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ISOMETRIES OF NAKANO SPACE
OF VECTOR VALUED FUNCTIONS

NADIA J. GAL AND JAMES E. JAMISON

ABSTRACT. The Nakano space LP(*)(u) associated with
p(t) is defined to be the Musielak-Orlicz space Lg(p) such
that ®(u,t) = uP(*) /p(t). We are going to consider the space
N = Lr(®) (p, H), where H is a separable complex Hilbert

space with inner product (, ) and norm || - ||2. For any f € N,
let
1 ()
[FAGI
o= [ O o,
0]

where 1 < pg < p(t) < poo < 00. For every f € N, the norm
of f on this space is

||f|N_inf{€>02M<£> < 1}.

We are interested in the form of the Hermitian operators and
the form of the surjective isometries on this space N.

1. Introduction. Let ([0,1],%, ) be a nonatomic measure space
and H a separable complex Hilbert space with inner product (, ) and
norm || - |2-

In the following we are going to consider the space N = LP(®) (u, H),
where p(t) is a measurable function from [0,1] into (1,00) such that
1 <po <p(t) < poo < 00. Also, for every vector z € H, we define the
constant function z(t) = z for every ¢ € [0, 1].

We recall that, for a Young function ®, Lg(p,H) denotes the space
of all strongly measurable functions from [0, 1] to # for which

Ma (Af) = / S AIf (8)],8) du(t) < oo,
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for some A > 0. The space Lg(u,H) is a Banach space with respect to

the norm ;
11 ey = inf { 20 M¢<;> < 1}-

We note that, for strongly measurable functions (defined as the p-a.e.
limit of simple functions of the form 2?21 TiXEg,, wherez; € H, E; € &
and Xg is the characteristic function of the set E of a finite measure
space (2, %, u) (see [10, page 425])), a function f € Lg(u, H) if and only
if ||f(*)|l2 € Lo(p). Also, the simple functions are dense in Lg (i, H)
(see [4, page 363]).

The space N = LP()(u, 1) is the vector-valued version of the Nakano
space LP() (1) associated with p(t) (see [4, page 76]), defined to be the
Musielak-Orlicz space L (i) such that

D (u,t) =

It can be shown that simple functions are dense in IV, since ® satisfies
the Ag-condition (see [7, page 214] and [5, page 24]).

For any f € N, let

1 p(t)
= [ VO 4

where 1 < pg < p(t) < poo < 00. Therefore,
N={f:M(\f) < oo, for some A > 0}.

For every f € N, the norm of f on this space is

|f||N:inf{s>0:M<£> < 1}.

No={f: M (\f) < o0, forall A >0},

If we let

we see that this subspace of N has nicer properties than the whole
space N (see [2, page 140]), e.g., Ny is separable if the measure
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space is separable, while N may be not separable. In addition, since
®(u,t) = uP® /p(t) satisfy the A, condition, we have Ny = N.

On this space N, we are interested in the form of the Hermitian
operators (see [6, page 39]) and the form of the surjective isometries.

2. Hermitian operators on N.

2.1. Preliminary results. To find the form of the Hermitian
operators on N, first we need to determine a semi-inner product
compatible with the norm on .

Remark 1. For f € N, it can be shown that M (f/||f||n) = 1 since
otherwise it must be M (f/||f||~) < 1. In this case, we can assume that
there is a positive scalar kg such that M(kof) = 1, so 1/||flln < ko-
It yields that 1 < ||koflly < M(kof) = 1, by [1, page 269]. This
contradiction implies that M(f/||f||nx) = 1. Therefore, if ||f||xn = 1,
we must have M(f) = 1. The inverse implication follows directly. We
then have || f||y = 1 if and only if M(f) = 1.

Lemma 2. A semi-inner product compatible with the norm on N is
given by

- L@, 9@) (g 0l \70 !
Fy(f) = C(g)/o llg ()| < 9l > du (t),

where

lgllx
C —
) Jo llg @)y (g ®)llo/glly)" O~ da (t)
and g € Ny.

Proof. To show that Fj,(f) is a semi-inner product compatible with
the norm on N, we need to check the conditions of the definition of a
semi-inner product (see [6, page 31]). It is obvious that F,(g) = ||g/|%
and for a complex scalar «,

Fy(af+h)=aFy(f)+ Fy(h).
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To show the Cauchy-Schwartz inequality, let f € N be such that
IIfllx = 1, which is equivalent to M(f) = 1 (see the remark above).
We also have M (g/||glln) = 1.

gl Jo 145 )9 O)1/llg (1)1l (g @) lla/lgllx)™" ™" dus )
I ||g || /Nglln (g (®)ll2 /||9||N) O d (1)

< gl Jo 17 @)lla (g @) lla/ 9]l )" " da (2)
Jo g @)1/ 1195 )™ dpa (2) '

[Fy (F)] <

By Young’s inequality (see [2, page 142]), i.e., for any u,v > 0 and any
t €10,1],

wv < @ (u,t) + ¥ (v,t),

where ¥ (v,t) = v /¢(t), we have:

o lolly

fo (lg @)lla/1lgllx )P 1(1/p (8) + (1/q (£))] du (2)

p(t) (p()—1)q(t)
X/O o (o) ﬁ] &

gl 1405 (g 0/ gl )™ du

L+ [y (lg (Oll2/llglly)” t)(l/q()) (t)
= llgllx = llglln [1Flln -

o~

If we consider any f € N, then ||f/||fll~||v = 1; so by the previous
calculations, we have |F,(f/||f|l~n)| < |lglln, and therefore |F,(f)| <

lgllwllflln- B

Remark 3. Using one of the well-known inequalities for Musielak-
Orlicz functions (see [2, page 142]), which in this case is
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we can write

! lg @)l \" O Y lg )], )"
/ ||g<t>||2( ||g||N> an ) =l | ( ||g||N> du (1)

<lgly [ (2”9<t>lz>p“) 0

191l p(t)

g
~lglly M (25 ) < .
v M

Using the semi-inner product given above, we now have the following
lemma.

Lemma 4. Let H be an arbitrary Hermitian operator on N, and let
f1, fo € Ny with disjoint supports Ay and Az, respectively, where

No={feN:M(\f)<oo, forall X >0}.

Then
(HE),H0)( IA®, O
/Al Hfl (t)||2 (|fl+6i9f2||N) d,u(t)
_ (HfL (1), f2 (1) I2m0, 7!
_AZ Il f2 (t)H2 <|fl+ei9f2||N> du(t).

Proof. The proof of this lemma is based on the fact that Fy, s s, (H (f1+
€% f5)) is real for all real § and f;, f» € N. (We follow the same steps
as in [2, page 142].)

Let fi, fo € No, # € R and g = f; +€¥f,. Then g € Ny and
Hg = Hf, + ¢ ?Hf,. By the previous lemma, we have

Fy(Hg) Y (Hg(t),g(t)) g (&)1l p(t)-1
C (9) ‘/o FIGIA <|g|N> dn (1)

_ / (HfL (1),9 (1) (lg(t)ﬂz)”(”ldu ®

lg @)l 191
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L p(t)—1
+ez~9/ (H f> (t),g(t)><||9(t)|2> dp (t)

lg (Bl gl v N
L et
+ei? /A 2 (H J;if(gtzt)ﬂzg (t)) <||f1”f (Se)llj”N)p(t)ld/j’ o
+ et /A 1 (H f||2f(1tzt)1|”|12 (1)) <||f1”f gff)kHN)p(t)_ldu o
R )

Also, since H is Hermitian, Fj;(Hg) is real. By Tam’s lemma (see [9,
page 236)), if a + be?® + ce™® € R then b = €. Thus, if

b= /A (Hf||2f(1t2£)1|‘|12(t)> <||f1”fggll22|]v>p(t)ldu o
c= /A <Hf”1f(2tzt,)1|”|22(t)> <||f1”fggk|N>p(t)_ldu o,
then
/Al <Hf|2f(1t2£)1|‘|12(t)> (|f1|f-1(§fe)f|22”N>p(t)_ldM o
B /Az <Hjlcllffzt,)J|c|22 o <||f1”f£fgl|cj||1v>p(t)ldu (t). o

Proposition 5. Let H be an arbitrary Hermitian operator on N.
Then, for any z € H and any measurable set of positive measure o,
with its characteristic function X,, we have

supp H (X,z) C o

and
XoH (z) = H (X02),

where z(t) = z, for every t.
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Proof. Let o be a measurable set of positive measure, and assume
that supp H(X,2) C [0,1]\ o, for any z € H. We are going to apply the
previous lemma for f; = azX, and fo = Bf, where o, > 0, z € H,
Izl =1 and f € Ny with support p C [0,1]\c. We have

[, )
- " Jlazx, + g R0

BPO=2 | £ ()|[5 2
lazX, + €@ f |0~

- / (X2 (1), 1) d (t).

This is true for any f € Ny with support in [0,1]\ o and any « > 0. If
we let @ — 0T, the last equality becomes

17 @Y

S du(t).
B fIRO

(2.1) 0= / HX2 (0.7 (0)

Let B be a set of positive measure in p such that ||H(X,z)(t)|]2 > 0,
for every t € B. This implies that B C supp H(X,z2). If we let

 Xs () H (%,2) (1)
IO =z O,

then
1f @O, =x5 (), M(f) =M (xp) and M (Af) = M (AX5p)-

This implies that || f||x = ||X5]||~. Therefore, (2.1) becomes:

) o X O H (62 (0 (s ()" du ()
o=/ <HX" O T (%2 0, > Bl

H062) Ol 4,

o
- JB
Now, for any non-negative real-valued function g such that [}, g(t) du(t)

= 0, g must be zero, otherwise we can see that, for ¢ > 0, there is a set
of positive measure B, C B, such that g > ¢ on B.. The following
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o:ﬂg@mmozégammw>éswm>
=Eu (Be) )

leads to a contradiction.

We must have then || H (X, 2)(t)||]2 = 0 on any set of positive measure
B C [0,1]\o. We conclude that supp H(X,z) must be in o, and since
for any z € H

Z2 = XoZ + X[0,1]\0?

and
H (Z) =H (XUZ) +H (X[O,l]\az) s

where z(t) = z for every ¢ € [0, 1], we have

XoH (z) = H (Xo2) . O

Proposition 6. If H is a Hermitian operator on N, then, for every
z € H, we have

|H (z) ()|, < ||H]||2]|, almost everywhere.

Proof. Let H be a Hermitian operator on N, o a set of positive
measure and z € H. The Hermitian operator H is assumed to be
bounded on N; therefore, for any positive measure o, we have

IIH(XU My < IHIXo 2l 5

H 1] IIXUZIIN H

and so

22) /@mmMﬁMW@:M<Hma><l
AH Yol ) 2 (@) [ Xzl ) =
by the previous proposition.

We claim that

|1H (z) ()|, < ||H]||2]|, almost everywhere.
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Let e >0and o = {t € [0,1] : (1 +¢)||H|||z|]2 < ||H(2)(t)|]2}. Assume
that o has positive measure. On o, we have

(Ate)llell, _ NI (2) O,
IXo2lly  NHIHIXo2l

and therefore,
ol 2 (0, \*¥
(2.3) /U<(1||;::)e|||N”> p“é))</U<||||1{I{|(||>)<§2||||N> v
<1 by (22).
s PO
M<|xtl||,v> -/ <||>|<|U!||N> iﬂ(g)

</ <(1||;2||||§|2) " ?é)) <

We have

But, we know that

Il =
el

and therefore we must have

M( Xo2 >:17
IXo 2l 5

which is a contradiction with the previous relation. Therefore u(o) = 0.
Since on ¢

1H (2) (0)lly > L+ &) [[HI |zl > [HI I=]l2
then
|H (z) (t)|ly < ||H]||||2]|, almost everywhere. O

2.2. Main theorem. The next theorem gives us a characterization
of the Hermitian operators on V.
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Theorem 7. The operator H is a Hermitian operator on N if and
only if there is a strongly measurable map A of [0,1] such that A(-) is
a Hermitian B(H)-valued function, A(-)z € N, ||A(t)|| < ||H]| and for
every f in N

(Hf)(t)=A(t) f(t) almost everywhere.

Proof. The sufficiency of the theorem follows directly. To prove
the necessity, let H to be a Hermitian operator on N and (e,) an
orthonormal basis of H. For every n and every t € [0, 1], we define

e, (t) =en.

Also, let Dy be the set of all finite linear combinations of (e,) with
rational coefficients. Then Dy is dense in H.

For every n, let’s define
fn (t) = H (e,) (t) almost everywhere.

We will assume that a specific function rather than an equivalence
class has been chosen (see [8, page 279]). We can see that, for scalars
Qi ... ,0,, We have

H(Za) (1) = iaiﬂ(ei) (1) = Zaf (0,

outside of a set E,,. ., of measure zero. If we let E = |J FEa,..a,,
a; €EQ
then E has measure zero. For every ¢ € [0, 1]\ E we define

At)en = fa(t),

and we extend A(t) linearly on Dy

i=1 i=1 i=1
Hence for every v € Dy

A({t)v=H(v)(t) for t €[0,1]\E.
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We will extend A(t) to a bounded operator on H. Given z € H, there
is a Cauchy sequence (z,) € Dy converging to z, and for ¢t € [0, 1]\ E,
we have

[A(#) 2n = A() zmlly = [1H (2) () = H (2m) (£)]],
= [[H (zn = 2m) (1)l
< [ l[zn = zmll; =0,

by the previous proposition. This implies that (A(t)z,) is Cauchy in
H, so it must have a limit in 7. Then, for z € H, let

At)z= nhﬁn;o A(t) zn = nhﬁn;o H(z,) (t)
for every ¢ in [0,1]\E.
It can be seen that A(t) is well defined. Also, A(t)z is bounded since,

1A () 2l

nh_}rr;o 1H (zn) ()|l

n11_>n;o sup || H (zr,) (t)||5

IN

IN

|H|| ||z||, almost everywhere,
and, therefore,
1A (t)]| < ||H|| for every t in [0,1]\E.
In addition,
M< A()z ) _ / <||A<t>z||2>”“> at
I 2]l o \IIH[l=ll/ 2@
Therefore A(-)z € N. We also have

M(A(-)z ~ H () <->> _ / <||A(t)z — H (2) <t>||2>”“’ dp (1)

€ 5 p(t)

<1

(2.4) [A()z = H (20) ()lly <e
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To prove that A(-)z is a strongly measurable function from [0, 1]
to H, we will fix z € H. Recall that a function f : [0,1] — H is
strongly measurable if it is the p—a.e. limit of a sequence of simple
functions of the form 27 1%;XE;, where z; € H and E; € X. Let

(om) = (Z x;X g, ) to be a sequence of simple functions in N converging

to z. Then by Proposition 5, for each m,

km
H (o) (t) = .ZH Xz, ZXE i) (t)

is also a simple function, and using Proposition 6, we have
1H (z) (t) = H (om) (#)lly = [[H (2 — om) (£)l,
< [|H[[ |z () — em (O], — 0.
By the definition of A()z, for every ¢ in [0,1]\E, A(t)z = lim,;, 0
H (o) (t), so we must have

1A (t) z — H (2) ()]
<[A®) z = H(pm) O)lly + |H (2)t = H (pm) (&), — 0.

Thus A (t) z is strongly measurable for each z € H.
We claim now that A(t) = A*(¢) for every ¢ in [0,1]\E. Since H is

a Hermitian operator on N, the s.i.p F,(Hz) € R for any z € N. In
particular, Fy_.(HX,z) € R for any set of positive measure o C [0,1] :

1 p 2 oz p(t)71
o2l fi A (el 7O g,

IXo2(8)l, Xzl

5 p(t)—1
Iy oz (@)1, (G252 ) ™ dut)

» p(t)—1
||Xaz||Nf0 (Xo H(2) (), (X2 2) (1)) (IIXo (t)||2) dp ()

X0 2(t)ll2 [IXo 21l
. p(t)—1
Iy oz )l (522502 )™ da (o)

(t)—1
||Xo'z||?\] fg (A(D)z,2) ([ IXez®)]l5 P dp (t)
I

FX,,Z (HXO—Z) =

Xoz(®)l; \ IXozlly

X, 2(8)]], \ P —1
Jo o= Ol (i)™ dn )

e R.
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Recall that, if [ fdp= [ Re(f)dp+i[ Im(f)du € R, then

[ 1 (1) d =,

for any set of positive measure o C [0, 1]. Therefore Im (f) = 0 almost
everywhere, so f € R almost everywhere. We must have then

(A(t)z,2) e R

outside of a set of measure zero F,. Since Dy is countable, there
is a set Ey € ¥ of measure zero such that, for every z € Dy and
t €10,1]\ (Eo U E) we have (A(t)z,z) € R. Also Dy is dense in H and
the inner product (-, -) is continuous in both variables, so (A(t)z,z) € R
for t € [0,1] \ (Exy UE) and each z € H, hence A(t) = A*(t) almost

everywhere.

We are left to prove that (Hf)(t) = A(t) f(t) for f in N. Let’s define
a bounded linear operator M4 on N by

(Maf)(t)=A(t) f (t) for almost every ¢

(see [4, page 368]). We claim that M4 and H are the same for simple
functions, and therefore for all functions on N. From (2.4) we have

H(z) () =A()z=Maz().

With this, for a simple function ¢ = Zle x;X g, we have

(Mag) () = (MA(;ME)) 0

Il
.M?r

Xg, (t) (Hx;) (1)

=1

H(éxﬁ@) (t)=H(p)(t).

Since the simple functions are dense in IV, it follows that M4 f = Hf
for every f € N, so we have

Hf()=A()f(:), forevery fe N. O
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3. Isometries on V.

3.1. Preliminary results. Let f € N such that ||f||y = 1 and
U is a surjective isometry of V. In what follows, we are interested in
finding the form of the surjective isometries on N and for that we need
the following results.

For o € X, define the operator C, on N by

(Cof) () =X, (t) f(t), for fe€N.

If we consider the map M4 on N, defined as in the proof of Theorem 7
by (Maf)(t) = A(t)f(t) for each A € X, we have

(3.1) Cy My = MAC,.

In addition, the operator C, is a Hermitian projection on V. Since U is
an isometry on N, it follows that the operator UC,U ! is a Hermitian
projection on N (see [4, page 364]), and the previous theorem implies
that, for f € N

UCUf()=Ps () f (),

where P,(t) is a Hermitian projection for almost all ¢ € [0, 1]. So
UC,U ' = Mp,.

We will prove that
UC, U =Cyp1(y),

1

where ¢ ™" is a regular set isomorphism of 3, using the following results.

Lemma 8. If A(-) is strongly measurable, uniformly bounded Her-
mitian operator-valued function on H, then

Mp My = MsMp,_ almost everywhere,

where Mp, = UC,U™Y, (Cof)(t) = Xo(t)f(t) for f € N and U is a
surjective isometry on N.
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Proof. For any f € N with ||f||xy = 1, we have

1 p(t)
M (Co) = [ VELEE quy

0

t
IS @l
= [ W02 g
/a p 0
<M(f) <1,
which is equivalent to ||C, f||y < 1. Since U is an isometry of N and
ICs |l < 1, we have
1M, flly = IUCU £ = |CU ]l
< NClUTH ]y = NCaN £l
< | flly = 1.

By our assumptions, A(-) is a strongly measurable uniformly bounded
Hermitian operator-valued function on H. Then U 'MAU defines
a Hermitian operator on N, and therefore it must be of the form
M;f(t) = A(t)f(t) almost everywhere, where A(-) is a Hermitian
operator-valued on H. By (3.1) we have

C,M ; = M ;C, almost everywhere,

and so
Mp, My =UC,U My =UC,MzU™"
=UM;C,U™" = MaUC, U™

= M Mp_ almost everywhere. O

Corollary 9. If T = T*, where T(-) € B(H) then Mp, My =
MrMp, almost everywhere.

Corollary 10. If K(-) € B(H), then Mp, Mx = MxMp, almost
everywhere.

Proof. If K(-) € B(H) we can write

K+K*+,K—K*
= VA s
2 27

K
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where (K + K*)/2 and (K — K*)/2i are Hermitian operators. Apply-
ing the previous corollary to each (K + K*)/2, (K — K*)/2i, we have

Mp, Mg+ k+)/2 = M(k4+K+)/2Mp, almost everywhere,
and

Mp, Mk _k~)/2i = Mk _K~)/2iMp, almost everywhere.
It is easy to see that Mg Mp, = Mp, Mk almost everywhere, since

Mgf(t) =K (t) f ()
_ #(t)f(t)—ki%(t)f(t)
= Mg1g=y2f (t) +iMg_g=) /2 f (t),

and therefore

MgMp, = Mk x+)2Mp, +iMx_K+)/2:Mp,
= Mp, Mgk~ /2 +iMp, M(x_K~)/2i
= Mp, Mg almost everywhere. u]

Lemma 11. For each o € X, there exist a regular set isomorphism
0! of & such that
UCUU71 = C(pfl(g).

Proof. By the previous corollary, for any z € H and for any
K(-) € B(H), there is a set E(z, K,0) of measure zero, such that
(3.2) P, (t)K (t)z= K (t) P, (t) z,

for every t outside of E(z, K, o).

Let u,v € H, such that ||ul]ls =1, ||v|]2 = 1, and for a vector w € H,
we define the constant function w(t) = w for every ¢ € [0, 1], and

K(Ow()=(u®v)w=(w,v)u.
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Then, we have
1K (#) w (£)l]5 < [[wlly o]l llully = [[wll, .

Also, by separability of #, there is a countable dense set Hg in H and
two sequences (uy, ), (v,) € Ho such that u,, = v and v, = vasn — 0.
We define

K, (t) w (t) = <w,vn>un, te [07 1] )

which converges in norm to K. To see that, let ||w||2 = 1; we compute

K({#t)w(t)— K, (t)w(t) = (w,v)u — (w, v, )uy,
= (w,v)u — (w, v,)u
+ (w, vp)u — (W, vy )y

= (w,v — Up)u + (W, v,) (u— up)
and

1K () w (t) = Kn () w ()]

< lwlly flo = vnlly [[ully + [[wlly [[onll; llu = ually
which tends to zero as n — oo. Therefore
|K — K,|]| =0, asn — oo.
By (3.2), for t € [0,1] \ E(z, K, o), we have
P, (t)K, (t)z = K, (t) P, (t) 2.

Let E(z,0) = Up>1E(z, Ky, 0); we can see that the measure of E(z,0)
is zero and, for ¢t € [0,1] \ E(z,0),

0 <[Py () K (t) 2 = K (t) Po (¢) 2|,
< 1Py () K (8) 2 — Py (8) K (2) 2,
+ 1 En () B (t) 2 = K (8) Py (2) 2l
<12 Ol 1K — Kall 2]
+ 1 En = K[ [Py @)z [|2]l; = 0, as n— oo
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Therefore,
P,(t)K(t)z=K (t) P, (t)z, for t € [0,1]\ E (2,0).

Also, we can find a countable dense set #; in H, such that for any
z € M, there is a sequence (z,) € H1 such that z,, — z and

Py () K (t) 20 = K () Py (£) 2n,

for every t € [0,1] \ E(zn,0). Let E(0) = Up>1E(2,,0); we can see
that the measure of E(o) is zero and for t € [0,1] \ E(0),

0 <[Py () K (t) 2 = K (t) Po (t) 2|,
<P (8) K () 2 = Py (8) K (2) 2l
+ K (8) Py (t) 20 — K (t) Ps (1) 2,
< 1Ps @)l 1K 12 = 2nll
+IK[1Py (B)lly |z = znlly = 0, asn — oo.

Therefore, we obtain a measure zero set E(c) outside of which
(3.3) P,(t)K (t)z= K (t) Py (t) .

Given o € X, we define

S, ={te[0,1]: P, (t) £ 0} = {te 0,1] :
there exists z; such that P, (t) z; # 0}.

Suppose there is a subset of positive measure o4 C S, N ([0,1] \ E(0))
such that P,(t) # Idy, for every t € oy. If we let t € o1, there exist
vy and vy € H with |lvi||2 = ||vz2]l2 = 1, such that P,(¢)v; = v; and
P,(t)va = 0. Let K(-)w = (w,vy)vy. Then

Py (t) K () vy =0 £ vy = K (£) Py () w1,

which is a contradiction to (3.3). Therefore, on every set of positive
measure o1 C S, N ([0,1] \ E(0)), we have P,(-) = Idy. Define
o~ Yo) = {t € S, N ([O 1]\ E(0)) : P,(t) = Idy}. It follows that

¢~ ! is a regular set isomorphism of ¥ ([2, page 141]),
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P, () = Xp-1(0) () Idy
and UCUU71 = Cw—l(g). O

Remark 12. If ¢ is a regular set isomorphism of ¥, then po ¢~! is

an absolutely continuous measure with respect to p. If we let u be its
Radon-Nikodym derivative, i.e., (¢~ (c0)) = [ u(t)du(t) for any o,
then we have pu(o) = fcp(a) u(t) du(t) = [ X (e (t))u(t) du(t). It can
easily be shown that

(3.4) / F(t) du(t) = / I OROrAe

and

/ f(t) dp (t)Z/f(so (6)) [u (s ()] " dpe (B) -
v(o) o

3.2. Main theorem. The next theorem gives us a characterization
of the surjective isometries on .

Theorem 13. If U is a surjective isometry on N, then there is
a reqular set isomorphism ¢! of ¥, a strongly measurable map V
of [0,1] into B(H) such that V(t) is an isometry of H onto itself
for almost all t € [0,1], and u is a measurable function that satisfies
p(o) = fw(a) u(t) du(t) such that p(t) = p(¢~1(t)) almost everywhere
and

UF(t)=u(e®)] "DV (@) f (@)

Conversely, if there is a regular set isomorphism o~ ' of ¥ such that
p(t) = p(e~L(t)) almost everywhere, a strongly measurable map V
of [0,1] into B(H) such that V(t) is an isometry of H onto itself
for almost all t € [0,1], and u a measurable function that satisfies

u(o) = fw(o) u(t) du(t) such that

UF(t)=Tu(e®)] POV (@) f(e@).

then U is a surjective isometry on N.
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Proof. Let o be a set of positive measures defined on ¥, and let U
be a surjective isometry of the space N. Based on Lemma 11, for any
z € 'H, we have

U(Xoz) =U(Coz) = U (CoU™'Uz) = Copmr()Uz = X1y Uz,
where ¢ is a regular set isomorphism of ¥ and therefore, for a function

fEN,
UXof) =Xp-1(0)Uf = (Xo09) UJ.

We can extend this relation linearly to have

U(im)@,f) t) = (Zax (o0 )us o

and, therefore, for any scalar function h on [0, 1], we have

(3-5) U(hf) (&) =h(e()UF ().

If f € N such that ||f(¢)||]2 = 1 and h is a scalar function on [0, 1] with
HROPY

(39) | =1

we have M (hf) =1, and therefore ||hf||y = 1. Since U is an isometry
on N, we have |U(hf)||n =1 so, by (3.5), that gives us

1 p(t)
1= U np) = [ HED

where g = U(f). If we make a change of variables, by (3.4), the previous
relation changes to

llg ()5 dpe (t)

1 p(e™1(®)) 1y
a0 %ng(t))ni(“’ O) (1) du (1) = 1,

where u is the Radon-Nikodym derivation of o ¢~ with respect to p.
The relation (3.7) is true for any scalar function k on [0, 1] that satisfies

(3.6).
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Next, we claim that p(t) = p(¢ 1(¢)) almost everywhere. Let
A={tel0,1] :pt) <v < B < p(p Lt)), for some positive v and
B}. If we assume that A has positive measure, we can find two disjoint
positive measure subsets A; and Ay of A such that Ay U Ay = A. We
select two positive scalars a; and a9 such that

a110(t) B ag(t) B
(3.8) /A1 o @ du(t)y=1 and /A2 o @ du (t) = 1.

By (3.7) we must have

(3.9)
i) (¢71®)
/A oy e e anw =1
and
(3.10)
ap(sa’l(t)) (o3(0)
/A ey e e O u ann =1

Now, let ¢; and ¢z be two positive scalars such that |c;Xa,01 +
caXa,oz2lly = 1. We can see that cj,c0 < 1. If we let h =
€1Xa,01 + c2X 4,2, by the previous relation we have ||h||y = 1, so

1 p(t)
1=M (h) _ / |(ClXA1a1 + CzXA2OZZ) (t)‘
0 p(t)

The sets A; and Ay were chosen to be disjoint, and the scalars «; and
ag were chosen to satisfy (3.8), so we have

CP(t)aP(t) cp(t)ap(t)
1:/ édut—i—/ 22 du(t)>c] +cl.
TR MO R

On the other hand, we have 1 = M (U(h)), so by (3.7) we have

du (t) .

"(e1Xa, @1 + caXa, 00 p(e0) 1 G
A Tt el O A
xu(t) du(t).
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Similarly, it follows from (3.9) and (3.10) that
Cp(sa’l(t))ap(wfl(t))

1= [ S e ) du
27 m) ple™'®) ..
+/AZ e ) lg (e~ @)L u ) du )

<d+d <+,

which contradicts the previous relation obtained. Therefore u(A) =0,
so, outside of a set A of measure zero, we have

pt)>p(et(t).

Using a similar argument, we can prove that, outside of a set A’ of
measure Zzero,

() <p(p™ (1))
Consequently,

p(t)=p(p " (t)) almost everywhere.

With this, (3.7) becomes
(3.11)

1 p(t)
O g (o @) 5 0 dis6) = 1 almost everywhere,
0

p(t)
1 |h(t)|p(t) _
/0 p(t) .

whenever

Now, in a similar way, we prove that ||g(<,0’1(t))||§(t)u(t) = 1 almost
everywhere. We assume that there is a set of positive measure B =
{te€]0,1] : ||g(<p_1(t))||g(t) > 1/u(t)}. If we let h be a scalar function
with support in B that satisfies (3.6), by (3.11) we have outside of a
zero measure set A,

1 p(t)
:/0 'hﬁf?l) lg (o= ) 5w (t) dp (8)
p(t)
S Blhl()tgl) ) =1,
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which is a contradiction, so we must have y(B) = 0. In a similar fashion
we can prove that the set B’, on which \|g(g0*1(t))||§(t) < 1/u(t), must

have measure zero; therefore, ||g(<p_1(t))||§(t) = 1/u(t) outside of the
measure zero set (AU A"U BU B’). Replacing back g = U(f), we have

||U (f) ( )H2 w almost everywhere,

for a function f € N such that ||f(¢)||2 = 1. Therefore, for any f € N,
we have

l/p

(3.12) ||U(f) (¢! =||f (t)||, almost everywhere.

I

Since H is separable, there is a dense linear span D, of all linear
combinations with rational coefficients of an orthonormal basis of #.
For every element of (e, ), where e, € Dy for every n > 1, let’s define
the operator V (t) by

V(t)en =U(en) (91 (1)) [u(t) /",

where t is in [0, 1] outside of a set of measure zero o,,. By (3.12), we can
see that V(¢) is a linear isometry almost everywhere on the subspace
Dy, and for any t € [0,1] \ (Uo,) and any w = ) Aje; € Dy, we have

Vow-v (Sre)
:ZA-V (t)e;

=Y NU (&) (97 (1) [u ()]

(
—U(Z/\ ej) o )]1/p<)

=U(w) (¢ (1)) ()11/“”

For a z € #, there is a sequence (w,,) € Dy converging to z. Since (wy,)
is Cauchy, it follows that (V(t)w,,) is Cauchy for any ¢ € [0,1] \ o with
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o = Uay, since
|V (t) we — V () wm”2
= HU(Wk) ((p*l (t)) [’LL (t)]l/p(t)

U () (w L L
>|| e

= [lv U (W) (

=||U wi = W) (7 ()], [u ”p

= ||lwy — wi||, — 0, a.e. by (3.12).
Hence, we can define

lim V (t)w, =V (¢) 2.

n—ro0

To see that this is well defined, let (z,) be another sequence of Dy
converging to z. We have

Iz = wnlly < llzn = 2[5 + [Jwn = 2[l; — 0
and, as before,
IV (t) wn — V (t) 2n|ly = ||wn — 2n|ly — 0 almost everywhere.

Therefore,

IV (&) zn =V (#) 2l
SNV A(#) 2n = V () wnlly = [V (&) wa =V (2) 2ll, — 0,

which says that
ILm V(t)z, =V ()2

From the fact that

l2lly = tim flunll, = tm [V () wall, = [V (1) ],

it yields that V'(¢) is an isometry almost everywhere on #.
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Let’s now define

W) =[u®)] "V () f(2).

We claim that U(f)(t) agrees with W f(¢(t)) since, by p(¢~1(¢)) = p(t),
we have

W (x02) (¢ (1) = [u (0 (D] 7V (0 (1) (Xa2) (o (1))
= [u(p @)U (2) (7 (0 (1)) [u (o ()]
=U (Xo2) ().

Since U(f)(t) agrees with W f(¢(t)) for simple functions f, they must
agree for any function of the Nakano space N. Therefore

Uf)(t)=Wf (@) =[u@e®) "DV (e®) f ().

Now, for the sufficiency, assume that there is a regular set isomor-
phism ¢! of ¥ such that p(t) = p(¢~'(t)) almost everywhere, a
strongly measurable map V of [0,1] into B(#) such that V(¢) is an
isometry of H onto itself for almost all ¢ € [0,1], and v a measurable
function that satisfies p(o) = f(p(a’) u(t) du(t) such that

Uf(t)=[ule @) "V (@) f o).

Let’s compute

p(t)
M(US) = / udﬂ(t)

p(t)

Jiute @OV (0 @) 1 (¢ )]
/ p(t) dp (t)
H[u (g)]fl/p(wl(s)) V() f (g)HZ(w ©)
= / ([0,1]) p (=1 (6)) u(€) dp(§)
/ WOIQE

p(e” (6)

since V/ (f ) is an 1sometry of H almost everywhere.
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By the assumption that p(¢~1(£)) = p(€) almost everywhere, it follows
that M(Uf) = M(f) almost everywhere, and since the modular
isometries are isometries, we have |Uf||n = || f||~ almost everywhere.
This concludes our proof. ]
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