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A SINGULARITY ANALYSIS OF POSITIVE SOLUTIONS
TO AN EULER-LAGRANGE INTEGRAL SYSTEM

JERROLD BEBERNES, YUTIAN LEI AND CONGMING LI

ABSTRACT. In this paper we study the asymptotic behav-
ior of the positive solutions of the following system of Euler-
Lagrange equations of Hardy-Littlewood-Sobolev type in R™

1 v(y)?
u(z) = dy,
2| /Rn Pl —y*

1 u(y)?
v(z) = —= ———dy.
|z|® /Rn ly|*|z —y[*

We obtain the growth rate of the solutions around the origin
and the decay rate near infinity. Some new cases beyond the
work of Li and Lim [17] are studied here. In [15], the authors
obtained the asymptotic estimates of solutions for the case
a,B > 0. In this paper, we extend the case a,8 > 0 to
a + B > 0 with some restriction, and we obtain asymptotic
estimates for the solutions.

1. Introduction. Let 1 <7, s < 00,0 < A< n, a+p >0,
A+a>0,A+8>0and a+F+ A <n. Let ||f|, be the LP(R™) norm
of the function f. The weighted Hardy-Littlewood-Sobolev (WHLS)
inequality states that (cf. [23])

f(x)g(y)
(L.1) ‘ [ o) ey < Caponalflllol.
rn Jan (2] — yMylP g
where
1 1 1 1
(1.2) 1———é<g<1——and—+—+wzl
T n n T ™ S

In order to obtain the best constant in the WHLS inequality (1.1), we
maximize the functional

J(f,g)=/Rn/mJ:(:+g(f)dxdy

2]~z — y[*y]?
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under the constraints [|f||. = |lg]ls = 1. The corresponding Euler-
Lagrange equations are given by the following integral system:

13) { Mrf(@) " =1/l [ (9w)/ ol |2~y dy
Nosg(@)” "t =1/[2l [ F)/(101% ]2 — y1) dy
where f,g > 0, ¢ € R" and Air = dos = J(f,9). Set u = c1f"",

v=1c9""" 1/(p+1) =1-(1/r), 1/(¢+1) = 1 - (1/s) with pg # 1.
By a proper choice of constants ¢; and cz, (1.3) becomes

{ u(z) = 1/[z|* [5. (v(y)?/1yl° |z — y|*) dy
v(@) = 1/|2]P [ (uly)?/ly1* |z —y|*) dy
where a + 8+ A < n, and

(1.5)
{u,vZO, 0<p,g<oo, 0<A<n, a+pB>0,

a/n<l/(p+1)<(A+a)/n, 1/(p+1)+1/(g+1) = A+ a+8)/n.

(1.4)

This paper is concerned with the properties of positive solutions of
the integral equations (1.4). Jin and Li [13] studied the symmetry of
the solutions to the more general system of integral equations (1.4)
for a,8 > 0. They proved that u and v are radially symmetric
and decreasing about the origin 0. The regularity of the solutions
to (1.4) is discussed in the joint paper of Chen, Jin, Li and Lim
[3]. In [3], the integrability intervals of the solutions for a,3 > 0
are obtained. In a subsequent paper, Jin and Li [14] also thoroughly
analyzed the regularity of the solutions to (1.4) and determined the
optimal integrability intervals of the solutions for a,, 3 > 0. The optimal
integrability and the radial symmetry are needed for the classification
of the regular solutions of the system (1.4) associated with WHLS
inequality [7].

The following integrability result proved in [14] plays an important
role in this paper.

Proposition 1.1. Let (u,v) € LPT1(R") x LItY(R™) be a pair of
positive solutions of (1.4). Assume that p,q > 1, a+ 3 > 0 with <0,
and A =X+ a+ B, then for 1 <r,s < oo,

we L"(R") and we L°(R"),
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provided

(i) 1/r € ((a/n),(A/n)) and 1/s € (0, (min{(p + L)X\ — n, A + B})/n)
when (g +1)(A+ ) > 2n.

(ii) 1/r € ((/n), (min{A, ¢(A + B) + A — n})/n) and 1/s € ((max{0,
pa+ A —n})/n, (A +B)/n) when (¢ +1)(A+ B8) < 2n.

We wish now to study the asymptotic behavior of solutions of (1.4)
in a neighborhood of the origin and at infinity.

Definition 1. A function u is asymptotic to A/|z|® at x = 0, written

A
(1.6) u(z) ~ o at |z| ~ 0,

if lim),| 0 |z[*u(x) = A for a positive number s and 0 < A < oo.

Definition 2. A function u is asymptotic to B/|z|* near z = oo,
written

B
(1.7) u(z) ~ ol at |z| ~ oo,
if lim|y| o0 |#[*u(z) = B for a positive number ¢ and 0 < B < co.

Remark 1.1. If

(1.8) p>1, q>1, pg#1,

then either
(1.9) Atalp+1l)<norA+B(g+1)<n

always holds. For if it fails, then A+ 3(¢+1) > n and A+ a(p+1) > n.
This implies o + 8 > (n — A)(1/(p+1) + 1/(¢ + 1)). Applying (1.5),
A=n(1l/(p+1)+1/(¢+1))—(a+B) < A(1/(p+1)+1/(g +1)). Thus,
1/(p+1)+1/(¢+1) > 1, which is a contradiction to (1.8).

Hence, the condition A + B(g + 1) < n may be assumed for small |z|
without loss of generality in Theorem 1.2.
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Theorem 1.2. Let (u,v) € LPTH(R™)x LY (R™) be a pair of positive
solutions of the system (1.4)—(1.5). Suppose thatp > 1, ¢ > 1, pqg # 1,
a+B >0 and A+ (q+1)8 < n. If either one of the following conditions
holds

H) A+ (@p+Da<n+ao
(H2) A+ (p+1)a>n+aand a+ B+ (8/q(p+1)) >0,

then for small |z|,

(1.10) u(z) ~ é—i,
and

Ay/)z|P ifA+alp+1)<n
(1.11) v(z) = ¢ (Ag|In|z|])/|z|? ifA+alp+1)=n

Ag/|g|r@tDHB+A=n e X La(p+1) >n

where Ay = [pav1(y)/|yPdy, A1 = [pauP(y)/|y}Tdy, Ay =
|S™7H(fn (02 (m)/|y|}7) dy)P,

v(y) p/ dz
Ay = — g P o —
’ </R PG y) s [2[ @D e — 2]

e is a unit vector in R™, and |S™~!| is the surface area of the umit
sphere.

Remark 1.2. For |z| large, we utilize a Kelvin-type transform to
change the problem from the origin to one at infinity. With this
transform, we derive a new system of integral equations with indices @,
B, p,q, satisfying (1.5). From the definition of @ = (2n/p + 1) —a — A,
B = (2n/q+1) — B — )\, we can observe directly that the condition
A+alp+1) <nor A+ B(g+ 1) < nis equivalent to

(1.12) Ap+ap+1)>norA\g+B(g+1) >n,
respectively. We claim that statement (1.2) always holds, if (1.8) is

assumed. For, if not, then \¢+ B3(¢+1) <nand A\p+ a(p+1) <n,
implying (A + 8)(¢+1) < n+Xand A+a)p+1) < n+ A\
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Then, by (1.5), we have (A+a+p3)/n = 1/(p+1) +1/(¢g+1) >
(AM+a+p8)+A)/(n+ ). This then leads to a contradiction, since
we infer from 1/(p+1) + 1/(¢+1) = (A+a+8/n) < 1 that
A+a+p8)/n < (A+a+B8)+A)/(n+A). Consequently, without
loss of generality, we may assume Ag + (g + 1) > n for large |z| in the
following theorem.

Theorem 1.3. Let (u,v) € LPT1(R™)x LITY(R™) be a pair of positive
solutions of system (1.4) with (1.5). Suppose thatp >1,q> 1, pqg # 1,
a+ B >0 and \g+ B(g+ 1) > n. If one of the following conditions
holds

(H3) 1/(p+1) > (A +a)/2n and 1/(q+1) > (A + B)/2n,

(H4) 1/(g+1) < (A+B)/2n and pA + (p + o > A + a +
n(p—1)/(p+1),

(H5)1/(g+ 1) < (A+8)/2n, pA+(p+1)a < A+a+n(p—1)/(p+1)
and oo+ B+ (1/(a(p+1)))((2n/q+1) = A= B) = 0,

then for large |z|,

By
and
By/|zF if \p+alp+1)>n
(1.14)  v(z) = { By|In|z||/|z|}7 ifAp+alp+1)=n

By /|z|@NEHDHEn it Ap ta(p+1) <n

where By = [ (v2(y)/ly|°)dy, B1 = [n.(uP(y)/ly|*)dy, B =
1™ (fgn (v () /1yI%) dy)? and

_ v(y) i dz
= </R lyl? dy) /Rn [2[2n=(aF (P D]e — 2|7

Remark 1.3. By the Kelvin transform, (H3) is equivalent to &,B_Z 0,
(H4) is equivalent to 8 < 0 and (H1), and (H5) is equivalent to 8 < 0
and (H2).
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Remark 1.4. (i) For a,8 > 0, analogous asymptotic results were
obtained in [17], using the regularity result from [3]. In paper [15],
the authors removed the condition 1/s € ((8/n), (A + B)/n) imposed
by Li and Lim in [17]. Using the radial symmetry and the integrability
intervals of the solutions, they calculated directly the decay rates of
u(z) and v(x) as |z| — oo instead of using the Kelvin transform as
in [17]. Consequently, [15] completes the study of the asymptotic
behavior of positive solutions for a, 8 > 0.

(ii) When 8 < 0 and a + 8 > 0, the asymptotic behavior of u
and v with 8 < 0 is more complicated than that for 3 > 0. In
fact, when o + 8 > 0 and 8 < 0, whether the solutions are radially
symmetric and decreasing remains an open question. The idea in [15]
cannot be used here to obtain the asymptotic estimates of the solutions.
In addition, (1.11) shows that v decays to zero near the origin when
A+ (p+1)a < n—p. On the contrary, v goes to infinity near the origin
when A+ (p+1)a >n— .

(iii) When 8 < 0 and ao+ 8 > 0, the paper [17] applied the regularity
results given in [14] to obtain the behavior (1.10) and (1.11) with
A+ alp+1) < n— 3. We improve the asymptotic results from
Adalp+1) <n—-pFtoA+alp+1) < n+ a using more elaborate
estimates. In the case of A+ a(p+1) > n + «, (1.10) and (1.11) still
hold as long as a + B8 + (B8/(¢(p+1))) > 0. It is unknown whether
(1.10) and (1.11) remain true when o+ 8+ (8/(q¢(p + 1))) < 0.

By virtue of Remark 1.4 (i), we only need to consider the case of
B < 0and a + 8 > 0. According to Proposition 1.1, v has two
different integrability intervals. We will study the asymptotic behavior
as |z| — 0 in three cases:

Case : A+ (p+ 1)a<n-—G;
Case I n— <A+ (p+1a<n+a;
Case IIL A+ (p+1)a>n+aand a+ B+ 6/(g(p+1)) >0

in Sections 2, 3 and 4, respectively. By applying the Kelvin transform
and Theorem 1.2, we will prove Theorem 1.3 in Section 5.

2. Singularity analysis in Case I. In this section, assume that
(u,v) € LPTY(R™) x LIT'(R™) is a pair of positive solutions of the
system (1.4) satisfying (1.5),p>1,¢>1,pg# 1,3 < 0and a+8 > 0.
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First, we prove two propositions which are true in all the three cases.

Proposition 2.1.
vi(y)dy uP (y)dy
/ % < 005 (fla < oo
R™\B; |yl R™\B; yl

Proof. If x € Byj; \ Bijs and y € R™ \ By, |z —y| < Cly|. Then,

/ vy _ / v?(y)dy
r\By WP T S, Pz -y

as long as x € By o \B1/4. Integrating on By /5 \ Bi/4 yields

y)dy
|B1/2 \B1/4|/ |y|/\+5
q
el ([ )
Bi1/5\B1ja \JRm\B; lylPle -yl
<C |z|%u(x) dz

Bi/2\B1/4
1/(p+1)
< C(/ uPt! da:) [Bys \ Biya/P/PT < oo,
Bi1/2\B1/a

proving fR"\Bl (v(y) dy)/|y|*** is finite. Similarly, fR"\Bl (uP(y) dy)/
ly|Me is also finite.

Proposition 2.2. Ag:= [, (v4(y) dy)/|y|Pt* < .
Proof. Applying Holder’s inequality with 1/s 4+ 1/s' =1,

’Uq(y)dy (/ >1/S</ \ 1/5’
< v (y) dy y|~ O gy )
L, s ([, o o

In Case I, by Proposition 1.1, we can choose 1/s so small that (A3)s’ <
n. Thus, we have

(2.1) /B vy

|y|P+2
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In Cases II and 111, using Proposition 1.1, we only need to choose 1/s
sufficiently close to (¢(pa + XA —n))/n. To verify (A + B8)s’ < n, it is
sufficient to prove

(2.2) A+B8<n—q(pa+A—n)

or (pg—1)a < (g+1)(n—X). Multiplying with 1/(p + 1)(¢ + 1) and not-
ing (1/p+1)+(1/g+ 1) = (\)/n, we know that this inequality is true
if and only if (1/p+1) > (a/n). Therefore, (2.1) follows. Combined
with Proposition 2.1, the proof of Proposition 2.2 is completed.

In the remainder of this section, we will prove (1.10) and (1.11) in
Case L.
Proposition 2.3. u(z) ~ |z|~*4y as |z| — 0.
Proof. By Definition 1, we only need to prove that as |z| — 0,
vi(y)
2.3 / / ‘ — 0.
| f e . e
For z € Bs := B;(0) C R™, § sufficiently small,
v!(y) / v?(y) ‘
VW gy [ ZW) g,
‘/nwwu—MA e (Y7
vi(y) v?(y) )
< + dy
/;5<h/ﬁwyP yA o
q q
n / vi(y) v!(y)
R™\Bs

lyPle —y|*  [y[AF
=: Jy + Jo.

dy

By Holder’s inequality,

vl d 1/s -, 1/s’
/ @)Zg(/‘w%w@) (/ m—mskw)
Bys ‘w _y| Bs Bs

for (1/s)+(1/s") = 1. In Case I, we can use Proposition 1.1 by choosing
1/s so small that s’\ < n. Then, for any given ¢ > 0,

(2.4) /B ydy

s lz =y




AN EULER-LAGRANGE INTEGRAL SYSTEM 395

when |z| is small enough. By virtue of 3 < 0, |y|=# < 6 if y € Bs.
By Proposition 2.2 and (2.4), we have

J <C@)—0 as §—0.

Using Lebesgue’s bounded convergence theorem, we prove that for each
fixed By,
Jy — 0 as |z| —0.

In fact, one can easily see that v?(y)/(|y|?|z — y|*) < C(vi(y)/|y|**?)
for |y| > & and recall that Ay is finite. This proves (2.3) and
Proposition 2.3 follows.

Next we prove (1.11) in Case 1. Proposition 2.3 implies that, for fixed
small ¢,

_ A() + 0(1)

(2.5) u(z) = , for |z| <4

||
We can use (2.5) to estimate the asymptotic properties of v near the
origin.

Clearly, Case I divides into three subcases:

D) A+alp+1) <n;

2) A +alp+1)=mn;

B)n<A+alp+1)<n-g4.

Proposition 2.4. If A+ a(p+ 1) < n, then A; < oo, and
v(z) ~ |z|PA; as |z| — 0.

Proof. By Hélder’s inequality,

u (y) dy T Hr —(Ata)r’ 1
/B W < /B u" (y) dy /B |yl dy
1 1 1

with (1/r) + (1/r') = 1. Using Proposition 1.1, we can choose 1/r
approaching pa/n such that (A+a)r’ < n. This is easily verified, since
A+ (p+ 1)a < n. Therefore, the integral above is finite. Combined
with Proposition 2.1 we see that A; < oc.
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Using (2.5), we obtain

o) = [y [t g

re Y%z s lyle®H [z — y|A
up
iy
R™\B; y|*|z -yl

By means of Young’s inequality and the condition A + a(p + 1) < n,
we have, when |z| — 0 and 6 — 0,

(AO 0(1))p —A—a(p+1)
—————2 —dy < C(Ap + o(1))Po" P — 0.
/5 |y|a(p+1)‘£l? —yl* y < C(Ao +o(1))

By Lebesgue’s bounded convergence theorem as |z|] — 0 and then
6 —0,

D
/ W gy,
rR\B; Y%7 — ]

Combining these results we see that |z|°v(z) ~ A; as || — 0. This
completes the proof of Proposition 2.4.

Proposition 2.5. If A+ a(p+ 1) = n, then v(z) ~ |z| P A;|In|z||
when |z| — 0.

Proof. f A+ (p+ 1)a = n, Ay is a constant since it depends only on
Ap. Using (2.5), a change of variables and Proposition 2.1, we deduce
that

j2)? 1 (Ay + o(1))P
_ v(x):_ A N
Inz] el Ji, W e —
1 uP (y)
2.6 — — gy
(2:6) “Tale] Jrms, T — 9P
p
S(Ao+o(1))/ b O
T A P Y Ay Y P
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Now, fix any point w € dB;. Employing polar coordinates, we arrive
at

1 dz
—Inlz| /g, 12" e — 2

1 5/\z| n—1
= — dw/ S dr
—Inlz| fgn 0 e — rw|?
1 R ,,,)\71 5/|x| d,,.)\
- d g A
—In|z| fgn-1 w</0 le — rw|? r—}-/R )\|e—rw|*>

_(1+9/R)>‘/ /5/$|ﬂ
 —Inlz| Jen dw| C(R) + r A
— (L+6/R)*S" 1,

as |z| — 0. The last equality holds since r > R implies 1 — (1/R) <
le—rw|/r < 1+ (1/R). Here § € (—1,1), and |S™!| denotes the
surface area of the unit sphere. Consequently (2.6) yields

|z

"] v(z) — (Ao + o(1))P(1 + Q/R)/\|Sn71| as |z| = 0

— (Ap)?|S™ Y as § — 0,R — oo,

proving Proposition 2.5.

Proposition 2.6. Ifn < A+ a(p+1) < n— 3, then A3 < 0.
Moreover, when |z| — 0, v(z) ~ |z|?~*P+D-Br 4,

Proof. Since a(p + 1) < n near the origin; A < n near e and
A+ a(p+ 1) > n near infinity,

v9(y) p/ dz
Ag = —27 d — < 0.
’ (/R PISE y) s 2@ D[ — o2 S

Let s = a(p + 1) + A —n. Then, for a fixed Bjs,

ol [
[yl Iw - ylA

(Ao + o(1))Pdy s uP(y)dy
—paf [ wlap [

Jyle®+D |z —y[* m B Y%z —y|*
= K, + K>.
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By Proposition 2.1 and s > 0,

uP (y)

K2 S |CE|S
rm\B; Y22

dy < |z|°C — 0, as |z| — 0.

To deal with K, we change the variables y = |z|z on the first term
to deduce that

K1 = (Ao + 0(1))P/

Bs /x|

dz
|2 |(z/|2]) — 2|
dz

[

R
=A3 as|z]—0, §—0.

Here, e is defined as a unit vector in R™. Consequently,
|25 Po(x) = |o|PHIFBFA (1) 5 A3 as |z| — 0.

The proof of Proposition 2.6 is complete.

3. Singularity analysis in Case II. In this section, assume that
(u,v) € LPTYH(R™) x LITY(R™) is a pair of positive solutions of the
system (1.4) satisfying (1.5) with p > 1, ¢ > 1, pg # 1 and 8 < 0,
a+ 3 >0.

In Case II, it seems very difficult to prove (2.4) by means of Holder’s
inequality as in the proof of Proposition 2.3, since A+ (p+1)a > n— 3
means pa+ A —n > 0 and by Proposition 1.1 1/s cannot be close to 0.

However, if n — 8 < A+ a(p+ 1) < n + a, then Holder’s inequality
can estimate the growth rate of v(z) roughly when |z| — 0. Then we
can use this growth rate to deduce the limit of u(x)|x|~*.

Proposition 3.1. If n— 3 < A+ a(p+1) <n+a, then u and v are
given by (1.10) and (1.11).

Proof. First, we claim that (1.10) holds.

When y € R™ \ By, we have 1/(Jy|*|z —y[*) < C/|y|***. Using
Proposition 1.1, we obtain

P(y)d P(y)d
CO Wy g [ Wy _ o,
R"\ B, ly|* |z -yl R\ B; |yl
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On the other hand, Holder’s inequality shows that

uP d i 1/r dy 1/r!
/ %§</ uP (y)dy> </ ﬁ) )
B, 1Y%z =yl B, B, ly[" |z =yl

where 1/r + 1/r" = 1. In view of A + pa < n, we can choose
1/r = (pa + €)/n such that r'a < n and

(3.2) rA<n

when ¢ is sufficiently small. Hence,

P 1/7"
B Y%z =yl B Y7z =yl
C

< ‘w|a+)\—n/r’

C

= ‘x|pa+)\+a—n+s .

(3.3)

Combining (3.1) and (3.3) yields v(z) < C/|z[P*+*~"+e. Therefore,
noting |z|/2 < |y| < 3|z|/2 for y € B(z,|z|/2) and (2.2), we can see
that as |z| — 0,

(3.4)

/ v9(y) dy / dy
Bo,ol2) VP12 = y1Y = 7 JB(e,e)y2) [y[PTaeetA-nte)|g — y|A

C / dy
< f ;
jw|frapetA=nte) [ /2 [€ =l
< C|x‘n7q(pa+5\7n+€)f()\+ﬁ) =0.

In addition, when § — 0,

v (y)dy v (y)dy
B A <C B+A
(3.5) Bs\B(a,=|/2) Y[z — Yl Bs\B(a,z|/2) 1Yl

<C(5) —o.

Similar to the argument given in the proof of Proposition 2.3, we have

vily) _ vi(y)
‘/"\Ba [y|5|93— yr o Jy|PtA dy| — 0, as |z| — 0.
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Combining this consequence with (3.4) and (3.5), we get (1.10). Then
in view of n— 3 < A4a(p+1) < n+a, (1.11) can also be deduced from
the same proof as for Proposition 2.6. This proves Proposition 3.1.

Remark 3.1. The proof of Proposition 3.1 depends essentially on the
condition (p+1)a+A < n+a. Otherwise, (3.2) is not true. This implies
that the integral fBl dy/(Jy|”"*|z — y|”"*) is not finite near the point z.
Therefore, it seems difficult to derive the conclusion of Proposition 3.1
when (p+ 1)a+ XA > n+ a, if we try to apply the idea in the proof of
Proposition 3.1.

4. Singularity analysis in Case III. According to Proposition
3.1, we only need to consider the case of A + pa > n.

The proof of Proposition 3.1 shows that (2.3) can still be derived
without (2.4), since (2.4) is not sufficiently accurate. To obtain (2.3)
for 8 < 0, we sharpen the estimation (2.4) to

vi(y)dy
4.1 wo‘uw:/ —— 2 < (C, forallxe€ B;.
Wh e = | ey '

Proposition 4.1. If a + (1 + (1/q)) > 0, then (4.1) is true.

Proof. Define vy(z) = 0 for € R™ \ By and v (z) = |z|~#/%(z) for
x € By. In view of A+ pa > n and 1/(p+1) > a/n, it follows that
A > a. So,

(4.2) )\+ﬂ+§>a+ﬁ+§20.

Hence, we can apply the WHLS inequality to

1 w(y) dy
) = T o 7P

to obtain

||Ul ||LS(B2) < O”upHns/(n-‘r(n—Xo)s)’
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where Mg = A + (8/q) and 1/s € ((pa + X\g — n)/n, (Xg)/n). Then,

n+(n—5\0)s: 1(1+n—5\0> L@
n

nps p

S n

By Proposition 1.1, [|tuP||,s/(nt(n—3xo)s) < 00- This implies

1 Ao —
(4.3) v € L%(By) for = > PAT o=
S n

We next apply (4.3) to deduce (4.1). If x € By, y € R"\ Bo,

q q
/ vﬂ(y)dykgc/ "(%)ﬁygc
Rn\B» lylPlz — y| R\ By |yl

in view of Proposition 2.1. Therefore, by Holder’s inequality,

|x|au(m):/R v (y) dy +/B Vi (y) dy

m B, [Y1Plz —yl* , T —y[?

. 1/t dy 1/t
<C+ / v (y) d > </ 7>
( Bs ! (y) Y B, |$*y|)‘t

for (1/t) + (1/t') = 1. As a consequence of (4.3), we can choose ¢
such that 1/(qt) > (pa + Ao — n)/n. Once we verify A\t < n, then the
integrals above are finite, and hence (4.1) is true. In fact, if we choose
1/t = (q(pa + Ao — n) +¢€)/n for ¢ sufficiently small, then A\t’ < n can
be deduced by (2.2). Thus, the proof of Proposition 4.1 is complete.

Remark 4.1. Using the idea of the proof of Proposition 4.1, we
can improve the condition o + (1 + (1/q)) > 0 to the weaker one:

a+pB(1+(1/q(p+1))) > 0.

Proposition 4.2. If a+3(1+(1/g(p+1))) > 0, then (4.1) remains
valid.

Proof. Define uj(z) =0 for z € R™ \ By, and

a 1 v(y)dy
u(z) = |z| +ﬂu($): |33_’8/R Iz — y[ Myl z € Bs.
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Applying the WHLS inequality, we have that for 1/71 € ((q(pa+X—n)
+A—=n)/n,(A/n)),

||U1||LT1 (B2) < C||Uq||nh/(n+(nf)\)h)‘

Take 71 satisfying (n+ (n— A)r)/nr1 = (¢(pa+ X —n)+¢)/n for
¢ > 0 sufficiently small. By Proposition 1.1,

1 A— A —
(44)  weL™(By) with L d@eFAzn)FA-nte
T1 n

Case A: \; := A+ (B8/q) +pla+B) <n.

Recalling the definition of v1, when z € B3/ we have

B 1 u?(y) dy
Ul(x) - W Rm\B» m
1 1(y)d
. / uf (y) dy
B

21 BO+(1/2) 7 — o} glatp@tB)
|| » |z =yl Myl

= V11 + V12.

By Proposition 2.1, for 5 < 0,
(4.5) lvi1ll Lo (Bs,5) < C.

We now prove the integrability of v12 using the WHLS inequality and
(4.4). To use the WHLS inequality, we need to verify the following
condition

(4.6) /\+,6’+§>0.

In fact, (4.2) is not valid since a+58+(8/q) > 0 does not hold. However,
from 1/(¢g+1) < *A+B8)/n < (A+B)/A, ¢+ 1 > (A/X+ ), proving
(4.6).

Moreover, A\; < n, and a + 3 + (8/q) + p(a + 8) > 0 is implied by
a+B(1+(1/(g(p+1))) > 0. Applying the WHLS inequality, we have
for (1/s1) = (pla(pac + A —n) + XA —n+¢e] + A1 —n)/n,

||’U12||L31 (Bs/2) < CHuﬁ_)Hnsl/(n-&-(n—xl)sl)'
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Since (n + (n — Ar)s1)/(nps1) = (1/r1), (4.4) implies viy € L* (Bj)s).
Combined with the estimate for vy;, we have

(4.7)

1 X—n)+A— X —

v € L9 (Bya) with — = PlaaFA—mFA-n+erhion
S1 n

Then, by Holder’s inequality,

|| u(z) :/B vi(y) dy +/R _vi(y)dy

a2 [T =y "\ Bays | = Yyl

dy  \V6
<o ([, ) O
3/2

where 1/(¢;) +1/(t}) = 1, z € B;. To obtain (4.1), we need to prove
the integrals in (4.8) are finite. Noticing (4.7), we can take ¢; such that
gt; = s1. One only needs to verify \tj < n. In fact, it is sufficient to
derive

(4.8)

(4.9) A <n—pglglpa+ X —n)+X—n]—q(A —n),

since € can be chosen sufficiently small. In fact, (4.9) is true if and only
if
n—A>pglglpa+A—n)+A—n]+qgA+pla+p)—n)+p6
=pallg+1)(A—n)+ (p+1)(g+1)a
—(p+a+(g+1)8 -4
+aA=n)+(p+1)(g+1)(a+5)
—(p+1)(a+p)+8.

Multiplying both sides by 1/[(p + 1)(g + 1)], we see that

n—)\> )\fn_’_ « N 8 B
A-n _
p+1 Pl o1 g+1 p+1 (p+1)(g+1)
+(a+,8)fa+’8 5

1 )@t

In view of 1/(p+1) +1/(¢+1) = A/n and a/n < 1/(p + 1), one has
A=n)/(p+1) +a—[a/(@+ D]+ [8/(p+1)] = ((a/n) = (1/p+1))
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(n — X) < 0. Therefore, (4.9) holds as long as (n —\)/(p+1) >
(1 =pg)B]/[(p + 1)(q + 1)] + (+ 8) = (e + 8)/(q + 1). This is equiva-
lent to (n — A)/(p+ D+(a+B)/(p+ D+ (a+B)/(¢+1) = [(A)/n] 5+
a. Noting 1/(p+1)+1/(¢+1) = (A)/nand 1/(p+1) > (a/n), we

can see easily that the inequality above holds.

Case B: \; > n. In this case the WHLS inequality cannot be applied
to v1s to derive (4.1). We define another function v, instead of v;. For
o > 0, define va(z) = 0 for z € R™ \ By, and vy (z) = |z|~#/Dtoy(z)
for z € B3/y. Clearly, when x € Bys,

va() = 1 uf (y) dy
2 |z|B+B/0=c [5 |z —yy|atrlath)
1 P(y)d
n / uf(y) dy

|2|[f+B/D=7 [ g, |2 — yMy|*

= V21 + V29.

Similar to (4.5), [[va1][Le(Bs,,) < 00. To use the WHLS inequality to
estimate vyo, we take

a::min{a—}—,@—i—g—f—p(a—i—ﬁ),)\—i—ﬂ—}—g}.

Using A\; > n and (4.6), we see that o > 0. And, we claim that
5\2 = 5\1 — 0 S n.

For when a+8+(8/q)+p(a+8) < A+B+(8/q), X2 = A < n; and when
a+B+(8/q)+p(atpB) > A+B+(8/q), A2 = (p+1)a+pf < (p+1)a < n.

Thus, applying the WHLS inequality, for 1/s2 = (p[g(pa+ X —n)+ A
—n+e]+ A —n)/n,

||UZ||LS2 (Bs/2) < CHU’I]?”nsz/(nqL(nf;\z)sz)'

Since (n+ (n — Ar)s2)/ns2 = (p/r1), (4.4) implies vyy € L*2(Bj)).
Thus,

1 X—n)+A— X _
vz € L*(By/2) with 1 _plalpatA-—n)+A-ntef+rs—n
S92 n
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Using Holder’s inequality, we get

() v3(y) dy v9(y) dy
|.’13| u(w) - Aloslao + AlylB
By 1T — YNyl R\Ba s 1T — Y[yl

dy 1/th
< |v3llLe (s (/ e ,> +C
B . [yl 2 — y N ’

where (1/t2) + (1/t3) = 1, z € B;. Take ty such that gts = so. Then
[v§le, < c0. To show [p..(dy/|y|?"|z — y|*2) < oo, it is sufficient to
verify

(4.10) A+gqo <n—pglg(pa+ A —n)+X—n]—q(la —n),

since (4.10), together with gt = s2, leads to (A + go)th < n.

To obtain (4.10), we consider two subcases:

(i)U:a+ﬁ+§+p(a+6); (ii)a:)\+5+§_

Subcase (i). Equation (4.10) implies (p + 1)(¢ + 1)(a + 8)
B <(g+1)(n—=X)+(p+ (a+p)—pallpg — 1a + (g + 1)(A
n) — B]. This holds if and only if (o + 8) + [8/(p+1)(g + 1)]
[(n = X)/(p+ 1)+ [(a+8)/(a+ D] - pal((a/n) — (1/p+1))(n - A)
[B/(p—i— 1)(g+ 1)]]. Since a/n < 1/(p+ 1), this can be deduced from
(a+B) + /(o + g+ D] < [(n - N/(p+1)] + [(a+B)/(p+1)] +
[(a+8)/(¢+ D]+[pgB/(p +1)(g+1)]. Noting (1/p+1)+(1/g+1) =
A/n, we see that the inequality above is equivalent to [(n — \)/(p + 1)]—
[(n = A)/n)(a+8) +[(pg — 1)B/(p + 1)(g + 1)] = 0. Because [(pg — 1)/
(p+1)(g+1)] = (n—A)/n, the above inequality is easy to obtain
knowing (1/p+1) > (a/n).

Subcase (ii). Equation (4.10) implies pg[pga+ (¢+1)(A —n) — (a+
B+ (+1)(g+1)a+pgB < (g+1)(n—A—pB)+ (p+1)a. This is true if
and only if pal(pa— 1)ar— (g+1)(n —X)] < (g+1)(n—X)+[(p+1)+(a-+
1)]Ja—(p+1)(g+1)a. Multiplying by [1/(p + 1)(g + 1)], we see that the
above inequality is equivalent to (pg—1)[(a/n) — (1/p+ 1)](n— ) < 0.

Putting the two cases together completes the proof of Proposition 4.2.
Once (4.1) is verified, it can be used to deduce (2.3). Thus, we have
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Proposition 4.3. In Case III, (1.10) holds as |z| — 0.

Proof. For any given d > 0, for all sufficiently small |z|,

v(y)
(4.11) / / dy‘
‘ n Iy\ﬂ\w —ylA go [yPHP
v9(y) dy / vI(y) dy
< +
/36 lylPle —yl* * Jp, ly*P
q q
+/ v(y) v (y)
R™\Bs

Pl —y[*  [yPHe
=:J1+ Js + Js.

i

Equation (4.1) implies u(x) < C|z|~* in B;. From this we have

1 uP (y) dy
v(z) = 3 / TS e
zlP JRrn |z =yl

A
= [z|? J, |z — yPlyl®EDe  z]B Jge s, |2 —yMyl®

C

- ‘$|pa+5\7n’

for z € Bs. Thus, J; = fB y)dy/|z — yMylP] < CfBé [dy/|z —y|*
|y|aPetA=m)+B] In view of ( : ), we see that J; — 0 as § — 0. By
an argument analogous to that for Proposition 2.2, we can again use
Holder’s inequality to prove that J, — 0 as 6 — 0. Applying Lebesgue’s
bounded convergence theorem, we obtain that for each § > 0, J3 — 0
as |z| = 0. Inserting the estimates of Jy, J2 and J3 into (4.11), we can
see easily that (1.10) holds as |#| — 0. This completes the proof of
Proposition 4.3.

Proposition 4.4. In Case 111, v satisfies (1.11).

Proof. By Proposition 4.3, we have (2.5). Then by Proposition 2.6,
(1.11) follows when |z| — 0, proving Proposition 4.4.

5. Proof of Theorem 1.3. In this section, assume that (u,v) €
LPTY(R™) x LIt1(R") is a pair of positive solutions of the system
(14)-(1.5),p>1,¢>1,pg #1,a+ 5 > 0.
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(i) Suppose (H3) holds: 1/(p+1) > (A+a)/2n, 1/(g+1) >
(A+8)/2n and Ag+ B(g+ 1) > n.

Step 1. By the Kelvin transform, we change the problem from at
the center to at infinity.

Define the Kelvin type transform by

() = 1/]aP/ ) u(a/jaf)
(51) o) =i e

which means

u(@) = 1|2/ P+ e jaf?)
(52) {vuw—UMPW¢H (e o).

This implies
@]l Lo+r(rry = [|ullLo+r(rny,  [[0llLatr(rr) = V]l Lat1(rm)-

Inserting (5.1) into (1.4) gives a new system (%, v) from the system for

(u,v) as follows:

(5:3) { (2) = 1/|e [ W)/ Iy Ple — y|*)dy
() = 1/]2[? [, [a(y)/|y|*= "] dy,

where & = 2n/(p +

g

<

1) -\, B=(2n/qg+1)—B—\. It is easy to see
that @+ 68 = a+ 8 >0, 1/(p+1) (A/n) < (a@/n) < 1/(p+1),
1/(g+1) + 1/(p+1) = A+a+p)/n. In addition, 1/(p+1) >
(A+a)/2n and 1/(¢+1) > (A+$)/2n imply @ > 0 and 8 > 0,
respectively.

H |\/|

Step 2. We prove u(z) ~ By/|z|* "% as |z| — oco.

Since Aq + B(¢+ 1) > n implies A + 8(¢ + 1) < n, using Theorem 1.4
from [15],
A
20 for small ||
z|®

(5.4) (z) ~

where Ap = [, [ﬁq(y)/|y|>‘+§] dy. By virtue of (5.2) and (5.4), for large
|z,

_ L — %\ By By
u(z) = |20/ D) u 122 ) T [z D= T [gpre
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Here, By is defined from Ay by a change of variable and is computed

as follows.
7 2y 1 q
By 2/ YREIEL) (Z/‘Z|_) 5 dz:/ v (Z) dz.
R |z| AR [z g 2

This establishes (1.13).
Step 3. Note that

(5.5) (a) +alp+)>n <= A+alp+1) <n;
(5.6) (b) \p+ap+1l)=n < A+alp+1l)=mn;
(5.7) () w+ap+l)<n < A+alp+1)>n.

Case (a): Using (5.5), applying Theorem 1.4 from [15], as |z[ — 0,
v(z) ~ A1/|z|?, where Ay = [p. (@ (y))/(ly|**®)dy. Thus for large
|z|, we get

_ 1 _ x B]_ _ Bl
(5.8) v(z) = PRy v(|x|2> |2/ (a+1)-B TS

where By := [, (uP(y))/|y|* dy can be calculated from A;.
Case (b): In view of Theorem 1.4 in [15] with (5.6), for small |z,
v(z) =~ (A In|z||)/|z|?, where Ay = |S™71|(Ay)P. For large |z,

(5.9) v(z) ~ w
where B, := |S"1|(By)P = |Sn71|(fRn (w(y))/|y|? dy)?.

Case (c): From (5.7), by [15, Theorem 1.4], E(_:v):zg/ma(p“)*E“‘*"
for small |z|, where A3 = (Ao)? [, (dz/|2[*P*V|e — z|*). Conse-
quently, by (5.2), for large |z|,

N 1 B3 _ Bs
o) = BT [y R Bt g @G

(5.10)

where By = (Bo)?[ g dz /(|2 TV le — 2) = ([, (v (y)/1y/7)dy)?
S (dz/ 1227~ (0FNEHD e — 2]3),
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Combining (5.8)—(5.10), (1.14) follows.
(ii) Consider the cases (H4) and (H5).

It is essentially the same as the proof of (i). We still apply the
Kelvin transform (5.1) to derive the integral system (5.3). Since
1/(g+1) < (A + B)/2n implies B < 0, from @ + B > 0 it follows that
@ > 0. Noting Remark 1.3, we use Theorem 1.2 to see that (1.10) and
(1.11) hold for (u,v). Finally, using (5.2), we obtain (1.13) and (1.14).
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