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POLYGAMMA THEORY,
THE LI/KEIPER CONSTANTS AND THE
LI CRITERION FOR THE RIEMANN HYPOTHESIS

MARK W. COFFEY

ABSTRACT. The Riemann hypothesis is equivalent to the
Li criterion governing a sequence of real constants, {A\z}72,,
that are certain logarithmic derivatives of the Riemann xi
function evaluated at unity. We present a series of results for
associated sets of constants ¢, and dn,, n =0,1,..., and give
the precise relation of these to the Li/Keiper constants. In
the course of our investigation, we obtain new representations
of classical special functions under a Mobius transformation.
Among the conclusions is that the leading behavior (1/2)Inn
of A\p,/n is absent in ¢y, suggesting that the Riemann hypoth-
esis should hold. In addition, we present a recurrence rela-
tion for ¢, based upon quantities derivable from elementary
functions. The quantitative estimation of this recursion could
provide a result stronger than the Riemann hypothesis itself.

1. Introduction. The Riemann hypothesis is equivalent to the Li
criterion governing the sequence of real constants, {\;}7 ;, that are
certain logarithmic derivatives of the Riemann xi function evaluated at
unity. This equivalence results from a necessary and sufficient condition
that the logarithmic derivative of the function £[1/(1 — z)] be analytic
in the unit disk, where ¢ is the Riemann xi function. The Li equivalence
[21] states that a necessary and sufficient condition for the nontrivial
zeros of the Riemann zeta function to lie on the critical line Res = 1/2
is that {\x}72; is nonnegative for every integer k.

This paper is a further contribution to our research program to
characterize the Li (Keiper [19]) constants [21]. We have previously
rederived [5, 6] an arithmetic formula [4, 20] for these constants and
described how it could be used to estimate them. Elsewhere, among
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several other results, we have examined summatory properties of the Li
and Stieltjes constants and investigated the 7; coeflicients appearing in
the Laurent expansion of the logarithmic derivative of the zeta function
about s =1 [7]. In particular, a key feature of the sequence {n;}52, is
now known: it possesses strict sign alternation [7].

In this article, we investigate a related set of constants [24] c,,
n=1,2,..., that might be thought of as reduced Li/Keiper constants.
We show in detail that the leading behavior (1/2) Inn of A,,/n is absent
in ¢,. We present a series of analytic results on ¢, and polygammic
constants d,, and a conjecture as to the order of ¢, as n — oco. As a
significant byproduct of this research, we obtain new representations
of classical special functions under the fractional linear transformation
s(z) =1/(1 = 2).

The Riemann ¢ function, the completed classical zeta function, is
determined from the Riemann zeta function ¢ by the relation £(s) =
s(s — 1)m3/2I'(s/2)¢(s), where I' is the Gamma function [12, 13,
16-18, 23, 25] and satisfies the normalization £(0) = 1 and the
functional equation £(s) = £(1 — s). The sequence {A,}5° ; is defined
by J

1 mn
)\n = mds—n[sn_llnﬁ(s)]s:h n Z 1.

The Ajs are connected to sums over the nontrivial zeros of {(s) by way

of [19, 21] .
W= -(-3) ]

p

Proposition 1. Let

(1) F(z):ln{lizg<1iz>} :nicnz",

where ¢y = 0 and c; = v, the Euler constant. Then we have

1 1
(2) — =c¢p+——-Ilnn+d,, n>1,
n n 2

where d,, is the coefficient of 2™ in the Maclaurin series of the function
InT[1/2(1 — 2)]. That is,

1 d" 1
— % | — .
3) dn nlden [2(1—2)]2_0
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Proposition 2 [4-7, 20]. Let

An 1 1 1 1
(4) 7—Esl(n)-i-ESg(n)f5(7-1—11171’-}-21112)-}-5,

65)  Si(n)= Z(l)’“(”)(l 2 ™e(m), ne,

m

©) S == (1)

m=

the constants ny can be written as

(=D*
|

(7) M= "

N k+1
. 1 k In N
lego(mzzla’“m)ln )

and A is the von Mangoldt function [13, 17, 18, 23, 25]. We recall
that, for positive integers n, A(n) = 0 unless n = p* is a power of
a prime number, in which case A(n) = lnp. Then we have the exact
relation

52 (’I’l)

n

=cp, n>1.

(8)

Proposition 3. Let LY denote the Laguerre polynomial [2, Section
6.2] and ¢ the digamma function. Then we have the integral represen-
tation

1 (1 I t
0 a=3¢(3) - [ g [Ba(s) o n22

Proposition 4. We have

Sl (n)

(10) .

=d,+In2, n>1.

no =2
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Proposition 5. We have the exact expressions

b

where ¥(1/2)/2 = —v/2 —In 2.
Proposition 6. We have d;j > 0 for all j > 3.

Proposition 7. Let

(12a)
I e 1 o1y ;. 1
bo:/o <et—1_t+2>e dt=7-3
(12b)
1 [ 1 1 1
by, = — ——+ = )etIntLl_,(~Int)dt
nA (et—l t+2>€ n n—l( n) ’
and
(13) L4 1 k>0
gk:_ LTI /1 0\ ) — )
k! dzFT[1/(1—2)]|,_,
with go = 1 and g1 = y. Put
(14) hm = ngbm—ka m > 07

k=0

and ap =1, a; =7,

j—1
(15) aj =7+ hjp, j>2.
=1
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Then we have the recurrence relation

k-1
(16) cr = ap — Z Z gcqtr—q, k> 1.

q=1

We recall that, in the Laurent expansion for the Hurwitz zeta function
about the simple pole at s =1,

(0= =+ @ -1y,
0

the coefficients 7, (a) are called the Stieltjes constants.

Proposition 8. The constants b;j, j > 0 of equation (12) are
expressible in terms of the Stieltjes constants and vice versa.

Proposition 9. Let

1 4d» 1
1 =——Inl|——— .
Then
(18)

1 (1 1 [®el=tmtr (¢
0= 30(5) o Gy () o e mz
do(p) =InT'(1/p), and d1(p) = ¥(1/p)/p. In particular,

(19) dn(l)z—y—%/odet, n>1

)

do(1) =0, and d1(1) = —v. Moreover,

(20a) dn(p) = %1/)(%) + % i [pjz ot (jpji 1)”] ’

i=0
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1 1 /1 1 1
(20b) 5[¢(”)+’y—1]—1—5¢<I_))_|_n_p+1_E
>dn(p)z%[¢(n)+71]+%¢<1>+%_

Proposition 10. Put

1 ., n 1 S
(21) F<m> :;fnz ) TIL/(1-2)] :;gnz ozl <L
Then (a) fo =1, fi = =y = ¥(1),

1 oo
(22) fn= —/ e 'IntLl [ (—Int)dt, n>1;
n Jo

and (b) go=1/fo=1,91 = —f1 =7, and

j—1
(23) 9i=—> fngi-n—fi, J>2.
n=1

Proposition 11. Put ([27, Section 5])
(24)

1 In(1-2)/ 1 1 1 1 > "
a(z)_l—z+ z <l_z—§)+glnf(1_z)—2anz,

n=0

|z] <1,
with ag = —bg = 1/2 — . Then
(a)

1

(25) aj:1+m

—y =PI +2) +dja(1);

(b) o is bounded for all j >0, |oj| < |aol;
(c) a; is expressible in terms of the integrals by, of equation (12); and

(d) a(z) may be analytically continued to the whole complex plane.
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Conjecture.

1
(26) len| = O<W>’

where € > 0 but is otherwise arbitrary.

Propositions 3 and 7-11 have not been presented before, while the
others represent a condensation and reorganization of a subset of results
that were previously described in [8].

Proofs of propositions. Here we outline the proofs of the propo-
sitions above, leaving to the references relevant background material.

Proposition 1. From equation (1) and the definition of the xi function,
we have

Inmt+InT [

(27) 1ng<l—lz> - F(z)—ln(l—z)#—% ﬁ] .

Since we have [21]

(28) mg(l_Z) -y Ao

n=1

the expansion of equation (27) in powers of z readily yields equation (2).

Proposition 2. From equation (1) it follows that ¢, = (1/n!)x
(d"dz")F(z)|.=0, and from the definition of the xi function and [21]

1 ar

(29) An = mds”[ " Hné(s)] =1,
we have

R ey~ i LRV C)
(30)

ﬁ?( ) o (s = ()
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Under the mapping s(z) = 1/(1 — z), derivatives transform as d/dz =
s2(d/ds), and Proposition 2 follows.

Proposition 3. We have [8]

(3;3) X L g )
ﬁlnr[z(l—z)] :Ei 1 ( z)2¢[2(1—2)]‘

(31b) :%j 06;)%%42(11@]
19 - ]

D (A=

j=1
<z [ﬁ”

where 9 is the digamma function and 1) is the polygamma function.
The idea of the proof is to use equation (3), equation (31b) and a
certain integral representation of 1(9)[1/2(1 — z)]. By using an integral
representation of the digamma function, e.g., [1, page 259] or [15, page
943],

oo €7t _ efst
(32&) ’(/)(Z) = —y +/ ﬁ dt, Res >0,
0 _

and making use of a standard exponential generating function for L2
2, 15],

oc pe 1 erz/(z—

we determlne that
&’ 1
2 — ) | ——
(32¢) dzf/’[ <1—z>]

:_Z/ thlﬂ_; (t/2) e dt(n 4 — 1) (n+j—2) - (n+ 1)

Jj=1
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so that
(32d)

d 1
PR [2(1-@]
From equation (31b) we then have
n—1 . 1
1 (1) 1321 i\ [ tha(t/2)
33 dn = -¢| = — -{1-= I et 2y,
w9 aemgola) i (-a) [

Upon performing the summations on the right side of this equation, we

find that
L1 (1N L[R2
dn—ﬂ’(i)‘@/o v dt

L[ iy,

e V2dt, j>1.

SCESe (L (t/2)

2 1—et

z=0

(34)
2 1—-et

In particular, we have used [15, page 1038] S2"*% L2 | (z) = Lot (),
together with

(35) > LJ’—I(QE) = %[1 — Ly(z)].

=

A direct proof of this relation follows by interchanging sums:
Z”: Lj1(x) _ 12’: ( ) zmt
1 —1)!
= J — (m—1)!
36 =N (—ym N o
(36) Z( ) (m_l)!];.(m)

We then apply the recursion relations [15, page 1037]

(37a)
(t/2)L7 _5(t/2) = nLy,_5(t/2) — (n — 1)Ly, (t/2),
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and

(37b) Ly_5(t/2) = Ly_1(t/2) — Ln-1(t/2),

to obtain Proposition 3.

Proposition 4. This follows from the use of Propositions 1 and 2.
Else, we may start with [6]:

S =3 [ It Lhat2) - 28 10] s

(38a) -
Sl [T ) L,
2 "2 J, el —1 ’
where
_ [ Ly ()]
(38D) I= /0 o=t

By termwise integration, using the power series form of L. _, [15, page
1037], we find that

o) [ /) L0

dt
et —1

S (it [
—)™

m=2

n

S.

(

(1) 2mmetm)

m=2

On the other hand, by changing variable in equation (9) and using
partial fractions we have

11\ 1 e
to39(3) =3 meghatw) - aldv

(40) 2n ev —1 ev+41
1 1 (L (w)—n
=—1—-— dw
2n 2n Jo ev +1
1 1
=—I+ S,
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thereby reproving Proposition 4. The last step here follows from
another termwise integration:

00 Ll _
(41) / M dw
0 ew + 1

N /0°° [zn:(_l)MI <Z> (:::ni;)! -n

m=1

_ 2(—1)m—1<;> | * (gm—;)!(ewdi s

dw
ev +1

Proposition 5. This follows from equation (31c) evaluated at z = 0,
with the second line coming from application of finite geometric series.
Here, we recall that

(LY Z gy L
@ Y (3) = v 2 Gz

= (1) pl@2"t —1)¢(n+1), n>1

Else, we may rewrite the result of Proposition 3 by expanding (1 —
e~)~1 as a geometric series,

(43a)

1 /1 1 [ et/2 t
= (=) - — — |t (=)= > 2
in=3¢(3) 2 [ e [Phal5) n| @ mz2

(43b)
1 1 1 . d
= — -] — — —(2j+)u | 2 — >
2'(/1<2> - ]E_O/o e [ duLn(u) n] du, n>2.

Then, using integration by parts and the Laplace transform of a La-
guerre polynomial [15, page 844], gives a form equivalent to equa-
tion (11).

Proposition 6. We indicate three methods of proof of this result.
The first is to make use of the monotonically increasing lower bound
of d,,(2) = d,, given in equation (20b). We find that this lower bound
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is positive and increasing for all values of n > 11. Then the separate
cases d,, for n =4,...,10 may be separately checked for positivity.

As a variation on the first method, we may note in equation (20b)
the harmonic number H,,_; = %(n) + v, and various inequalities for
these numbers have been well studied, e.g., [28]. For instance, we have

1 1
<H,-lnn-n<-— .
o+ (1/(1—7) -2~ BT =013
the constants 1/(1 — ) — 2 ~ 0.3652721 and 1/3 are the best possible,
and equality holds only for n = 1. Therefore, positivity for d,, may be

obtained for all n above a modest value ng and the initial values of d,
examined individually.

(44)

Thirdly, there are several ways in which to obtain highly accurate
approximations to d,, for even moderate values of n [8]. One result is

1

(45)  Inl [m

1 1 ;
~ = z ; _ 114
} _2ln7r+2]§:1[1/1(])+7 In2—1]27.

That is, for j > 1, we have

1 1 1 1
46 di=—-|lnj]— — — — —In2—-14+0( — .
(6 d; 2[1” oj 22 YT (j‘*ﬂ

The first few d;’s are written explicitly in the Appendix, and directly
from equation (46) we have that d; > 0 for all sufficiently large j.

Proposition 7. Per an integral representation of the zeta function
coming from Euler-Maclaurin summation [25, page 24]

11 1o/ 1 1 1\ .,
(47) C(s)_2+s—l+1"(s)/0 <et—1 t+2>et dt,

Res > —1,

we obtain

(48)
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In view of equations (1) and (12)—(14), we may then write
1 1 1 = px=, .
() -5 Lt e
k=0 n=0
I 1 & -
(49) :;—§+Z(Jhmz

UL [icz}

Performing some elementary manipulations and then carrying out the
exponentiation of power series in equation (49) then gives the recursion
(16).

Proposition 8. The Stieltjes constants v (y) are the coefficients of the
Laurent expansion of the Hurwitz zeta function ¢(s,y) about s =1 [9,
10]. In particular, by convention, one puts v;(1) = y,. Then directly
from equation (47) we have for nonnegative integers j,

oo 1 1 1 ,
— 4 et In? tde
0 et_l t 2

(50a)
=P e+ |+ -2 Reas -2
= 2715 a 5| (0 Rea ,
(50b)
_ & 1 oD
_WF(CH_D ’y—§+; ok Rea > —2.

Therefore, by the linearity of integration and definition (12), the inte-
grals b, may be put in closed form in terms of 7, by using equation (50b)
evaluated at a = 0. The relation between by and the Stieltjes constants
may be inverted, so that 7, may be written in terms of a sum over the
integrals b;.

Since 9 = 7, bp = v — 1/2 as given in equation (12a). When n =1,
Ll (w) =1 and then by = —7? — 1 + /2 =~ 0.0282457541267245.

n—1



1854 MARK W. COFFEY

Proposition 9. The first part follows by the method of Proposition 3,
and equation (20) follows from the methods of [6]. In particular, we
recall the comparison integral that forms the basis of the bounds in
(20b):

(51) /0°° [pxil_H(pfvpil)n] 4 .
N /1 [Z_H( y1>]dy
/01 1—(1—v)" l]%—i-%(l—n)

/01 dt+l(l—n)

n 1
= (n)+~—1]+ -
p p

p
n
»
n
»

Herein, we changed variables, integrated by parts and applied [15
page 943].

Remark. By using the first correction term of Euler-Maclaurin sum-
mation, the lower bound of (20b) can be used to write the approxima-
tion dy(p) ~ [¥(n) +~v — 1+ 9¥(p) +1/n]/p + (1/2)(1 — 1/n), and in
particular, d, (1) ~ ¥(n) + (1/2)(1/n —1).

Alternatively, we give a demonstration of the equivalence of equations
(18) and (20a), especially as some of the intermediate expressions
appear to be of interest in their own right. From (20a), binomial
expansion and the interchange of two sums, we have

w3 (3) = [75 -+ () |
1[% H(#)]

23 O

:DlﬂHé% i M8

J

I
S|=
NgE

J
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52 (-5) ()ecm
e

Il
S|

L
4

p
1 1 0 2fZ—le(l—l/p)t
D e[
s p 'Jo e
1 [ (1-1/p)t t
:f—/ A L =) —n|d, n>1.
pnJo (ef=1) p

Above, we applied a standard integral representation for the Hurwitz
zeta function, e.g., [15, page 1072].

Remark. This alternative proof shows the explicit connection of d,,(p)
with divided differences of the Riemann zeta function when p is either
a positive integer or a positive half integer.

Proposition 10. Part (a) follows from the standard integral represen-
tation of T,

(52) I'(2) :/ t*“le7tdt, Rez>0,
0

and the conventional exponential generating function of L. ; [2, 15]
given in (32b). The recursion relation of part (b) follows upon the long
division of power series.

Proposition 11. For part (a) we manipulate power series and use the
definition of d,, (1) of (17). We find that

1 7
53 i=1 - djt1(1).
(53) %= TG kzz()k+1+]+1()
We then use [1, 15] ¢(j+1)+v = 3221 1/(k+1) = H;, the harmonic
number, to obtain (25). Alternatively, we may employ the generating
function —(1 —z) 'In(l —2) =3 07, Hpz"

The well-known asymptotic form of the digamma function is ¥(z) =
Inz — 1/2z + O(1/z%) as z — oo. By Proposition 9 and its proof,
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it is then obvious that the leading behavior In(j + 1) of d;;1(1) is
canceled by ¥(j +2) = ¥(j+1)+1/(j+1) in equation (25). Therefore,
a; remains bounded for all j > 0, giving part (b). Furthermore, since
dj+1(1) =1In(j+1)+Cp,+0(1/5), where C,, is a constant depending only
upon p, as follows from Proposition 9, we find that the terms O(1/)
also cancel in ¢, and that |a;| < || for all j > 0. Alternatively, this
result follows from

Lemma. We have

1 ° 1 1 1
—<ln:p—1/1(ac):/ <7——>e”dt<—, xz > 0.
2z 0

l—et ¢t x
The middle equality is simply a standard Binet formula for the digamma
function. The function f(z) = z(lnx — ¢ (x)) satisfies lim,_,o f(z) =1
and lim, _, o, f(z) = 1/2. Furthermore, [14, page 824],

1 1 0
=+ — — —— <1
f@)= 5+ g “120080 0<0<)
and f is strictly decreasing on (0,00).

For part (c), we may verify, as outlined below, that

(54) C(s) = - - = % - sg(l)n (s ) 1> .

We may then note from (47) and the relations

(55) —s i(*l)n <5 . l)an = ﬁ /OOO (et%l%+%>ett51dt,

n=0

and t*~! = exp[(s — 1)Int] that, by expanding in powers of s — 1,
ay, is expressible in terms of by of (12). In fact, it is also clear that
the expansion of the factor 1/T'(s) about s = 1 introduces polygamma
factors ¢()(1), and these may be written in terms of Riemann zeta
values at integer argument. Equivalently, o, may be written in terms
of the Stieltjes constants with the aid of Stirling numbers of the first
kind sf [1, 27].
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The representation (54) is part of a family that we elaborate elsewhere
[11]. We consider series representations of the form

gs? - cfs—1
56) o) = s -0
k=0

where ¢ > 1 is an integer, the real coefficients t; depending upon g
are to be determined, and the function f is such that ¢(s) —1/(s — 1)
is regular in C'. We are interested here in the case ¢ = 1, when very
simply f = 0. Due to a property of the binomial coefficient, when s = n
is a positive integer in equation (56), we have

qn?

p—1 W= —nqg<—1>k <n . 1>tk.

Putting n — n 4 1 in this equation, we may rewrite it as

q gf(n+1) ((n+1) - n
(58) (TL+ 1)q 1 + (TL—|— l)q - (TL+ 1)q =ty +;(71)k (k)tk'

(57) ¢(n) -

We now multiply both sides of this equation by (—1)"("") and sum on
1 < n < m, using the orthogonality of binomial coefficients,

(59 S0 (7) () = 0

where d,, ; is the Kronecker delta, obtaining
(60)

N~y q gf(n+1) ((n+1)
tn =t 0" () [t G 2

For simplicity, we now specialize to ¢ = 1, when

= m\[1 ((n+1)

61 b =t —1)n S XL

o e (D) a- Gy e

Since limy,;[¢(s) — 1/(s = 1)] = v, we find tp = 1 — . We now
have that for ¢ = 1, the difference of ((s) and the right side of (56)
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vanishes on the positive integers, and we apply Carlson’s theorem [26,
Section 5.81]. This difference function g is of exponential type and
satisfies |g(z)] < Cexp(k|z]) for Rez > 0, where £k = 7/2 < .
Therefore, it is identically zero and the series representation (56) with
g =1 and ¢, as in equation (61) follows.

For large n, we have ¢, — 1/2(n 4+ 1) and accordingly we put
an = tn, — 1/2(n + 1), giving (54). In addition, by the use of [1,
page 256], we find the generating function of (24). This completes part
()

The upshot of part (d) is that we may remove the initial restriction
|z| < 1in equation (24). By part (b) we now know that the power series
on the right side of this equation converges for at least |z| < 1/|ag], i.e.,
beyond the unit circle on which any singularity in the finite complex
plane of a(z) would have to exist. Therefore, a(z) may be analytically
continued to all of C.

Remark. Equation (61) together with our work (above equation (52)
when p = 1) give another way to prove equation (25). We have

St i) me

(62) " "
7= utm+ 1) - Y- (7).

We note that

m 1 1 m+1
(63) <n>n—|—1:m—+l<n+l>’
giving
m+1 m 1
) tn—to=—r=vtme 0+ g S0 (oo

This equation provides
(65) tm —to = dmy1(1) —P(m +1),

that is equivalent to equation (25).
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e |
-
o

0 2000 4000 6000 8000 10000 12000 14000 16000
n

FIGURE 1. In this semi-logarithmic plot, the upper curve corresponds to values of
6/m2/n versus n, and the lower to values of |cp| versus n.

Discussion. We have previously conjectured |Sy(n)| = O(n'/?t¢)
for ¢ > 0, leading to our conjecture (26). That is, we anticipate that
the magnitudes |c,| decrease nearly as the square root of n for large
n. In Figure 1 we compare such a decrease with available numerical
evidence [6, 22, 24]|. Figure 1 contains a semi-logarithmic plot of
|c,,| versus n, together with a curve corresponding to 6/7%\/n. For
this limited set, after a few initial values, the latter curve appears to
provide a consistent upper bound. In light of the von Koch result
on the Riemann hypothesis that 1y(z) = = + O(z'/?In’z) [16, 29),
where ¥g(z) =, -, A(n) is the Chebyshev function, we suspect that

the optimal order of |c,| is very close to O(Inn/n'/?). In regard to
these magnitudes, any subexponential bound on |¢,| would serve to
verify the Riemann hypothesis [4, 24]. Indeed, the Riemann hypothesis
fails only if a Ay becomes negative and exponentially large in k, cf. [4,
Theorem 1, criterion (c)]. By our work, this could only occur if a ¢
becomes exponentially large.
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The Li equivalence is by itself a qualitative reformulation of the Rie-
mann hypothesis. The Riemann hypothesis does not of itself dictate the
exact nature of the Li/Keiper constants. In fact, one can easily formu-
late conjectures on the nature and order of the Li/Keiper constants that
are then stronger than the Riemann hypothesis. These observations in-
dicate that the Riemann hypothesis may be verifiable without knowing
the optimal order or other properties of the Li/Keiper constants that
would more fully characterize them. Details of the distribution of the
complex zeta zeros are beyond the Riemann hypothesis. We empha-
size therefore that our conjecture (26) is a stronger statement than the
celebrated Riemann hypothesis itself. For according to the criterion
just cited [4], if any bound of the form |c,| = O(nP), with p < oo
holds, then the Riemann hypothesis follows. However, reiterating, the
detailed bound of (26) does not follow from the Li criterion for the
Riemann hypothesis.

Proposition 8 is not surprising and shows the consistency of the
theory, in that there are many equivalent representations of the Stieltjes
constants [8, 9]. A key result of this article is Proposition 7. In overall
terms, the constants b; increase exponentially with j (approximately
o exp(v/7) for large j), while the polygammic constants g, oscillate, i.e.,
occasionally change sign, leading to cancelation in h,,. The result is
that a; oscillates about unity, and therefore, we conjecture, c; remains
bounded. We have effectively reduced verification of the Riemann
hypothesis to the asymptotic estimation of the quantities a; and cg
in equation (16).

In regard to Proposition 11, we may note the close similarity of
representations of the Riemann zeta function between [27, Section 5]

(66)
((s) = s—il —5Y taPu(s) = sjl = [Q(nil—i-l) +Oln]Pn(5),

and [3]

(67) o) = i“@

where Py(s) = (—1)*(°.") and Ag = ((2). That a; decreases faster
than any power of 1/j then follows from the corresponding property
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for Ay. In fact, we suspect that both A; and «; decrease exponentially
quickly with j.

Acknowledgments. I thank K. Maslanka for the numerical values
of Sz(n) used for the figure.

APPENDIX

Examples of d,,. The first few values of k!dj are given by

1

(A].) do = 511171’,
(A.2) dy =—v/2—1n2,

1
(A.3) 2ldy = —y + §7r2 —2In2,

3 5 7
(A4) 3'd3 = *3’)/ + Zﬂ' —6In2 — ZC(S),
9 4

(A.5) 4!d4:—12’y+271' +1—6—241n2—21§( ),
and

(A.6)  5lds = —607 + 307 + §W4 —120In2 —210¢(3) — i—3<(5)-
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