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ON JORDAN LEFT k-DERIVATIONS
OF COMPLETELY PRIME I'-RINGS

SUJOY CHAKRABORTY AND AKHIL CHANDRA PAUL

ABSTRACT. With the notions of a left k-derivation and
a Jordan left k-derivation of a I'-ring we construct some im-
portant results relating to them in a concrete manner. In this
article, we show that under a suitable condition every nonzero
Jordan left k-derivation d of a 2-torsion free completely prime
I'-ring M induces the commutativity of M, and accordingly,
d is a left k-derivation of M.

1. Introduction. The concept of I'-ring is a generalization of
classical ring. Nowadays, the study of I'-rings is of great interest to the
modern algebraists, especially for extending the significant results in
classical ring theory to the topics in gamma ring theory. The notion of
a I'-ring was first introduced by Nobusawa [7] and then generalized by
Barnes [1]. A number of important properties of I'-rings were obtained
by them as well as by Kyuno [5], Luh [6], and others. We begin with
the following definition.

Let M and I' be two additive abelian groups. If there exists a mapping
(a,c,b) — aab of M x T' x M — M which satisfies the conditions
(a) (a+b)ac = aac+bac, a(a+B)b = aab+afb, aa(b+c) = aab+aac
and (b) (aab)Bc = aa(bBc) for all a,b,c € M and o, € ', then M is
called a I'-ring in the sense of Barnes [1].

For example, let R be a ring with identity 1 and M, ,(R) the set
of all m x n matrices with entries in R. If we set M = M,, ,(R)
and I' = M, ,,(R), then M is a I'ring with respect to the matrix
addition and multiplication. In particular, if we take M = M 2(R)

and I' = {("01> : n is an integer}, then M is also a I'-ring.
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Note that the notions of a prime I'-ring and a completely prime I'-ring
were introduced by Luh [6] and some analogous results corresponding
to the prime rings were obtained by him and Kyuno [5], whereas the
concept of a strongly completely prime I'-ring was used and developed
by Sapanci and Nakajima in [8].

Let M be a I'ring. Then M is called a prime I'-ring if, for all
a,b € M, al’'MT'b = 0 implies a = 0 or b = 0. And, M is called
completely prime if aI'b = 0 (with a,b € M) implies a =0 or b = 0.

A T-ring M is said to be 2-torsion free if 2a = 0 implies a = 0 for
all a € M. And, a I'-ring M is said to be a commutative I'-ring if
zyy = yyx holds for all z,y € M and v €T

Sapanci and Nakajima [8] have introduced the notions of derivation
and Jordan derivation of a I'-ring. Afterwards, in the light of some
significant results due to Jordan left derivation of a classical ring
obtained by Jun and Kim in [3], some extensive results of left derivation
and Jordan left derivation of a I'-ring were determined by Ceven in
[2]. But, the notion of k-derivation of a I'-ring was introduced by
Kandamar [4] and a number of important results on the k-derivation
of a I'-ring were obtained by him. Here we introduce the notions of left
k-derivation and Jordan left k-derivation of a I'-ring and then we build
up some important results relating to them in a concrete manner.

Let M be a I'-ring, and let d : M — M and k : I' — I' be additive
mappings. If d(aab) = aad(b) + bad(a) holds for all a,b € M and
a € I, then d is called a left derivation of M. For all a,b € M and
a €T, if d(aab) = aad(b) + ak(a)b+bad(a) is satisfied, then d is called
a left k-derivation of M. And, if d(aaa) = 2aad(a) + ak(a)a holds for
all a € M and «a €T, then d is called a Jordan left k-derivation of M.

For instance, let M be a I'-ring and d a left k-derivation of M. Sup-
pose My = {(z,z) : « € M} and I'; = {(a,@) : @ € T'}. Define the
operations of addition and multiplication on My by (z1,z1)+ (22, z2) =
(21 + 22,21+ 22) and (21, 21) (e, @) (22, 2) = (T1r022, Z1023) for every
x1,22 € M and o € T, respectively. Then it can easily be shown that
Mj is a I';-ring under these operations of addition and multiplication.
Let dy : My — M; and k; : I'y — I'1 be two additive maps defined by
di((z,z)) = (d(z),d(z)) for all x € M and k1 ((e, o)) = (k(e), k()
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for all a € T, respectively. Then it follows that d; is a Jordan left
k1-derivation of Mj.

Now, let M be a I'ring, d : M — M and k : I' — T’ two additive
mappings, and let a,b € M and o € T. Then d is called (i) a
deriwation of M if d(aad) = d(a)ab + aad(b), (i) a k-derivation of M
if d(aab) = d(a)ab + ak(a)b + aad(b), and (iii) a Jordan k-derivation
of M if d(aca) = d(a)aa + ak(a)a + aad(a).

In this article we show that under a suitable condition every nonzero
Jordan left k-derivation d of a 2-torsion free completely prime I'-ring

M induces the commutativity of M, and accordingly, d is then a left
k-derivation of M.

2. Main results.

Lemma 2.1. Let M be a I'-ring and d a Jordan left k-derivation
of M. Then, for all a,b € M and « € T, d(aab + baa) = 2aad(b) +
2bad(a) + ak(a)b + bk(a)a.

Proof. Use the definition of a Jordan left k-derivation d of a I'-ring M
to compute d((a+b)a(a+0b)) = 2(a+b)ad(a+b) + (a + b)k(a)(a+b),
and then cancel the like terms from both sides to obtain the proof. O

Lemma 2.2. Let d be a Jordan left k-derivation of a 2-torsion free
T-ring M such that aabk(a)c = ak(a)bac for every a,b,c € M and
a € I'. Then the following statements hold for all a,b,c € M and
a,B el

(i) d(aabaa) = acaad(b) + (3aab—baa)ad(a) + ak(a)(2baa + aab) —
bk(a)aaa;

(i) d(aabac + cabaa) = (acc + caa)ad(b) + (3aad — baa)ad(c) +
(Bcab—bac)ad(a)+ak(a)(2bac+cab)+ck(a) (2baa+aab) —bk(a) (acc+
caa);

(i) (aab — baa)aaad(a) = aa(aab — baa)ad(a) + ak(a)(aad —
baa)aa — (aab — baa)aak(a)a;

(iv) (aab — baa)a(d(aad) — aad(b) — bad(a) — bk(a)a) = 0;
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(v) d(acaab) = aaaad(b) + (aab + baa)ad(a) + aad(aab — baa) +
ak(a)aab + bk(a)aaa;

(vi) d(baaaa) = acaad(b) + (3baa — aab)ad(a) — aad(aab — baa) +
2bk(a)aaa;

(vii) (aab — baa)a(d(aab — baa) + ak(a)b — bk(a)a) = 0;

(viii) (aaaab — 2aabaa + baaaa)ad(b) + ak(a)(aabab — 2baaad) +
bk(a)acaab = 0;

(
(ix) (babaa — 2baaab + aabab)ad(a) + ak(a)babaa + bk(a) (baaca —
2aabaa) = 0.

Proof. (i) From Lemma 2.1, for all a,b € M and « € T, we have
(1) d(aab + baa) = 2aad(b) 4+ 2bad(a) + ak(a)b + bk(a)a.
Replacing aab + baa for b, we get

2d(aabaa) + d((aaa)ab + ba(aaa))

= 2aad(aab + baa) + 2(aab + baa)ad(a)
+ ak(a)(aad + baa) + (aad + baa)k(a)a.

By using Lemma 2.1 and the hypothesis that aabk(a)c = ak(a)bac for
every a,b,c € M and « € T, this yields

2d(aabaa) = 2aa(2aad(b) 4+ 2bad(a) + ak(a)b + bk(a)a)
+ 2(aab + baa)ad(a) + ak(a)(aab + baa)
+ (aad + baa)k(a)a
— (2aaaad(b) 4+ 2bad(aca) + acak(a)b + bk(a)aca)
= 2acaad(b) + 6aabad(a) — 2baacd(a)
+ dak(a)baa + 2ak(a)aab — 2bk(a)aca.
Since M is 2-torsion free, we have
@) d(aabaa) = aaaad(b) + (3aab — baa)ad(a)
+ ak(a)(2baa + aad) — bk(a)aaa.

(ii) Putting a + ¢ for a in (2), we obtain
d((a + c)aba(a + ¢)) = (a+ c)a(a + ¢)ad(b)
+ (3(a + c)ab — ba(a + ¢))ad(a + ¢)
+ (a+ ¢)k(a)(2ba(a + ¢) + (a + c)abd)
—bk(a)(a + c)a(a+ c).
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Here, the LHS = d(aabac+ cabaa)+d(aabaa)+d(cabac) = d(aabac+
cabaa) + aaaad(b) + 3aabad(a) — baaad(a) + 2ak(e)baa + ak(a)acd —
bk(a)aaa+ cacad(b) + 3cabad(c) — bacad(c) + 2ck(a)bac + ck(a)cab —
bk(a)cac;

and the RHS = aaaad(b) + aacad(b) + caaad(b) + cacad(b) +
3aabad(a)+3aabad(c)+3cabad(a)+3cabad(c)—baaad(a) —baaad(c)—
bacad(a)—bacad(c)+2ak(a)baa+2ak(a)bact2ck(a)baa+2ck(a)bac+
ak(a)aab+ ak(a)cab+ ck(a)aab + ck(a)cab — bk(a)aaa — bk(a)aac —
bk(a)caa — bk(a)cac.

Upon canceling the like terms from both sides, we get

d(aabac + cabaa) = (aac + caa)ad(b) + (3aab — baa)ad(c)
(3) + (3cab — bac)ad(a) + ak(a)(2bac + cab)
+ ck(a)(2baa + aab) — bk(a)(aac + caa).

(iii) Let A = d(aabaaab + aababaa). First, using (3), we obtain

A = d(aaba(aab) + (aab)abaa)
= (aaaab + aabaa)ad(b) + (3aab — baa)ad(aabd)
+ (3aabab — baaab)ad(a) + ak(a)(2baaab + aabab)
+ aabk(a)(2baa + aab) — bk(a)(acaadb + aabaa).

(4)

Again, using the definition of d and by (2), we also get

A = d((aadb)a(aad)) + d(aa(bab)aa)
= 2aabad(aab) + aabk(a)aab + acaad(bab)
+ (3aabab — babaa)ad(a) + ak(a)(2babaa + aabab)
— babk(a)aaa.

(5)

Equating these two expressions for A from (4) and (5), simplify the
obtained equation by canceling the like terms with the appropriate use
of the hypothesis aabk(a)c = ak(a)bac for every a,b,c € M and a € T
to obtain
(6)
(aab — baa)ad(aad) = aa(aab — baa)ad(b) + ba(aab — baa)ad(a)
+ ak(a)(aab — baa)ab + bk(a)(aab — baa)aa
— (aab — baa)aak(a)d.
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Replacing a + b for b (which keeps aab — baa unaltered), we have

(aab — baa)ad(aa(a + b)) = aa(aab — baa)ad(a + b)
+ (a + b)a(aadb — baa)ad(a)
+ ak(a)(aab — baa)a(a + b)
+ (a + b)k(a)(aad — baa)aa
— (aab — baa)aak(a)(a + b).

By using (6) and the hypothesis aabk(a)e = ak(a)bac for every
a,b,c € M and a € T, after simplification it becomes

2(aab — baa)aaad(a) = 2aa(aab — baa)ad(a)
+ 2ak(a)(aab — baa)aa — 2(aab — baa)aak(a)a.

But, since M is 2-torsion free, it follows that

(7)
(aab — baa)aaad(a) = aa(aadb — baa)ad(a) + ak(a)(aab — baa)aa

— (aab — baa)aak(a)a.

(iv) Replacing a + b for a (which keeps aab — baa unaltered) in (7),
we obtain

(aab — baa)a(a + b)ad(a + b) = (a + b)a(aab — baa)ad(a + b)
+ (a + b)k(a)(aab — baa)a(a + b)
— (aab — baa)a(a + b)k(a)(a + b).
Simplifying it by (7) using aabk(a)c = ak(a)bac for all a,b,c € M and
a € T and then canceling the like terms from both sides, we get
(aab — baa)aaad(b) + (aab — baa)abad(a)
= aa(aab — baa)ad(b) + ba(aab — baa)ad(a)
+ ak(a)(aab — baa)ab + bk(a)(aab — baa)aa
— (aab — baa)aak(a)b — (aab — baa)abk(a)a.

Hence, by using (6), it reduces to

(8) (aab — baa)a(d(aad) — aad(b) — bad(a) — bk(a)a) = 0.
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(v) Using Lemma 2.1, we have

(9)
d(aa(baa)+ (baa)aa) = 2aad(baa)+2baaad(a) +ak(a)baa+bk(a)aaa

and
(10)
d(aa(aad)+(aab)aa) = 2aad(aab)+2aabad(a)+ak(a)aab+ak(a)baa.

Taking (9)—(10), we get

(1) d(acaab — baaaa) = 2aad(aad — baa) + 2(aab — baa)ad(a)
+ ak(a)aadb — bk(a)aaa.

Replacing aca for a in (1), we obtain

d(acaad + baaaa)
= 2aaaad(b) + 4baaad(a) + 2bk(a)aca + ak(a)aad + bk(a)aca.

Thus, we get
(12)
d(acaab+ baaaa) = 2acaad(b) + 4baaad(a) + ak(a)aad + 3bk(a)aaa.

By (11) + (12), we have

2d(aaaab) = 2acaad(b) + 2(aab + baa)ad(a)
+ 2aad(aab — baa) + 2ak(a)aab + 2bk(a)aca.

Since M is 2-torsion free, we obtain

d(acaad) = acaad(b) + (aadb + baa)ad(a)

13
(13) + aad(aab — baa) + ak(a)aab + bk(a)aaa.

(vi) Taking (11)—(12), we get

2d(baacra)
= 2aaaad(b) + 2(3baa — aadb)ad(a) — 2aad(acb — baa) + 4bk(w)aaa.
Since M is 2-torsion free, we obtain

(14)
d(baaaa) = acaad(b)+(3baa—aab)ad(a)—aad(aab—baa)+2bk(a)aca.
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(vii) From (1), we have
d(aab) = —d(baa) + 2a0d(b) + 2bad(a) + ak(a)b + bk(a)a.
Substituting this into (8), we get
(15) (aab — baa)a(d(baa) — aad(b) — bad(a) — ak(a)b) = 0.
By (8)—(15), we obtain

(16) (acd — baa)a(d(aab — baa) + ak(a)b — bk(a)a) = 0.

(viii) We have

d((aab — baa)a(aab — baa)) = d(aa(baaabd) + (baaab)aa)
— d(aa(bab)aa) — d(ba(aaa)abd).

Using the definition of d and applying (1) and (2), we get

2(aab — baa)ad(aab — baa) + (aab — baa)k(a)(aab — baa)
= 2aad(baaab) 4+ 2baaabad(a) + ak(a)baaad + baaabk(a)a
— [acaad(bab) + (3aabab — babaa)ad(a)
+ ak(a)(2babaa + aabab) — babk(a)aaal
— [babad(aaa) + (3baaca — acacd)ad(b)
+ bk(a)(2acaad + baaaa) — acak(a)bab].

Simplifying it by using the definition of d, (16) and (2) with the
hypothesis aabk(a)c = ak(a)bac for every a,b,c € M and a € T,
we obtain

(17)
3(acaah — 2aabaa + baaaa)ad(b) + (babaa — 2baaab + aabab)ad(a)
+ak(a)(babaa—6baaab+3aababtbk(a)(3acaab—2aabaa+baaca) =0.

Hence, from (7), we have

(18) (acaadb — 2aabaa + baaca)ad(a) + ak(a)(aab — baa)aa
— (aab — baa)aak(a)a = 0.
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Replace a + b for a (which keeps aab — baa unaltered) in (18) to get

(aaaab + aabab + baaab + babab — 2aabaa — 2aabab — 2babaa
— 2babab + baaaa + baaab + babaa + babab)ald(a) + d(b)]
+ak(a)(aab—baa)aa+ak(a)(aab—baa)ab+bk(a)(aab—baa)aa
+bk(a)(aab — baa)ab — (aab-baa)aak(a)a—(aab—baa)aak(a)b
— (aab — baa)abk(a)a — (aab — baa)abk(a)b = 0.

It gives

[(acaab — 2aabaa + baaaa)ad(a) + ak(a)(aab — baa)aa

— (aab — baa)aak(a)a] — [(babaa — 2baaad + aabab)ad(b)

+ bk(a)(baa — aab)ab — (baa — aab)abk(a)b]

+ (—aabab + 2baaadb — babaa)ad(a)

+ (acaab — 2aabaa + baaaa)ad(b)

+ ak(a)(aabab — baaab) + bk(a)(aabaa — baaaa)

— (aabaak(a)b — baaaak(a)b) — (aababk(a)a — baaabk(a)a) = 0.

By (18), the first two terms in the third brackets vanish, and it remains

(acaadb — 2aabaa 4+ baaaa)ad(b) — (aabab — 2baaab + babaa)ad(a)
+ ak(a)(aabab — baaab) + bk(a)(aabaa — baaaa) — ak(a)baaad
+ bk(a)aaaab — ak(a)babaa + bk(a)aabaa = 0.

Hence, it follows that

(19)

(acaab — 2aabaa + baaaa)ad(b) — (babaa — 2baaadb + aabab)ad(a)
— ak(a)(babaa + 2baaadb — acbab)
+ bk(a)(acaad + 2aabaa — baaca) = 0.

Taking (17) + (19), we obtain

4(acaab — 2aabaa + baaaa)ad(b) + 4ak(a)(aabab — 2baaab)
+ 4bk(a)acaab = 0.
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Since M is 2-torsion free, we have
(20)
(acaab—2aabaa+baaaa)ad(b)+ ak(a)(aabab—2baaab)+bk(a)acaad
=0.
(ix) Finally, using (19) in (20), we get
(babaa—2baaab+aabab)ad(aHak(a)babaa+bk(a)(baaca—2aabaa)
=0.

The proof of the lemma is thus completed. ]

Theorem 2.1. Let M be a 2-torsion free completely prime T'-
ring, and let d be a nonzero Jordan left k-derivation of M such that
aabk(a)e = ak(a)bac for every a,b,c € M and o« € T'. Then M is
commutative, and accordingly, d is a left k-derivation of M.

Proof. From Lemma 2.2 (vii), for every a,b € M and o € T', we have
(aab — baa)a(d(aadb — baa) + ak(a)b — bk(a)a) = 0.
Since M is completely prime, we get
aab — baa =0 or d(aab — baa) + ak(a)b — bk(a)a = 0.

If aab — baa = 0, i.e., aab = baa for every a,b € M and « € I', then
M is commutative (by definition).

And, if d(aab — baa) + ak(a)b — bk(a)a = 0, then we have
d(aab — baa) = bk(a)a — ak(a)b;

which gives
d(aab) = d(baa) — ak(a)b + bk(a)a.

Replacing aab for b in the last equation, we obtain
d(acaad) = d(aabaa) — ak(a)aab + aabk(a)a.

Hence, by Lemma 2.2 (i),(v) and applying the hypothesis aabk(a)c =
ak(a)bac for every a,b,c € M and a € T, this yields

2(aab — baa)ad(a) + 2(aab — baa)k(a)a = 0.
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But, since M is 2-torsion free, we obtain
(aab — baa)ad(a) + (aab — baa)k(a)a = 0.
Putting aab for b here again, we have
aa(aab — baa)ad(a) + aa(aab — baa)k(a)a = 0.

Hence, by Lemma 2.2 (iii) using the hypothesis aabk(a)c = ak(a)bac
for every a,b,c € M and a € ', we get

(aab — baa)a(aad(a) + ak(a)a) =0 for all a,b € M and o € T.

Since M is completely prime, it follows that aab — baa = 0 or
aad(a)+ak(a)a =0 forall a,b € M and @ € I. If aad(a) +ak(a)a =0
for every a € M and o € T, then (2aad(a) + ak(a)a) — aad(a) = 0,
and therefore, it gives d(aaa) = aad(a), which is a contradiction to the
definition of d (since we assumed that d # 0). Hence, we conclude that
aab — baa = 0 for every a,b € M and o € I', and consequently, M is
commutative.

Accordingly, since M is commutative, from Lemma 2.1, we obtain
2d(aab) = 2aad(b) +2ak(a)b+ 2bad(a). But, since M is 2-torsion free,
we get d(aab) = aad(b) + ak(a)b+ bad(a) for all a,b € M and a € T,
which indicates that d is a left k-derivation of M. This completes the
proof of the theorem. i
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