset such that
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a) U is of the form UgepUer, so that B = E;(U) C E1(X).
b) e € E1(X)\B.

Then the following are equivalent.
1. U\U = fU, for some (unique) f € E(U.).

2. Ue NU = Ugeally, where A = {g € Ez(X) | ge = e and ge’ =
e’ for some € € B}.

Furthermore, dim (fU.) =| E2(U)\A| + 1 = dim (X) — |4].

Proof. Assume 1, so that U.\U = fU., where fe = e. Then
U NU = U\ fUe. But

U\ fUe = | Uy

geN

where N = {g € E(X) | ge = e and gf < g} (since gf < g if and only

if g £ f). But

U Uy = U Uy,

geN geC
where C' = {g € E3(X) | ge = e and gf < g} (since, for g € E(U),
gf < f if and only if there exists ¢’ € F3(U,) such that ¢’ < g and
g'f < g, and notice also that U, C U, ). But

ng:ng

geC geA

where A = {g € E2(X) | ge = e and ge’ = ¢’ for some ¢’ € E;(U)}.
This last displayed equality holds since for g € E3(U,), ge' = € for
some unique € € Ey(X)\{e}. But if also g € U = UpepUp, then
e el

Conversely, assume 2, so that Ue N U = UgeaU, where A = {g €
E3(X) | ge = e and ge' = ¢’ for some ¢’ € E;(U)}. Then

UNUNU) = ] U
heC

where C' = {h € E(U,) | gh < g for all g € A}. But one observes that
C ={h € E(U.) | gh = eforall g € A}, since for any g € A and
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h € E(U.) either hg = g or else hg = e. But then C has a unique
maximal element
f=Vu

gEA®

the join of all g € A° = E3(U.)\A. The reason for this is the fact
that E(U.) is a Boolean algebra with atoms E(U.). This follows from
Theorem 3.2. Indeed, this is another way to characterize the property
“X \ {0} is rationally smooth.”

The dimension of fU. is one plus the length of a maximal chain
in the interval [e, f] C E(X). This is as stated because dim (X) =
|E2(U.)| + 1 and E(U.) is a Boolean lattice with E5(U.) as atoms
while, for g € E3(U.), fg = g if and only if g ¢ A. o

We return to the situation where X (J) comes from a Weyl group
(W, S). We assume also that X (J) is rationally smooth. Since the
cone X on X (J) is the closure of a maximal torus in some J-irreducible
monoid My (A € €7) we can apply the results of Section 2 to X and
X(J). If z € X is nonzero we write [z] € X(J). Let

X =[] X))

ecEq

be a BB-decomposition of X (J) for some 1-psg as in Theorem 2.11.

Recall, from Definition 2.9, the ordering < on Ey(7T). This ordering is
discussed in detail in Section 2 of [13]. It is a major key to the success
of the descent structure (W7, S7).

Let R _
X(I)(e)={yeT [yl € X(J)(e)}-

Notice that X (J)(e) C Ue.
Theorem 3.5. Let e € Fy, and let U = Ugr>eUer. Then
X(J)(e) = UNU = fUe,

where f € E(X) is the unique smallest idempotent with fh = h for
all h € Ey(U)\A. In particular, dim (X (J)(e)) = |E2(U)\A|+ 1 =
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|S| — |A| + 1. In this case, A = {g € Ex(X) | ge = e and ge’ =
e for some e’ > e}.

Proof. We first show that U, C UCIZCJ?(J)(e’). So let f € E(Ue).
If fe/ = 0 for all ¢ > e then f € X(J)(e). This follows from

Theorem 2.11. If fe' = ¢’ for some €’ > e choose this e’ maximally, so
that fe” = 0 for all ¢” > ¢'. Hence, f € X(J)(¢/). Thus we obtain

that R
U= JTrC | XU)E.
f>e e'>e

In particular, U \U C Uer>e X X(J)(¢'). On the other hand, (U,\U) N
)?(J)(e) = ¢ for ¢ > e, since (U\U) N U = ¢ for ¢ > e. Thus
UAUQX(X)(bmam%AUX)CmummmXUﬂdﬂu:¢
(By Theorem 2.11, if f € X(J)(e) then fe’ = 0 for all ¢ > e). We
conclude that

X(J)(e) = U\ U.

But we know from Proposition 3.3 that X (J)(e) is irreducible and
(therefore) of the form
X(J)(e) = fUe
where f € E(U.). Hence Lemma 3.4 applies and we obtain
f=Vu
geA®
where A = {g € E2(X) | ge = e and ge’ = ¢’ for some ¢’ > e}.

The dimension formula follows directly from the corresponding for-
mula in Lemma 3.4 using the fact (from Theorem 3.2) that |S| =
(W)l o

We remind the reader of the ordering < on Ej. See Section 2 of [13]
for more details.

From Theorem 2.11 the following are equivalent. 1. [f] € X(J)(e).
2. fef =0foralle >eand fe=ce.

Recall that, for e € E1(X),
['(e) ={g € E2(X) | ge =e¢, and ge’ = ¢’ for some €' < e}.



1346 LEX E. RENNER

Notice that
T'(e) = E5(U.) \ A

where A is as in Theorem 3.5. See Corollary 2.13 and Theorem 2.17 of
[13].

Theorem 3.6. Assume that J C S is combinatorially smooth. For
e € Ey recall that X (J)(e) = {[z] € X(J)| such that ex # 0 and €'z =
0 for all ¢ > e} and, as above, let X (J)(e) = {y € X | [y] € X(J)(e)}.
Then R

X(J)(e) =U\U = fUe

as in Theorem 3.5, and dim (X (J)(e)) = [T'(e)|.

Proof. This follows from Theorem 3.5 and Corollary 2.13 of [13] since

~

dim (X (J)(e)) = dim (X(J)(e)) — 1 = [E2(U2) \ 4| = [I'(e)|. O

Recall from Definition 2.21 of [13] the augmented poset (W7, <, {v,}).
By definition, (W7, <) is the usual Bruhat poset (which is canonically
isomorphic to the poset (E1, <) defined in Definition 2.9), and

vs(w) = |A] (w)]

where A7 (w) is the ascent set associated with s € S\J and e = we;w ™ !.

See Section 2 of [13] for more details. Theorem 3.6 says that, if
J C S is combinatorially smooth, then we can recover the dimensions
of the BB-cells {X(J)(e) C X(J) | e € E1} from (W7, < {v,}). If
v(w) = Y, v(s) then from part 3 of Theorem 2.23 of [13] we obtain
that

Remark 3.7. Table 3.8 provides the reader with a summary-
translation between the X (.J) jargon and the Bruhat poset jargon. On
the one hand it is convenient and useful to grind away with monoids,
idempotents and orbits to accumulate useful quantitative information
the about cells of X (J), but on the other hand it is useful to take
inventory of our progress and state it in terms of X (J) and (W7, <).
Let

A* ={I C S| no component of I is contained in J},
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and for I € A let I* = TU{t € J|ts = stforalls € I}. Let
Cw C X (J) be the BB-cell of w € W”.The “picture” here is this. W’
is canonically identified with the set of fixed points X (J)” of 1" acting
on X(J). The set of one-dimensional T-orbits O;(X(J)) of X (J) is
identified with {(u,v) € W’/ x WY | u < v and u=tv € S/W,}. If
(u,v) € W7 x WY and u=tv € S7Wj, then either v < u or else u < v.
The question of whether v < w or w < v is coded in the “descent
system” (W7, S7). For each w € W7 the BB-cell C,, is constituted as

follows.
Co= | ] 4
AeO(w)
where O(w) = {A C X(J) | A = Tz for some z € X(J), w(zo) € A
and v(zo) ¢ A if v < w}. A T-orbit A C X(J) is in Oy, if and
only if any one-dimensional T-orbit of A has w(zg) in its closure. See
Theorem 2.11.

X (J) jargon W+ jargon
zp € X(J)T 1ew’
z=w(zp) € X(J)T we W’

The T-orbit A C X with AN X7 =Wz | I € A%

{(u,v) € W7 x W7 such that
The set of T-orbits (on X(J)) of dim=1 |u <vandu~'v€ SIW,}

The set of T-orbits of dim = 1 with zp € A | SY = (W;(S\ J)W;) N W’

The set of T-orbits of dim =1 in Cy, AT(w) ={re ST |w < wr}

The set of T-orbits on X (T") {(w,I) | Te A", w<wsifseI*}

4. The Poincaré polynomial of X (J).

Definition 4.1. Let X be a complex algebraic variety. The
Poincaré polynomial of X is the polynomial P(X,t) with the signed
Betti numbers of X as coeflicients.

P(X,1) = 3" (~1)dimg[H'(X; Q)Jt'.
i>0

Assume that J C S is combinatorially smooth. In this section we
describe the Poincaré polynomial of X (J) in terms of the augmented
poset (W7, <, {vs}).



1348 LEX E. RENNER

By assumption J is combinatorially smooth. Thus, by the results of
[4], the Betti numbers of X(J) can be calculated by calculating the
h-polynomial. Let

fi = the number of codimension (i 4+ 1) — orbits of X (J)

where ¢ = —1,0,...,n — 1. The h-polynomial is defined by insisting

that .
Z hitn—i — Z fi (t _ 1)n—i—1'
=0

i=—1

Notice, in particular, that f ; = 1. A simple calculation yields that

hi = i(—l)kﬂ' (Z - z> fie1.

=0

By Theorem 10.8, Remark 10.9 and Proposition 12.11 of [4], the
Poincaré polynomial of X (.J) is given by

P(X(J),t) =) hpt®.
k

On the other hand we can describe the h-polynomial of X (J) in terms
of the augmented poset (W, <, {vs}). This is the main point of the
entire discussion.

Theorem 4.2. Assume that X(J) is rationally smooth. Then the
Poincaré polynomial of X(J) is

P(X(J),t)= Y ™).

weWJ

Proof. By Theorem 3.6 there is one monoid BB-cell X(J)(e) for
each e € F;. Furthermore, dim X (J)(e) = |[['(e)| = |47 (w)| = v(w),
where w € W7 is such that wew ! = e;. But, since X (J) is rationally
smooth, each X (J)(e) is a union of T-orbits in such a way that the
h-polynomial h(e) of X(J)(e) is given by

hey= > ¢l

ACAY (w)
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A simple calculation yields that h(e) = t*(*). But X (J) = Ueer, X (J)(e),
and so the h-polynomial of X (J) is given by

h(t)= > h(e)y= > ™. o

ecE, weWJ

Example 4.3. Assume that J = ¢, and let X = X(¢). We want to

compute
P(X,t)= ) 0
ecE;
in this case. Let A = {e;}. In this case W = E; via w~e, if

ew = weyw L. By the results of [13],
Er = {(w,ws) e Wx W |seS, l(w) <l(ws)}

via g~ (w,ws) if ¢ = wgsw™! = wsgssw™! for some unique g, €
Ay = {gs | s € S} and w € W with [(w) < l(ws). Thus, with this
identification, {g € Ey | gew = ey} = {(v,v8) e W xW | s € S, l(v) <
l(vs) and w € {v,vs}}, and hence

Dlew) = A{s eS| l(w) < l(ws)}.

Thus v(ey) = [{s € S | (w) < l(ws)} = |S] — |D(w)|, where
D(w) = {s € S | l(w) > l(ws)}. We let d(w) = |D(w)|. By
Poincaré duality >, p t2v(e) = Zwewt2d(w)- Thus, for convenience,
we compute Y.,y t24). By Theorem 7.2.1 of [2] we have (taking
into account the doubling of degrees) that

P(X,t) =Y SV — )|
ICS

where W! = {w € W | D(w) C S\I}. This sum is called the Eulerian
polynomial of W.

If (W,S) is the Coxeter group of type A,_; then W = S, the
symmetric group on n letters. Define A(n, k) = |[{w € S, | |[D(w)| =
k + 1}, the Eulerian numbers. Thus, for the associated variety X,

n—2
P(X,t)= > A(n,k)?*+).

k=-1
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These FEulerian numbers A(n,k) are known to satisfy the following
recurrence relations.

An,k)=n—k+1)An—1,k—1)+kA(n — 1,k).

The first few Eulerian polynomials:

1

1+t?

1+ 4t +t4

141182 + 11¢% + ¢

1+ 26t2 + 66t* + 2616 + ¢8

14 572 4 302t* + 302t + 578 4 ¢10

1+ 120¢2 + 1191t* + 2416t 4 11918 + 120¢10 + ¢12

1+ 2472 + 4293t* + 15619t6 + 15619¢8 + 4293¢10 4 247412 4 ¢14

O[O |[W|N |-

1+ 502t2 + 14608t* + 882348 + 156190¢8 + 88234¢10 + 14608¢12 + 502¢14 + ¢16

Similar formulas can be derived for the Coxeter groups of type B and
D. See [3] for more details.

Example 4.4. In this example we list the Poincaré polynomials
associated with combinatorially smooth polyhedra of type As. Here
S = {s1, 82,53} with s1s9 # s081 and s2s3 # s382.

J Associated Polyhedron | Poincaré Polynomial of X (J)
{s1, 82} | tetrahedron 1+t2+t4 448

{s1} truncated tetrahedron | 1+ 5t + 5t% + ¢°

{s2, 83} | tetrahedron 1+t2+4 445

{ss} truncated tetrahedron | 1+ 5t + 5t% + ¢°

10) permutahedron 14+ 112 +11t* + ¢

Example 4.5. In this example we list the Poincaré polynomials
associated with combinatorially smooth polyhedra of type C5. Here
S = {s1, 82,53} with s182 # s251 and s32835 # s382. A = {1, a9,a3}
and ag is the long simple root.
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J Associated Polyhedron Poincaré Polynomial of X (J)
{s1,s2} | cube 14 3t2 +3t4 +¢6
{s1} truncated cube 141182 + 11¢% + ¢8
{s3} truncated octahedron 141182 + 11¢* + ¢8
o) rhombitruncated cuboctahedron | 1 4 23t% + 23t* + 6

Example 4.6. In this example we discuss the Poincaré polynomial
of X(J) where (W,S) = (Sn+1,{s1,82,...,8n}) is the Weyl group of
type A, (n >2) and J = J, = {s3,54,... ,5n}. Using Theorem 1.2 we
obtain that

AM{0} = {e(k,n—k-1)|k=1,...,n}
U{e(k,n—k—-2)|k=0,...,n—1},

where
e(i,j) > e(k,l)ifi>jandi+j>k+1.
Furthermore, the number of T-orbits on X (J) is as follows.
# of k-dimensional orbits = (n — k + 1) (Zﬁ), if 0 <k <n.
# of n-dimensional orbits = 1.
# of 0-dimensional orbits = n(n + 1).

Thus we might calculate the Poincaré polynomial from the f-polynomial
as described at the beginning of this section. The calculation would be
somewhat interesting and we would obtain that

P(X(J),t) =2 + (n + 2)t2" D 4 (n + 2)t2(n=2) 4 ...
+ (n+2)t* + (n +2)t* + L.

However, this does not illustrate our new method. We want to
illustrate the calculation of P(X(J),t) using the structure of (W7, S7).
To this end we proceed as follows.

As in the above example, we let (W, S,) = (s1,82,...,5,) (n > 2),
and let J, = {s3,84,... ,8,} C Sp. A simple calculation shows that

Wil ={(sp---51)(sq - 52)} U{sp---s1} U {sq - 52}
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where 1 < p < n and 2 < p < n. Furthermore, by Theorem 4.2 of [13],
Sy = {51, 82} (noting that J» = ¢), and for n > 2,

J_
S;, = {51,852, 5352,545352,... ,SpSp_1"--S3S2}

=87 U{s.5,_1- 5352}

For this example we shall change notation slightly from that of Theo-
rem 4.2 of [13]. We simply write S;/ for S 1S/ . In all cases we use J
instead of J,,, since no confusion results if we think of J as “everything
but s; and s3.” Notice also that

Wi = Wiy Uf(sne51)(sp-+52)} Usn o1}
U {(Sq . ..31)(5n .. 82)} U {Sn . --82}

where 2 < p < n and 1 < ¢ < n. Recall, from Definition 2.19 of [3],
the descent set AJ(w) = {r € S’ | w < wr} of w € W,/. The point
of this example is to calculate A’ (w) for each w € W,J. Our approach
here is inductive. If w € W;7_ |, we construct AJ(w) from A | (w). If
w e WJ\W/_, we calculate A/ (w) directly. The following proposition
records the necessary steps.

Proposition 4.7. Let (W,S) and J C S be as above.
1. Ifwe WJ_, then s, --+s1 € Al(w). Thus A(w) = A]_,(w) U
{Sn Ce 82}.

2. Ai(sn . 81) = {82, 8$382,... ,88p—1""" 32}‘

3. Ag(sn Cen 8182) = {8382, 848382, -+ ,SnSpn—1""" 82}.
Ai(sn . 813332) = {343382, 855848382, ... ,SpSp—1""" 32}
A ((sn - 81)(Sn—18n—2+ " 52)) = {snsn-1"" 52}
Ai((sn -+ 81)(SpSn—1-"82)) = ¢.

4. Ai((sp" '51)(371 : "52)) = {81} if1<p<n.
Ad(sn -+ 52) = {51}

Proof. This is a calculation using part 3 of Theorem 2.23 of [13]
as our guide. This allows us to calculate A”(w) by considering the
products wr where w € W7 and r € S/, and then writing wr = vc
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where v € WY and ¢ € Wy = (s3,...,5,). From there it is easy to
decide, by inspection, whether w > v or v > w. For visual convenience,
we write the decomposition wr = ve as wr = v|c].

We first consider 1. Let w = (spSp—1---51)(S¢Sq—1---S2) where
0O<p<mnandl<g<n. Then

W(SnSn—1---52) = (SpSp—1 - 51)(SnSn—1---52)[Sqt1 - - S3].
If w=spsp_1--- 51, then
W(spSp—1--52) = (SpSp—1-++51)(5¢Sq—1- "+ 52).
If w = s48g—1" " 52, then
W(SpSn—1---52) = (SnSn—1---52)[Sq+18¢ - - - $3]-

Thus, in all cases, s, - - sa € A; (w). Therefore 1 holds.

We next consider 2. Forn > ¢ >p+1>3let w = (sp8,-1--81)
(spSp—1---s2). Then

w(sgSq-1-+"52) = (SnSn—1---52)(S¢Sq—1"""52)[Sp+15p - -~ 53]

Thus s484-1-++ 82 € Al (w). If n > p > ¢ again let w = (sp8p_1- - 51)
($pSp—1---82). Then

w(sgSq-1°""82) = (SnSn—1--51)(Sq-18¢-2" " 52)[Sp+15p - 53].

Thus s,84-1--82 ¢ AJ(w) in this case. Finally, one checks that
(Sp---818p---52)(81) = Sp—1---818,--S2. Hence s1 ¢ AZ(w) since
the length goes down by one. Thus

J
Ay (sn-518p-++82) = {Spy1 52, 8p12 """ 52,0 SnSn_1°"" 52},
and consequently 2 holds.

Lastly we consider 3. If w = (8,851 81)(SnSn—1---82), then
ws1 = (Sp—15p—2**51)(SnSn—1"""S2).

Thus s1 ¢ AJ(w) in this case. If p < n and w = (spsp—1---51)
(Snsn—l te 82)5 then

ws1 = (Sp+18p -+ 51)(SnSn—1 -+ - S2).
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Thus s; € AJ(w) in this case. If ¢ < n and w = (spsp_1---51)
(Sn8n71 te 52)7 then

w(8¢8¢—1-"82) = (SpSp—1-"-51)(8¢-18¢—2" "~ 82)[SnSn—1-- - 83)-

Thus s484—1-++s2 ¢ AJ(w) in this case. We conclude that A (w)
is empty if w = ($pSp_1--51)(SnSn_1---52), and AJ(w) = {s;} if
w = (spSp—1-+-51)(SnSp—1---52) and p < n. This completes the
proof. O

Corollary 4.8. Let (W,,S,) = (s1,82,...,8,) (n > 2), where
Sn = {s1,82,.-. ,8n}. As above, we also let J = {s3,84,... ,8n} C Sn
and X, (J) be the associated torus embedding. Then

P(Xn(J),t) =" + (n+2)t> Y 4 (n 4+ 2)2*=2 4 ...
+(n+2)t* + (n+2)t* + 1.

Proof. The case n = 2 is left to the reader, and the case n = 3 is
already included in Example 4.4. By induction, we have that

P(Xp_1(J),t) =2 4 (n+ 1)t2D 4 (n 4+ 1)20=3) ...
+ (n+1)t* + (n+1)t* + 1.

To obtain P(X,(J),t) from P(X,_1(J),t) we multiply P(X,_1(J),?)
by ? and then add 3! for each w € W) \ W,)_, with |AJ(w)| = &,
according to the requirements of Proposition 4.7. Consequently, we
obtain that

P(Xn(J),t) = 2P(Xp_1(J), ) + (207D 4ot 42 4 1) + nt?.

The three summands in this expression for P(X,,(J),t) result, in order,
from parts 1, 2 and 3 of Proposition 4.7. A simple calculation then
yields the desired result. |

Figure 1 provides a visual illustration of how the ascent numbers of
W,/ reproduce recursively. The numbers along the bottom two edges
of the diagram correspond to the elements of W, \ Wy (according to
parts 2 and 3 of Proposition 4.7). The other numbers correspond to
the elements of Wy C W/ (according to part 1 of Proposition 4.7).
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Notice that the diagram depicts only part of the Bruhat order relation
on Wg . For example, the relation agb; < asbg is not depicted.

Figure 2 indicates the correspondence between the nodes of the
diagram and the elements of W;. Recall that W] = {a;b; | i =
0,1,2,3,4and j = 0,1,2,3}, where ap = 1, a1 = s1, az = $281,
a3 = 535281, G4 = 54535281, by = 1, by = 82, b3 = s352 and by = 545352,
and S7 = {s1, 52,8382, 545382}.

It is interesting to calculate the augmented poset of WY in this

example. Write
A7 (w) = A (w) || AL (w)

as in Definition 2.19 of [13]. If w € WY then w = a,, w = by, or
else w = ayby. Here a, = sp---s1 (1 < p < n)and by = s4---52
(2 < ¢ <n). If we adopt the useful convention ag = 1 and b; = 1, then
we can write

7 ={ayb, |0<p<nandl<q<n}

with uniqueness of decomposition. Let w = a,b, € W, Then

a) Aéfl (apbg) = {s1} if p < q.
AS‘]1 (apbg) = ¢ if ¢ < p.
vs, (apbg) =1 if p < ¢ and v, (apby) =01if ¢ < p.

b) AJ (apbg) = {Sq41---52,.-. ,8n---52} if g < n.
Al (apby) = ¢ if ¢ =n.
Vs, (apby) = n —q.
It is interesting to compute the “Euler polynomial”

H(ty,ta) = Yt
weWwJ

of the augmented poset (W7, <, {v1,v2}) (we write v; for vs,). A simple
calculation yields

H(ti,ts) = tit3 =" + <Z (kth™' + n+2—k)t1t’;‘2)> + 1.
k=

Example 4.9. In this example we consider the root system of type
B,. Let E be a real vector space with orthonormal basis {e1,... &}
Then
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(I)+:{€i*€j ‘7;<j}U{Ei+€j ‘Z#]}U{EZ}, and
A:{El—fz,... ,&'171—61,&'[}:{041,... ,Oél}.

Let S = {s1, $2,...,81-1, 81} be the corresponding set of simple reflec-
tions. Here we consider the case

J = {81, e ,31_1}.

We first calculate W7 = {w € W | w(a;) € @ forall 1 <i <1 —1}.
This leads to a simple calculation and we obtain

WY = {1<i) <ig<---<ig <},

via
w(e,) =g, for 1 <14 <k,
and
w(epto) = —¢j, for 1 <ov <1 —k,
where | > j1 > jo > -+ > ji_p > 1 (so that {1,...,l} =
{ilai% DR aik} U {jlajZa s ajl—k})-
Let

A=2=¢e1+---+eg=01+2a3--+loy.

By Proposition 4.1 of [9], for v,w € W7, w < v if and only if w(A\)—v()\)
is a sum of positive roots. A simple calculation yields that

w < v if and only if m,, () < m, (i) for alli =1,... I,
where
my (1) = {j <i|w(ey) = —¢j for some v =1,... 1}

Let M(w) = {j | w(ey) = —¢; for some v =1,... ,1}. If M(w) C M(v)
then also M(v)¢ C M(w)¢ (complement of sets) and we obtain that

wA) —v(\)=A+ B
where

A= Z (aj+aj+1+...+al)— Z (aj+aj+1+"'+oq),
JEM (w)e jEM(v)e
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and

B= Y (j+aj+-+a)— Y (oj+ajn+-+a)
jEM(v) JEM (w)

Thus M (w) C M (v) implies that w < v, at least for elements of W*.
We now wish to calculate A”(w) for each w € W, Recall that

Al (w)={re 8’ |w< wr}

and

J
S’ = {sl;slflsla vee 384851811815+ 381" Sl}‘

Let w € W correspond, as above, to i; < --+ < i and j; > -+ > ji_g.
Let 7; = s;---s; € S7. One checks that

M(wr) = M(w) U{j}ifi <k,

and
M(wr) = M(w)\ {j} if i > k.

Hence by our previous calculations w < wr; if and only if ¢+ < k. Thus
we obtain

Al (w) ={sk---s1,...,81 s} ={reS’ |w<wr}
Thus if w € WY we obtain
v(w) = |{j | w(ey) = €; for some v}|.

We can use this information to calculate the Poincaré polynomial of
X(J). An easy calculation yields

P(X(),t)= Y W= 3" £ =1+

weWwJ AC{1,..,l}
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