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BOUNDEDNESS OF LITTLEWOOD-PALEY OPERATORS
IN GENERALIZED ORLICZ-CAMPANATO SPACES

SONGYAN ZHANG AND XIANGXING TAO

ABSTRACT. In this paper the Littlewood-Paley operators,
including the g-function g(f), Lusin area function S(f) and
Stein’s function g:(f), are all considered as the operators in

generalized Orlicz-Campanato spaces £2:9. It is proved that
the image of a function in £2'¢ under one of these operators
is either equal to infinity almost everywhere or is still in
L%, Our results extend and improve the boundedness of the
Littlewood-Paley operators in BMO spaces and Campanato
spaces.

1. Introduction and main results. Let R™ be the n-dimensional
Euclidean space, and let f be a locally integrable function in R™. Define
the Poisson integral u of f on the upper half space RT’I = {(z,1) :
x €r™t>0} by

u(z,t) = f(z2)P(z — z,t) dz,
R"

where P(z,t) = c,t(t?+]x|?)~ ("+1)/2 is the Poisson kernel. We consider
the Littlewood-Paley g-function g(f), Lusin area function S(f) and the
Stein’s function g3 (f) as follows:

sn@={ [~ t|Vu(x,t>2dt}1/2,

S(f)(x) = {/M) t1”|Vu(z,t)|2dzdt}1/2,
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¢ An 1/2
a(f)(z) = {/Rn-f-l <m> t17”|Vu(z,t)|2 dzdt} ,

respectively, where A > 2 and Vu = ((0u/0z1),...,(0u/0z,), (Ou/0t)),
and I'(z) = {(2,t) € R} : |z—z| < t} is the cone with vertex z € R".
It’s easy to see that

|Vu(z,t)| < cn/ Ld}:

re (E+ [z —a))m

The above Littlewood-Paley operators are important classical opera-
tors in harmonic analysis. In 1984, Wang [9] proved that, for a BMO
function f(z), the Littlewood-Paley g-function g(f) is either equal to
infinity almost everywhere or is still in the BMO spaces. Soon after,
such kind of results was generalized to Lusin’s area functions, Stein’s
g functions and so on; see [4], for example. Because of application
to partial differential equations, more interest is focused on the bound-
edness of Littlewood-Paley operators in Campanato-type spaces. In
[6, 7, 9, 11], and the references therein, the authors have shown
some boundedness of Littlewood-Paley operators in Lipschitz function
spaces Lip,(R™) and classical Campanato spaces LP**(R"™), respec-
tively. In this paper, we will establish boundedness in a generalized
Orlicz-Campanato space £L%#(R") for Littlewood-Paley operators; our
theorems will extend and improve the above earlier results such as in
4, 6, 9, 10, 11].

In order to state our results exactly, we first recall some related
notations and definitions about the Orlicz-Campanato space.

The N-function ®(s) is given by ®(s) = [ ¢(t) dt, s > 0, where ¢(t)
is a nondecreasing right continuous function defined on [0, +00) with
@(t) > 0 for t > 0 and ¢(0) = 0. The complementary N-function is
given by ¥(s) = [ p(t)dt, s > 0, where p(t) = sup{s : ¢(s) < t}. It’s
clear that an N-function is a convex function. The N-functions ® and
U are said to satisfy the Ay condition in (0, 00) if positive constants
C; and C5 exist such that for all s > 0,

®(2s) < C19(s), ¥(2s) < Cr¥(s).

We introduce another positive increasing function ¢ defined on
(0,+00) which satisfies the following doubling condition: there exists a
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constant 1 < D < 2" such that

(1.1) ¢(2r) < Do(r)

for any r > 0. It’s not difficult to see that there exists a constant C3
such that, for any 0 < ¢t < s < o0,

ZOP0

sn g

(1.2)

We say a weight function w € A,, the Muckenhoupt’s class, 1 < p <
00, if w is a positive function and there exists a constant C}, such that

{ﬁ/Bw(ac)dx}{ﬁ/Bw(x)1/(p1)dx}p1 <Gy

for any ball B C R"™; and we say w € A; if
! / (z) de < Cress inf w(z)
— | w(x)dz ess inf w(x
1Bl /s = en
for any ball B C R™. It’s clear that A,, C A, if 1 < p; < pz < oco. We
also remark that, if 0 < v < 1, M is the Hardy-Littlewood operator,

and f is a locally integral function, then (M f)Y € A;. For more
properties of A, weight, one can see [2].

Definition 1.1. Let ® be an N-function satisfying the A, condition,
and let w be a weight function in R™. Then the weighted Orlicz space
is defined as follows

L¢W)={f:/n¢ﬂﬂﬂbwwﬁm<um}

with the Luxemberg norm defined by

[ fllze @) = inf{)\ >0: /" @(@)w(w) dr < 1}.

Definition 1.2. Let ® be the N-function satisfying the As condition,
and let ¢ be a positive increasing function satisfying the doubling
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condition (1.1) with 1 < D < 2". We define the generalized Orlicz-
Campanato space as follows

LE2R") = {f € Lipe(R") = | fllgowe < 00},

where

1
fllees = sup =2 /B ORI

yeER™,
>0

and fg(y,r) = |B(y,r)|™! fB(y " f(z) dz is the integral mean of function

f over B(y,r), and B(y,r) always denotes the ball in R™ with center
y and radius r.

In particular, if one takes ®(t) = t* for 1 < p < oo, and ¢(r) = r®
for 0 < a < n, then £L®¢(R") becomes the classical Campanato space
LP(R™), which was introduced by Campanato [1].

Assume that T'f is one of the Littlewood-Paley operators g(f), S(f)
and g3} (f); our main results can be stated as follows.

Theorem 1.3. If an N-function ® and its complementary N -
function ¥ both satisfy the Ao condition, the positive increasing func-
tion ¢ satisfies the doubling condition (1.1) with 1 < D < 2", and if
f € LY?(R™), then either T(f)(z) = oo for almost every x € R™,
or T(f)(z) < oo for almost every x € R™. In latter case, more-
over, there exists a positive constant C independent of f such that
T(f) € L2?(R"), and

(1.3) 1T(f)llcee < Cllfllze.o.

Throughout this paper, the letter C' always denotes an absolute
positive constant and may have a different value in each line. If B is a
ball in R™, we denote by dB the ball with the same center and d times
radius as the ball B. The notation t ~ r means that c|t| < |r| < C|¢|
with some positive constants ¢ and C'.
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2. Some propositions. From now on, we always assume that the
N-function ® and its complementary N-function ¥ both satisfy the Ag
condition. We will use the following basic properties of the N-function
d.

Proposition 2.1 [2, 3]. Define the lower index g = limy_,o+
(log h(M)/(log ), and upper index ps = limy_, 4o (logh(N)/(log)),
where h(X\) = sup;~[®(At)/®(t)]. Then we have

1<gs < ps < oo.

Proposition 2.2 [5]. There exist constants ay and By such that

(2.1) 1<fBp <

< qap <0
holds for all s > 0.

Proposition 2.3. For any k > 1, we have

(2.2) kPod(s) < ®(ks) < k*d(s), for all s >0,

k/eod(y) < &7 (ku) < kYP0® " (u), for all u > 0.

Proof. From inequality (2.1), we can see for any ¢t > 0,

(t)
(t)
then by integrating the above inequality in ¢ from s to ks, we can get

the inequality (2.2). Let u = ®(s), i.e., s = ® !(u), and use k in place
of k% and kP° respectively. Then from (2.2) we can obtain

S

o~ | =

<

& | =

Bo < oo;

hd

B(kt/0s) < ku < ®(kYPos),

which implies that the inequality (2.3) obviously. O
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Proposition 2.4 [8]. Assume ® and its complementary N -function
U both satisfy the Ao condition, and let g be the lower index of ®.
Then w € Aqg,, if and only if there exists a constant C' such that

n

[ e <c [ el ds
for any f € L*(w).

Proposition 2.5. Assume f € L%%(R"), the N-function ® satisfies
the Ao condition, and that the positive increasing function ¢ satisfies
the doubling condition (1.1) with 1 < D < 2™. Let By be the ball
centered at xo with radius ro. Then, for any 6 > 0, we have

(2.4) /R - 7@) T80l g0 < 0ry =001 (g d(r)l|Fllcos)

n+é + |£l? _ xo‘n-‘r&

and for any t > (1/8)rg,

23) [ I de < O (0wl ).

n t"T0 4|z — g [P0

Proof. One could first write

/ j1-‘):(517)_]"Bo| +5d$:/ l{(m)_fBo‘ +5d£l,'
rnT0" 0 + |z — 20| B, TO" 0 + |z — 20|

+
ES 2) ~ I
T.On+5 + |£l? _ x0|n+5
2k30\2k7130

=: I]_ + Iz.

k=1

It’s not difficult to see from Jensen’s inequality and Proposition 2.3
that

I <o /B f(@) — fr,) de

<on o ton( g [ 1) - falas))

\Bo| J s,
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<on o (B o [ () - fouas )|

< Cro=°®~" (g "d(ro)[|f [l c2.0)

and

+
8

1

1S Y s g, 0~ Tl

IN
4 o=
) Il

1
@)t [/szo |f (@) = farp,| dx

+/ | for By — fBo|d4
2% By

IN
e

=: Jy + Jo.

Using condition (1.1) of ¢, Jensen’s inequality and Proposition 2.3
again, we obtain

+oo
J<Crg ) 27k [@1 o <1>< : |f (@) = for,| dw)]

— 25 Bo| Jar g,

< Cr™ § gH? [qu <¢(2k’°°)

k n
k=1 (2¥r0)

gy fo, 07 = fuen s )|

+o00 k P

S LR AT ]
k=1

< Cry 58 (1000 flene)

To estimate the term J, we observe that

(2.6)
k-1
| farBy — fBo| < Z | farri, — faim,|
i=0

k—1
1
< (I>_1|: - S (|f — fairr dy
; TB] Jyy, &~ Foreim)
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k—1 ;
_1 (27 )
< E :q> 1|2 9/,
T = { 2By

1
(2 Tr) /B RS = farvrm|) dy
k—

Z [D—Wnﬂm J

Noting 27" D < 1, we deduce from Proposition 2.3 that

&1 [D27"D)'ro "¢ (r0) || fll ¢ 4]
< DY (2 D)8 (1 (r)| f o)

Therefore, the last summation on the righthand side of inequality (2.6)
is bounded by C®~1(ro~"¢(ro)||f|| z2.¢). Thus, we can obtain that

+oo
J2 < Oro 3 278981 (Org g (o) £l 2.0

k=1
< Cro @t (rg "¢ (ro) | f | co0) -
Combining the estimates of I, J; and Jz, we have deduced the
inequality (2.4).

To prove (2.5), let E be the ball concentric with By and having radius
t. We first consider the case t > rg, and let £ > 0 be the integer which
satisfies 2%rg < t < 28+1r. We write

) — xT) —
[ el [ e -nl
Rnt +|CE_CL'0| Rnt +‘$—$0|

+ Ct|f5 — farpo| + Ct° | far g, — fBo|
= K1 + K2 + Kg.

From inequality (2.4) and property (1.2) of ¢, we can get
K1 <Ct7°@7 (7 (t)|| f]| co.s)
< Ct 2@ (Cary "(ro)| fll o)
< OO0 (1 6(r0) | co.0)
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Using similar arguments as for J; and J; above, respectively, we obtain

1
|28 Bo| /2,

ot Lo on( o [ 1) - felas) |
<ol (ef s [ aUr@) - feha) |
<0t s [0 (G2 1 es )|

k+17“ n
el [ (Cory "0 )]

<Ot 2@t (rg " d(ro)|| fll o6 )

and by (2.6),

K, <Ct™? |f(z) — feldx

<Ct?

K3 <Ct @ (rg"d(ro) || £l co.o) -

Now, combining the estimates of K7, K2 and K3, we have shown
inequality (2.5) for t > ro.

In the case (1/8)rg < t < ry, we have t ~ ry. It’s easy to see that
(2.7)

/ HOES AL / @) = Jelde 4 cyoi iy — g
R R

n tPH0 |z — | to n tH0 4 |x — | o

Using inequality (2.4), we can get that the integral on the righthand
side of above inequality is bounded by

Ot3@™ (T B(D)||f 2.0) = CE0 2™ (rg " d(r0) | fl| o0

and the last term on the righthand side of inequality (2.7) is equal to

Ct5<1>10<1><|%/E|f—fBde>

<crta (0% oo [ as — ful) o)

< Ct0@7 (rg " ()| fll 26 )
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where we have used the Jensen inequality and inequality (2.3). Hence,
we get (2.5) and finish the proof of the proposition. O

Proposition 2.6. Let By be a ball centered at xg with radius ro, and

fa(z) = (f(z) — fBO)XBS(:v), us(z,y) = (fs * Py)(x). If there is a point
z' € (1/2)By such that g(f3)(z') < oo, then there is a constant C' such
that for every x € (1/2)By, g(f3)(z) < co and

(2.8) o(|g(fs)(x) — g(fs)(@)]) < Crg"d(ro)llfll oo
Proof. For any fixed z € (1/2)By, we have

9(fs) (@) = { / °°t|Vu3<x,t>|2dt}l/2 < { s t|vu3<x,t)|2dt}

S 1/2
+{/ t|Vu3(:c,t)|2dt} =: H, + H,.

To

1/2

First we note that, for z,z9 € (1/2)By and y € B§, one has
|z — zo| < (r0/2) < |y — 20]/2, and so
1 1
(2.9) |y —al 2y —zol — |z —zof 2 Sly — 2ol 2 (ro + |y — o).
Thus by (2.9) and Proposition 2.5, we can get

H1§C{/0 t[/lgoc(t+y—x|)”+1dy dt
T0 |f(y)—f30| :|2 }1/2
= C{/O t[/Boc (ro + |y — zo|)nH! dy| dt
B “1x5-1(.—n 9 1/2
<of [Mlte ool ler)) arf

<07 (rg " (ro)ll fllco.e) -
On the other hand,

) 1/2
mg{/‘tWMfﬁFﬁ}

To

o 1/2
+{/tw%@@—quwwﬁ}

To

<g(fs)(@') + F,
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where

. 1/2
F= {/ tVug(x,t) — Vug(a',t)> dt}
To

[ e

2 1/2
_ VP~ b)|If(y) fBo|dy] dt} .

Since for z, 2’ € (1/2)By and y € By, it’s easy to see that |y — z| ~
ly — zo| ~ |y — 2’|. The mean value theorem implies

2.10 VP(z —y,t) - VP —y,t)| <C o .
210)  |VPe—ut) - VP 0] € Ot

Hence, by (2.10) and Proposition 2.5, we can deduce that

> rolf(y) =I5, } }”2
FSC{/M t[/B TR Gk

< Cro{ /oot (207 (rg "6 (ro) | fll co.0)] dt}l/2

To
<O (rg " (o)l fllce.e) -
Combining the estimates for Hy, Hy and F, we get

9(fs)(@) < g(f3)(2") + CB7" (rg "d(ro) [ fllcoo) -

This and condition g¢(f3)(z') < oo imply the inequality (2.8). The
proposition is proved. ]

Proposition 2.7. With the same notations of Proposition 2.6, if
there is a point ' € (1/4)By such that S(f3)(z') < oo, then there is a
constant C' such that for every x € (1/4)By, S(fs)(x) < oo and

(2.11) o(|S(fs)(x) — S(f3)(2")]) < Crg"d(ro) [ fllcx.e-

Proof. Fix # € (1/4)By. Set I'" (z) = {(2,t) € T'(z) : t < 7o} and
I'*(z) = {(z,t) € T(x) : t > ro}. Then we can write

S(f3)(z) < S™(fs)(x) + ST (f3)(),
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where

S™(fs)(@) = {/F(x) t1n|VU3(Zat)|2dZdt}l/2,

1/2
ST(f3)(z) = {/ tl_”VU3(z,t)|2dzdt} .
I+ (z)

For (z,t) e '~ (z), z,z0 € (1/2)By and y € By®, one can see that

-
[y — 2ol <y —2[+ |z —z[+ |z -z < |y—z|+t+w,
and so
1 1
(2.12) 4(7“0+ ly — zo]) < 5‘ y—xo| < (t+ |y — 2])-

Then by (2.12) and Proposition 2.5, we obtain

2 1/2
{ <t|£(; jfiL dy] d“”}

)
=t

“c { { () — I, dyrdzdt}”z
Uk

<C

Bo© (T‘o + |y - mo‘)n—i_l
) 1/2
tl " gt e (rg g (o) || fll coe)]” dz dt}
(7"0 ¢(ro) | fll ce. 4’)

To 1/2
T 1{/ tl_"</ dz> dt}
0 |z—x| <t

< Ce7 (rg™¢(ro)| fllco.0) -
On the other hand,

1/2
St(fs)(z) = { /ﬁ(o) " Vus(z + 2,t)|* dz dt}

1/2
< {/ t1”|VU3(x'+z,t)2dzdt}
r+(0)

1/2
+ {/ 7" | Vg (z + 2, t) —Vug(m'+z,t)|2dzdt}
I+ (0)

< S(fs)(@') + M,
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where

M? :/ t'" Vg (z + 2,t) — Vuz(z' + 2,t)|* dz dt
r+(0)

<[ o [ vreeou
r'+(0) Bo©
2
~ VP = ) - Sl do| da

Similarly, by the mean value theorem, we can get

IVP(x + 2z —y,t) — VP(z' + 2 — y,t)]
n+l 1/2
<Clz - m'|<2(t+ |t +2—y+0;(z— :v'))z("”))

j=1
for some constants 6;, 0 < 6; < 1. Since, for (z,t) € I'*(0),
z,2' € (1/4)Bp and y € By°, we have
ly—zo| <z +2z—y+0(x—2a") +]w— 20| + |2] + & — 2|

|Z/—ZU0| +t+|y—a:0|

<le+z—y+0j(z—2a) + 1 5

or
1
sy =zl +1) Sz +z—y+ 0@~ )+,

and so

To
2.13) |VP(z+z—y,t)— VP +2z—9y,t)| <C .
(213) [VP(e+2 - 300) — VP +2—0,t) < O

By (2.13) and Proposition 2.5, we obtain

_ 2 1/2
M < {/ t1n|:/ rolf(y) fB;JQ dy} dzdt}
'+ (0) Boe (t+ 1y — o)

9 1/2
SC{/ £ [rot 2@ (rg " (ro) 11| co.0)] dzdt}
r+(0)

+o0 1/2
<o (gt lews) ol [T ([ ae)arf

< CO (r5(ro) || fll co0) -
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Now, combining the estimates for S*(f3)(z), S~ (f3)(z) and M, we
then have

S(fs)(@) < S(f3) (@) + CO7" (rg "p(ro)l| fll co0) ,
which implies the inequality (2.11) because of S(f3)(z') < oco. The

proof of the proposition is finished. a

Proposition 2.8. With the same notations as Proposition 2.6, if
there is a point &' € (1/4)By such that gx(f3)(x') < oo, then there is a
constant C' such that for every x € (1/4)By, g3(f3)(x) < 0o and

(2.14) @(lga(f3)(z) — gA(f3)(2")

) < Crg " (o)l fl .-

Proof. Recalling By = B(zo,79), for any fixed « € (1/4) By, we write

. 0 ¢ An . ) 1/2
9 (f3)(z) < ; . m t " Vus(z,t)|* dzdt
IS t An 1/2
+ {/ / <m> tl_"VU3(z,t)|2dzdt}
0 n

=G (f3)(z) + G (f3)(z).

We will estimate the two terms G~ (f3)(z) and G*(f3)(z), re-
spectively. First, using the integral representation of Vuz and the
Minkowski inequality, we have

~(fs)(=)

An
=¢ / (t+|z—x|>
YO R
s [/R Gty )t dy} dztn—l}
1 t)\n 1/2
C{/ </ [/R o ) (= 2™ dz]

2 1/2
) o}
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Next, we denote the inner integral on the righthand side of the
inequality above by

:U7 b -
Y pe 4y — 2272 (E+ |z —a))

and note that, for z € (1/4)By and y € B§,

v dz,

3 1
(215) |z~ y| > |y —wo| [z = wo| = {ly = wol = Iy = ol +70).
(a1) I |2 — 2] > (1/2)}z — , then ¢ + |z — 2| > (1/8)([y — wo| + 7o)

and \
ctm / dz
ECE, ,t) <
@00 < G Ty = 2D Jrn O Ty = 272

Ct)\nfn72
= (o + [y — mo|)*
Thus, by Proposition 2.5, we have

sl [ ([, [l
| f3(y)] dy> :slfl }1/2

o 1/2
< C/ |f3(y)|dy - {/ t)\n72n71 dt}
re (o + |y —zo))*/2 | /o

<o~ (rg o(ro)lIfI27)

where we have used the assumption that A > 2.
(a2) If |z — z| < (1/2)|z — y|, then

1 1
y—zl 2y —al |z 2| 2 Slz —yl 2 Sy — zof +70),

and so
ct'\™ dz
E(z,y,t) <
(@:y,1) (ro + |y — zol)?n+2 /n (t+ |z — 2])An
ctr

< .
= (ro + |y — wo|)?+2
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This and Proposition 2.5 imply that

) fs(®)ldy "l
G (f3)(z) < C/l;n (r0+y—.’co|)"+1{/0 tdt}
<C@ ! (rg ™ (ro)| fll covo) -

Thus, in any case, we obtain that

(2.16) G (f3)(z) < CO* (15" d(ro)|1 £ 2o.0)

with the constant C' independent of z € (1/4) By and 7y.
To estimate G (f3)(z), we observe that

2-{/, /nwwz+w”‘@+u> i)

< GH(fs)(

+{/TO /H\Vug(z—i-a:,t)

— Vusz(z +2',t)|?
— GH(f)) +

t)\n dt 1/2
d
@+kV"zﬂ1}

As for N, by the integral representation of Vugz, we have
|V’U,3(Z + xat) - V’U,?,(Z + xlvt)‘
< / 1 1
T re [ty —z -t |y — 2 -2
Since t+|y—z—2x| ~ t+|y—2z—2'|, whenever |z —2'| < (ro/4) < (t/4),
we get from the mean value theorem that

|f3(y)| dy.

Vu \v4 ‘J3(y)|dy
z+x,t U Z+:l:’ t) <Cr .
| 3( ) ) 3( ) )‘ = C 0/ (t | |)n+2
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This implies
(2.17)

Nz<c,~//
<ei [ ([,

2 An
t dt
dz
R e
1/2

|f3(y)|dy

Rr 15+|@/—Z—f'3\)”+2
tA"dz

R" (t+ 1y — 2 — [Pt + [2)M

2
Valdy) s

by Minkowski’s inequality. To estimate the inner integral on the
righthand side of the last inequality above, we need to consider the
following two cases:

(bl) If |z| > (1/2)|y — z|, then we have |z| > (1/8)(ro + |y — zo|) by
inequality (2.15); and so, if we take 0 < ¢ < min{1, (A — 2)n/2)}, then

/ tr\ndz
re (4 |y — 2 —z])2H(t+ [2])

< Cct'\" / dz
>~ t)‘”*2”*25(r0 + |y _ x0|)2n+2€ R (t + |y - x|)2n+4
Ct’n+2674

= (o + Iy — @)%

Moreover, by (2.17) and Proposition 2.5, we deduce that

(2.18)
gn2e—4 1/2 2 1/2
Ry e}

N <
_CTO{/TO (/n (o + |y — zol)?nt2e

o / Fa(y)ldy { /°°t2€,3 dt}”z
- re (ro + [y —zo|)" < L /s,

< Co" (ry"a(ro)If27)

(b2) If |2] < (1/2)]y — |, then we have |y —z — x| > |y — x| — |2| >
(1/2)|y — z| > (1/8)(ro + |y — xo|) by the inequality (2.15); and so, if
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we let 0 < € < 1, then we have

/ tr\ndz
re (E+ |y — 2 — z])2F4(t + |2])An

< C / tA"dz
Tt (ro + [y — o )22 Jra (E+]2])A7
Ctn+25—4

= oy — w7

This also implies the estimate (2.18) for N.
Now we have deduced that, in any case,
(2.19) G*(f3)(z) < GT(fs)(@') + C2 " (rg"¢(ro)l|fll )
with the constant C' independent of z, 2’ € (1/4)By and ry.
From estimates (2.16) and (2.19), we obtain that, for « € (1/4)B,,
gA(fs)(@) < GF(f)(2') + C@ (g "d(ro)l|fll c2.0)
< gA(fs)(@') + C@7* (rg " (ro) | fll o) ,

which yields g% (f3)(z) < oo for any x € (1/4)Bg and f € L®?, by the
assumption that g3(fs)(z') < oo.

(2.20)

Further, since g3 (f3)(z) < 0o, we can repeat the above procedure to
get that, for z,2' € (1/4)B,,

(2.21) gA(fs)(@') < gX(f3)(z) + C27 (1" d(ro) | fll cos) -

Combining inequalities (2.20) and (2.21), we obtain the desired inequal-
ity (2.14). This completes the proof of the proposition. O

3. The proof of Theorem 1.3. Let f € L£®? and T(f)(x)
denote one of the three Littlewood-Paley functions g(f)(x), S(f)(z)
and g3(f)(x). Suppose |(1/4)BoN{z € R" : T(f)(z) < co}| > 0 for a
ball By = B(z,ro) in R™ with radius r¢ large enough. We decompose
the function f(z) as follows

f(@) = fBy + (£(x) = FBo)XBo () + (f(2) — By )X By (2)

(3.1) = filz) + fo(z) + f3(x).
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Obviously, T(f1)(z) = 0 for any x € R™ Let 0 < v < 1
and X(z) = Xp,(x) be the characteristic function of By; we note
that (Mx(z))” < 1 and (MX(z))” € A; C Ay, since gz > 1 by
Proposition 2.1. Hence by Proposition 2.4 and (1.2), we can get that

/ ST (f)(x))) der = / (T (f2)(«)]) (U(x))? de
By n

(3.2) SO o(|T(fo)(@)[)(Mx(x))” dz

< [ a(lfa))MX(@)" de
< C(ro)|flles.s < oo

This follows T'(f2)(z) < oo, almost everywhere = € By.
Noting T(f3)(z) < T(f2)(x) + T(f)(z), and so

EBO N{z € R": T(f3)(x) < oo}| > 0,

we can take ' € (1/4)Bp such that T(f3)(z') < oo. Then by
Proposition 2.6, Proposition 2.7 and Proposition 2.8, we know

(33)  T(fs)(z) < T(fs)(@") + C~" (g "p(ro)[| f]l ca.0) < 00,

for any = € (1/4)Bg. Also since T(f)(z) < T(f2)(z) + T(f3)(z), we
have T'(f)(z) < oo for almost every z € (1/4)By. Moreover, by the
arbitrariness of the radius of By = B(x¢, ), we get that T'(f3)(z) < co
and T'(f)(z) < oo for almost everywhere z € R".

Now we take any ball B = B, in R"™ with radius r. Then we can
choose a point =’ € (1/4)B = B(14), such that T'(f3)(z') < co. Again
decompose the function f(z) into three parts,

f(z) = fp+ (f(z) — fB)XB(2) + (f(x) — fB)XB:(T)

(3.4) = fi(x) + fa(x) + f3(2).
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Applying Proposition 2.6, Proposition 2.7 and Proposition 2.8, and
inequality (3.2) with 7o = r, we then obtain that

/B S(T(f)(x) — T(f5)(")]) de
< / S(|T(fo) ()| + |T(fs)(x) — T(fs)(")]) da
B

SC/B‘1’(|T(f2)($)|)d$+C/B‘I’(\T(fa)(x)*T(fa)(xl)Ddx
< Co(r)l[flles-

This yields inequality (1.3). The proof of Theorem 1.3 is complete.

Acknowledgments. The authors would like to express their thanks
to the referee for his/her very careful reading and valuable comments.

REFERENCES

1. S. Campanato, Proprietd di hélderianitd di alcune di funzioni, Ann. Scuola
Norm. Sup. Pisa 17 (1963), 175-188.

2. R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy
mazimal function, Studia Math. 71 (1982), 277-284.

3. V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz
spaces, World Scientific, Singapore, 1991.

4. D.S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99
(1987), 657-666.

5. Qihong Lu and Xiangxing Tao, Characterization of mazimal operators in

Orlicz-Morrey spaces of homogeneous type, Appl. Math. J. Chinese Univ. 21 (2006),
52-58.

6. Shanzhen Lu, Changmei Tan and Kozo Yabuta, Littlewood-Paley operators on
the generalized Lipschitz spaces, Georgian Math. J. 3 (1996), 69-80.

7. Yongzhong Sun, On the existence and boundedness of square function operators
on Campanato spaces, Nagoya Math. J. 173 (2004), 139-151.

8. Changmei Tan, The Littlewood-Paley operators on Orlicz spaces with weights,
Math. Acta Sci. 24 (2004), 81-87.

9. Shilin Wang, Boundedness of the Littlewood-Paley g-functions on Lips(R™)
(0 < a < 1), Illinois Math. J. 33 (1989), 531-541.

10. Silei Wang, Some properties of g-functions, Sci. China 10 (1984), 890-899.

11. K. Yabuta, Boundedness of Littlewood-Paley operators, Math. Japonica 43
(1996), 143-150.



BOUNDEDNESS OF LITTLEWOOD-PALEY OPERATORS 1375

ScHOOL OF ECONOMICS AND MANAGEMENT, ZHEJIANG UNIVERSITY OF SCIENCE
AND TECHNOLOGY, HAaNGZHOU, 310023, P.R. CHINA
Email address: syzh201@163.com

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, ZHEJIANG UNIVERSITY OF
SCIENCE AND TECHNOLOGY, HANGzHOU, 310023, P.R. CHINA
Email address: xxtao@hotmail.com




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


