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A HAMILTONIAN MODEL AND SOLITON
PHENOMENON FOR A TWO-MODE KdV EQUATION

CHUN-TE LEE AND JINN-LIANG LIU

ABSTRACT. We present a Hamiltonian model for a two-
mode KdV equation. By using the theory of functional bi-
vector and prolongation of the vector field, the Hamiltonian
operator is formally established. We also perform the numer-
ical simulations on the obtained Hamiltonian system with the
aim of investigating its soliton behavior.

1. Introduction. In 1994, Korsunsky [6] proposed a nonlinear two-
mode dispersive wave equation which in scaled form is represented as
(7]

(1) Ut — Ugy + (8t - aam) Uy + (at - 6az) Uprr = 05

where u(z,t) is a field function, —co < z, t < o0, -1 < @, f < 1
and we have adopted different scalings from those in [6] in which the

parameter s can be easily removed to obtain a much more neat scaled
two-mode KdV (STMKdV) equation.

The STMKdAV equation is assumed to govern the propagation in the
same direction of two different wave modes simultaneously; on the other
hand, the author in [6] has claimed that pure solitons might exist. But
no one has ever figured out how to find or observe its solitons phe-
nomenon, either numerically or theoretically. Soliton solution involves
four basic ideas: (1) particle-like collisional stability of waves, (2) clean
nonlinear interaction between the waves, (3) phase shift after the inter-
action and (4) conserved quantities such as Hamiltonians. The soliton
equation often comes with a surprising Hamiltonian structure, which is
now being recognized as an important aspect in soliton theory [3, 8].
For example, the KdV equation

U — bUUL + Ugge = 0,
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can be written as a Hamiltonian system as [1]

U= oo ’H—/_Oo(u +2uz)dx.

Another example is the Boussinesq equation (BE) ([9, page 459])

1 4
(2) Ut = guzzzz + g (U'Q)zza

which is a modified form of the general Boussinesq equation

wtt + alwtt + 021/12 + a?ﬂ/’zzzm = 0)

in which ¥ = u —3/8, a1 = -1, az = —4/3, and a3 = -1/3.
Accordingly, (2) can be converted into
Ut = Uy, Ut = 3uzzz 3uuma

and its Hamiltonian system is represented as
2 u\ [ 0 Oy 0H/du
ot\v) \9,r 0 dH/ov )’
0 0,
2=(a. %)

1 4 1
H[u,v] = / < - 6“920 + §u3 + 51)2) dz.

However, the discussion of the Hamiltonian system for the STMKdV
equation has been missing and subsequent research on the equation is
so scarce that as far as we know no paper has been written to deal with
its Hamiltonian formulation. In this article, we are going to present the
Hamiltonian model of the STMKdV equation when o = 0, which has
been overlooked in [6]. We also perform small numerical simulations in
order to observe the particle-like, nonlinear interaction between waves
and phase shifts phenomenon, which has also been neglected in [6].

where

and
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This paper is organized as follows. In Section 2, we briefly intro-
duce the general description of Hamiltonian dynamics for differential
equations. We set this general theory up so that in Section 3 we can
apply it line by line to our STMKdV equation. Finally, we demon-
strate the numerical results of solitary wave interaction by integrating
the Hamiltonian system with the help of Fourier spectral method.

2. Hamiltonian dynamics. Hamiltonian systems of differential
equations are often defined on a “manifold,” a topological space that
resembles Euclidean space locally. More precisely, a manifold is a
group structure in mathematics carried by a Lie group [4], which has
additional properties apart from the general group properties [5]. A
differential manifold is a manifold that allows partial differentiation and
all the features of differential calculus on it. We shall not go into the
details of the manifold theory itself but only assume that our manifold is
a U™ class endowed with a group structure in which the multiplication
and inversion operations are also C'*® operations.

Given a differential manifold M, a Poisson bracket on M assigns each
pair of differentiable, real-valued functions F', H : M — R to another
differentiable, real-valued function on M, which we denote by {F, H},
so as to satisfy the following properties:

1. Skew-symmetry:

(3) {FaG}:f{GaF}

2. Bilinearity:
(4) {aF +8G, H} = ofF, H} + 8{G, H},

for any smooth real-valued functions F', G, H on M.

3. Jacobi identity:
(5) {Ha {Fa G}}+{Ga {Ha F}}+{Fa {Ga H}}:Oa

for any smooth (differentiable) real-valued functions F', G, H on M.

4. Leibniz rule:

(6) {H,F-G}={H,F}-G+F-{H, G},
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for any smooth real-valued functions F', G, H on M. Here - denotes
the ordinary point-wise multiplication of real-valued functions.

Theorem 1. Let M be an even-dimensional Fuclidean space R*™
with coordinates (¢, p) = (q1,--- qn; P1,---,0n)- If F(q,p) and
G(q, p) are smooth (differentiable) functions, the Poisson bracket can
be defined as

" (0F 0G  OF 0G
7 F, G} = — .
() { ’ } ;{3%3@ 31%'3%'}
Proof. Direct substitution. O

The basic element of manifold theory is the vector field, which takes
a central role in analyzing the symmetry of differential equations when
M is a Poisson manifold, so that the Poisson bracket satisfies the basic
requirements of (3)—(6). For a given smooth function H on M, the map
F — {F, H}, defines a derivative space of F' on M, and hence the map
-+ {-, H} determines a vector field on M. This observation leads to
the following results.

Definition 1. Let M be a Poisson manifold with Poisson bracket
and H : M — R a smooth (differentiable) function. The Hamiltonian
vector field associated with H is the unique smooth vector field vy on
M that satisfies

(8) vu (F) ={F, H} = —{H, F},
for every smooth function F. The equations that govern the flow

of vy are referred to as Hamilton’s equations and H is called the
“Hamiltonian” function.

Therefore, if we consider a Poisson bracket (7) on R?*" with coor-
dinates (¢, p) = (q1,--- ,qn,P1,-.- ,Pn) and let H : R?® — R be a
smooth function, then the Hamiltonian vector field corresponding to

H(p, q) is

" (0H & OH 9
9 :E — -
©) v {6171‘ 0q;  0g; 31%}

i=1
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and Hamilton’s equations are

dgi  O0H dp; _ OH
dt B 6pi’ dt N aqi’

(10) i=1,...,n.

The flows can be obtained by integrating these equations to get

(11) ¢ = 9i (t;p0,00),  pi = fi (tp0,90),

where qg, po € R"™ are initial conditions, and f;, g; are some smooth
functions.

In general, let H(x) be a smooth real-valued function with ¢ =
(z1,Z2,... ,&m); then the general form of the Hamiltonian vector field
associated with H is

= 0
(12) VH = ZQ’ (z) 9z
i=1 ¢

where (;(z) = vg(z;) = {z;, H} and the Poisson bracket is
(13) {F, H}:i{x,,H}gTF

i=1 ¢
Thus we have
(14) {F,H}zéé{mi,wj}g—ig—z, ,j=1,...,m,
and

(15) Jij (37) = {xi, Qﬁj}, i,j = 1, e, M.

Here J is called the structural function relative to the given local
coordinate z and Hamiltonian H(z). By using \7H to denote by the
gradient vector of H, we further have

(16) {F,H} =vF-J v H,
where the structure matrix is

J = 0 _Imxm

Lrxm 0 ’
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and the general Hamilton’s equations take the form
dz
(17) =3() v H ).

When we are concerned with the infinite-dimensional Hamiltonian
system, we must regard it as a generalization of the finite-dimensional
Hamiltonian system as follows.

1. Replace the Hamiltonian function H(z) by a Hamiltonian func-
tional H[u].

2. Replace the gradient 7 H by the variational derivative 6 /du,

OH n d® 0
Su <¥ (1) Wau(n)”’

where 0/0uy) is the nth derivative of u with respect to .

3. Replace the skew-symmetric matrix J in (16) by a skew-adjoint
operator D which may depend on w.

Hence the resulting infinite-dimensional Hamiltonian system takes
the form

ou OH
= _plt
ot ou’
and the Poisson bracket is defined as
) 1)
(18) (F, G} = / —}-D—g dz,

for any two smooth functionals F, G. Then for infinite-dimensional
systems, Olver [9] gives the following results.

Definition 2. A differential operator D is called Hamiltonian if its
Poisson bracket (18) satisfies the “skew-symmetry” property

(19) {P7 Q} = {Q7 P}a
and the “Jacobi identity”
(20) {P. {Q R} +{R, P}, Q} + {Q, R}, P} =0,

for any smooth functionals P, Q and R.
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A radical simplification for determining a Hamiltonian operator is
brought up by Olver [9] using the theory of “bi-vector” as follows.

Definition 3. For any skew-adjoint differential operator D, the bi-
vector of D is a functional of the following form

1 1 -
— _ E’ a B
@'D = 5/{0/\1)0} dz = §/< 0 ADaﬁe >d.’1§',

a,B=1

where § = (0%, 6°) is called a unit-vector and D = (Dag) is a g X ¢
dimensional differential operator.

The significance of the bi-vector is that it defines a “bilinear” map as

@) (©PrQ-;[(PDg-q.pP) = [(PDQ) a.

for any P, Q € AY, space of g-tuples of differential functions. Therefore
if P and Q are variational derivatives, i.e., §P/du = P, §Q/éu = Q,
then

(22) ©7.0-= [ (%D‘Z—f) dz,

produces the bracket {P, Q} determined by D. Thus, studying the
Hamiltonian operator is equally as important as studying the bi-vector.

Example 1. The KdV equation

1
Up = Uy + Uggy = 6317 (uwz + 5’!1,2),

has D = 9,- , and its bi-vector is

1

®D=§/(aA'D(a)) dx:%/(mam) de.

Example 2. The Boussinesq equation
1

Ut = Vg, Ut = S Ugge T 5UUg.

3 3
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has the operator form as

ale)= (o %) (o)

and its bi-vector is

on-tf (i (3 %) ()

1
25/(0/\Cz+§/\0w) dz,

where @ = (6, ¢) are unit vectors of u and v respectively.

Now our key tool for determining the Hamiltonian operator was the
following result proved by Olver [9]:

Theorem 2. Let D be a skew-adjoint operator, and let

1

(23) Op = / (0 AD(0)) dz,

be the corresponding functional bi-vector. Then D is Hamiltonian if
and only if

(24) Prvpg (@D) =0.

3. Hamiltonian structure of the STMKdV equation. The
STMKdV equation (1) can be cast as a system of equations as follows:

(25) { Ut = qa,

gt =Ug + (%uz)z —ugy + /Buzzw — Qzgz

where we have introduced a new variable ¢(z,t) and

(26) / wy dz = 0,

— 00
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together with boundary conditions such as u(z, t), g(z, t) their products
and their derivatives vanishing as * — Fo0.

There is a conserved quantity that makes a big contribution, namely
that [7]

(27) H= / (uq + %u?’ - %ui) dz,

and (25) can be written in a conservation law as

O (o Lus Lo
g\ 3% Tl

0 (1 1
= 52 <§u2 + §q2 + %u?’ + B (utgy) — gui - uqm>.

To show this is indeed independent of time, we compute

dH / (uq +-ud - 1u2> dz,

_ 1 2 1 _ 12 B
/700 8x<2u +2q + 3“ + B (utge) ,3<2u$> uqm> dz,

oo

1 1 1
= |:_u2 + _q2 + gu?) + B (uuzw) - /8<_u§> - UQam:| )
0

[\)

2 3 2 .

I

using boundary conditions u?, ¢2, u3, utzs, U2, ug, — 0 as x — £oo.
Therefore, dH /dt = 0 meaning that H = constant.

Furthermore (25) can be written in a matrix form as

s () ()

where

- —83 . —dyu-
Oz -+ (a/3) (u0y - +0,u-)

—03 . —ud,-

x
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is an operator and its variational derivatives are

&:q+u2+uzza %
dq

ou

To obtain a genuine Hamiltonian structure of the equation, we need
to check the skew-adjoint and Jacobi identity. First of all, the operator
D is skew-adjoint for any «, 3:

Dy (=02 —0,u-)”
By -+ (a/3) (udy - +pu)
D" = 3 * +/88wzz : +’U,6w’u, )
(=82 - —ud,-) + (uBpan - +Opgur)
~0,- — (03 —ud,)
By - + (a/3) (udy - +0pu-)
=1 _(_583. _ N +B0szs - +ud u- ,

= -D.

To check the Jacobi identity, we consider the unit vector for u and g as
6 = (0, ¢) and its bi-vector as

ONO, — O A Cogg —ugONANC—ub A,
7</\0zmz *U<A0z+CACz
/ +B¢ A Cawa + UPCA G +uuCAC | da.
+3uzzc A Cz + 3uz< A Cza:
+2uC A Caza + C A Coazan + 30UC A G,

But first of all we need to apply the integration by parts and boundary
conditions such as

/—uﬁ/\(dxz/(u-@m(ﬁ/\()) dz
:/(u&c/\(—i—u@/\g‘w) dz,

[ Buest A Gada = [ (GG G+ 30 A )

[ 3usC A Gead = [ 3060 £ o 3UC N o) i,
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we then arrive at

ONO, — O A Cogw + by AC
7’“6/\(35 7C/\0;z:zz *UC/\GZ
_1 (A G+ FauC A G+ BCA Coan
@)oo= [| i e e e | o
_3u<a: A Cza: - 3UC A szz

Furthermore, by using the wedge interchanging rule such as
uby AN =—ul N0,
the bi-vector (29) is simplified to

OAO, — O A Coy + 2uby AC
1 —C A boga + (A G + 2auC A Gy

Now we obtain

pr V’Da (u) =0, — szz - U:I:C - u(za
—Opea —uby + (o + %aué.z + %aé.
(30) pr VD§ (Q) = +/8szz + Uuz( + UZCm + 2“szz )

pr VD§ (u2) =2uby — Crzoe — Uz( — UCy-
Therefore,

(31) prv_o (®p)

ON Oy — 0 A Cogo + 2ufz AC
I n _CAezzz+C/\Cz+%auC/\<m
- 2"””"/ +BCA Cawo +UuPC A G

dzx.
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Note further that
prv o / (ON0,)

prvyg [ (60 Cuur) d

/ Y (O AE,) dz =0,

/ (0 A Coza) da

pr VDE/ C A ezzz = / a C A ezzz)

7

) (A &) dz =0,

o= [y,
/ ) (C A Coza) dz =0,
o= forv,

g / A

pr VDO/ ( A Crwzzw
and

prVDa/(uez A Q) dx

= /((ez — Coaz — Ue( — qu) ACA Cw) de,

pera/ (u2§/\ Cz) dz

_ / (2u0s — Cone — uaC — ule) AC A Go) da,

pr VDE/(U( A Cozz) do
= /((61 — Caaz — Ug( — UCz) ACA sz:) de,
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we are left with

2z N 0, N ¢ —2uly A 0z A ¢
- 1 +2a0, ACA G — 20os ANCA G

(32) pr V.0 (®p) = 5/ +2uby A C A Co — 2uCpze A CA (e
+20; A CA Coza — 2ule A CA Coaa

dx.

Note that in (32),

/(2035 ACA Cpga) do — / (2(zzz N0z N C) dz
_ / (200 A C A Cona) dr

- / (20, A ¢ A (guz) dz, (interchange)
=0,

/(—2uCz A0y AC) dz + / (2ufy AC A Cy) dz

= / (—2uly N0y AC) da + / (2uCy A 6, AC) dz, (interchange)
-0,

/(—Qu(wm ANCA () de — / (2uCy A C A (oae) do
= / (—2uCpzz A C A G) dz — / (2uCswa A Co A €) dz, (interchange)

= /(f2usz ANCNE) do + / (2ulpzaz A ¢ A ;) dz, (interchange)
=0,
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FIGURE 1. (a) STMKAV solution profiles solutions, the initial condition is set up
with Ay = 1.8, A2 = 1.2, 1 = —75 and @2 = —50 for waves in (33).
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FIGURE 2. Contour plot of interacting solitary waves.
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— Linear waves
3.5 A H
— — Numerical waves

25F

Amplitude

0.5

05 I I I I I
-100 -50 0 50 100

FIGURE 3. Comparison with linear waves at the final time of calculation t = 80,
showing phase shifts.

and

= / <§a§m A(CA Cm)w> dz, (boundary condition)

—/(%awmgﬂ) de
- (%a@ﬂ@%) da,

=0.
We finally have, for general 6, ¢, the following result

prv o (®p) = %/ <§a9z ANCA Cz> d.

Hence D will be a Hamiltonian operator when o = 0 and STMKdV
equation admits a Hamiltononian structure under this condition.
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x10"°
T

H - H(t=0)

_gl I I I
0 16 32 48 64 80

time

FIGURE 4. Hamiltonian in (27); the values are presented as differences from the
initial value.

Equation (25) is numerically integrated in the interval [—128, 128]
with Az = 0.25 and At = 1072. The time discretization for our
scheme is implemented by the classical fourth-order Runge-Kutta (RK-
4) method and spatial derivative is approximated “spectrally” [2]. The
initial condition is given by a linear sum of two well-separated solitary
waves of different amplitudes and velocities as

(33) u (z,0) = Ay sech? (By (z — z1)) + Az sech? (By (z — x3)),

where A; = 3(A\? — 1)/(\i + @) and B; = (1/2)y/(A? — 1)/(\i + B), for
i = 1,2. We also compute the Hamiltonian in (27) to give full validation
of the accuracy of our numerical scheme. The solution profiles for the
STMKdAV equation are presented in Figures 1-4. We note that by
considering a = 0, 8 = 0.2 for the STMKdV equation, we are dealing
with both the Hamiltonian system and its soliton phenomenon at the
same time. One can see that the STMKAV taller solitary wave catches
the shorter, coalesces to form a single wave, then reappears in front
of the shorter wave (to the right). The interaction is nonlinear, not
simply the superposition of two individual waves. The Hamiltonian is
as accurate as of O(10713), showing that our results are genuine.
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