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ON THE KANTOROVICH THEOREM
AND THE REGULARIZATION OF
TOTAL VARIATION DENOISING PROBLEMS

L.A. MELARA AND A.J. KEARSLEY

ABSTRACT. Total variation methods are an optimization-
based approach for solving image restoration problems. The
mathematical formulation results in an equality constrained
optimization problem, a solution which can be obtained using
Newton’s method. This note is motivated by the numerical
results of an augmented Lagrangian homotopy method for
the regularization of total variation problems. The numerical
technique uses the regularization parameter as a homotopy
parameter which is reduced. As a result, a sequence of equality
constrained optimization problems is solved using Newton’s
method. In this report, the convergence of an augmented
Lagrangian homotopy method for total variation minimization
is addressed. We present a relationship between the homotopy
parameter and the radius of the Kantorovich ball.

1. Introduction. An image comes from a continuous setting, [2].
Various devices can be used to capture the image, for example, a digital
camera. To construct a digital image, a mesh is superimposed on the
photograph and each box is assigned a number representing the average
intensity of the brightness in the box. Each box is called a pixel. In
image processing, restoring an image is a fundamental task. Roughly
speaking, restoration methods can be separated into three categories:
statistical methods, transform-based methods and optimization-based
methods, [11]. In this report, we focus on optimization-based methods,
in particular, total variation methods, first introduced in [15, 16].

We begin with a brief mathematical formulation of the equality
constrained optimization problem. Let x = (z,y) € , where Q is
a convex, polygonal bounded region of R?, and consider u :  — R
where values of the function u = u(x) represent the intensities of a
given image. A common assumption is that the corruption of an image
results from the following operations
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where the action of the linear operator K on the true image u* (a
blur, for instance) and the perturbation by random noise 7 result in
the observed image ug. The operator K : LP(Q)) — L?(Q) is linear and
continuous, [3-5, 7, 17].

In total variation methods, the true image u* is a solution to the
equality constrained optimization problem

(1) mum/Q |Vu|dx such that 1/2 (||Ku — “0||2LZ(Q) _ 02> =0,

where

/|Vu\dx:/ J(0u]0)E + (9u)dy)? dx,
Q Q

and the standard deviation o is given by

) o= (/Q u* —u0|2dx>1/2,

and ¢ > 0. The objective function and the equality constraint con-
tribute differently to the image restoration process. The total variation
term is the objective function, and this term is important since it pre-
serves the sharp edges of an image. The sharp edges are due to drastic
changes in color in an image, for example from black to white. The
equality constraint is included to ensure that the solution to (1) does
match the true image since o contains information about the noise
added to v*. In [1, 8, 18], the authors addressed the case when o is
unknown.

The work in [5] established a link between the constrained optimiza-
tion problem (1) and the unconstrained problem:

A
Minimize/find a critical point of / |Vu| dx + §||Ku - u0||2LQ(Q),
Q

where the Lagrange multiplier A is assumed to be nonnegative. The
authors also described a relaxation method for computing a solution
and provided a convergence proof.

Solving the constrained optimization problem is difficult due to the
evaluation of the unbounded differential operator R where Ru = |Vu],
[3-5, 7, 17]. Much work has been done in [3-5, 7, 8, 17] addressing
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the appropriate space of functions containing the solution w*. This
space is the bounded variation space BV (2), see [1, 3-5, 7, 8, 17,
18] for more details.

In [17], the author proved the existence and convergence of a solu-
tion for the denoising-deblurring variation problem using lower semi-
continuity results for convex functionals of measures. In her work, she
presented numerical results obtained using a finite difference implemen-
tation. The report in [3] considered the reconstruction model proposed
by Geman and Geman. In their work, the Fenchel-Legendre transform
is used to reduce the energy model to a sequence of quadratic min-
imization problems. The authors of [1] considered the optimization
problem

3 in || Ku— ug|? Vu|? 4+ e2d
(3) min |Ku =l + 6 [ VIVl ax

where the term [, \/|Vu|? 4 €2 dx is a regularization term and § is a
penalty parameter. This approach is known in the inverse problems
community as Tikhonov regularization, [1]. Their work focused on an
analysis of bounded variation methods for the operators Ku = ug; for
example, they analyzed convexity, semi-continuity and compactness of
the regularization term as well as the well-posedness of unconstrained
minimization problems, [1]. The work assumes that u* € BV (Q).
Vogel and Oman in [18] considered the problem

1
(4) min )§||u—u0||2Lz(Q) +B/ VIVul? + €2 dx,
Q

uwEL2(Q

where K = I and I is the identity. The authors presented a fixed point
algorithm which is a variant of a cell-centered finite difference multi-grid
method of Ewing and Shen, [18]. Whereas in [7], Dobson and Scherzer
also addressed the choice of appropriate space for a solution u* to (4)
for an unbounded, densely defined linear ‘differentiation’ operator:

R:D(L) C HY(Q) C L*(Q) — (L3(Q))?, u — Vu.

Since Ru = |Vu| is unbounded for u* ¢ BV (£2), the approach in [7]
‘stabilized’ the differentiation operator by approximating Ru with

R(I +yR*R)'u,
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where « is the regularization parameter and R* is the adjoint of R.
This stabilization permits the existence of a solution v* in the Hilbert
space L%(), [7]. The term Ru can also be stabilized by approximating
with finite difference quotients, finite element methods, etc., see [7].
We assume K = I. Although the solutions of the problems (5) and (6)
live in the BV (2) space, we work with H'(£2) solutions. We use finite
element methods to approximate the operator Ru, thus ‘stabilizing’
the evaluation of Ru, [7]. The computational technique presented in
[13] is associated with this work and P; finite element methods were
implemented to approximate Ru. In our formulation we seek an optimal
solution u* € H'(Q) for the optimization problem (1), [7, 13].

In [13], the authors consider the regularized equality constrained
optimization problem

(5) min / VIVu|? +e2dx
uEHl(Q) Q
such that 1/2 (||u — uOHiZ(Q) _ 02> =0,

where € > 0 is the regularization parameter. The Lagrangian functional
corresponding to the regularized optimization problem (5) is

©) N = [ VP2 (fu - ol o).

where A € R is the Lagrange multiplier associated to the equality
constraint. The directional derivative of (6) in direction ¢ € H'(Q) is

Vu-Vq
a v/ |Vul]? + &2

The objective function in (1) is regularized in (5) to desingularize the
gradient of the Lagrangian with respect to u. From (7) we obtain the
L? —representation of the gradient, given by:

(7) (u,\) g = + Mu — ug)g dx.

Vu

(8) Ms(u,)\):V-( >+)\(uu0), x €Q,

where 5
%% _0, xeT, with T =89,
on
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is required to ensure a convenient computation of the gradient. En-
forcing the homogeneous Neumann boundary condition is a commonly
employed practice. The homogeneous Neumann boundary condition
comes from the implicit boundary condition,

Ven o xer

VAV

Note the first term of M. (u, ) in (8) is well-defined for a constant
function w.

Newton’s method is used to compute roots u* € H'(Q) of (8) for
fixed A, [13]. This requires the Hessian of the Lagrangian (6):

d
S+ tg,0), 0) leso

Vg > ( (Vu-Vq)Vu >
= v-<— + V- (TR ) g qx,
/Q VIVul? + 2 ( |Vu|2+52)3
= <AQ:Q>L2(Q)-

The use of the Kantorovich Theorem in conjunction with Newton’s
method for nonlinear operator equations has been studied by Tapia
in [9, 10, 12]. Therefore, using Newton’s method in [13] led us to
the Kantorovich theorem. The numerical technique implemented in
[13] indicates that, by constructing a homotopy on the regularization
parameter ¢, Newton’s method generates more desirable solutions to
(1). The Kantorovich theorem establishes criteria for an initial iterate
of Newton’s method so the iterative procedure attains convergence.
We present a relationship between the regularization parameter ¢ and
the radius of the Kantorovich ball. This paper seeks to shed light on
the results obtained in [13] by addressing the role of the Kantorovich
theorem in the homotopy technique. The paper is organized as follows.
In the next section we show the Kantorovich constants depend on the
homotopy parameter €. The last section states our conclusions.

2. Convergence results. We denote the directional derivative of
. (u, \) in direction ¢ € H(Q) by
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Le(u) = t(u, ) g,
where L. : H1(Q2) — R.
Similarly, the second directional derivative of . (u, \) in the direction
q € H'(Q) is denoted by
Je(u) = (Aq, @) r2(0) = (¢, A9) L2(0)>

where A is symmetric and J. : H*(Q2) — R. Both operators L. and J.
are clearly bounded operators with operator norms,

| Le (u)] |Je(w)]
LIl = sup 7—=—— and ||| J. || = sup 75—
g0 |all (o) q#0 ||q||H1(Q)
The application of Newton’s method to our discrete equations can be
written, forn =1,2,...,
w1l — 4 (m) Js(u(”))*l Ls(u(”)),

where J.(u) ™! is the inverse operator of J.(u). We present the following
propositions which establish properties of the Jacobian J.(u). For the
numerical implementation of this iterative procedure, see [13]. These
properties prove the required assumptions for the Kantorovich theorem,
presented at the end of this section.

Proposition 1. Given m,p € H'(Q), the following inequality holds
(9) [ Je(m) = Je )l < ca(e)llm — pllar(a),
with
(10) ci(e)

1 1 1
= 6 .
X0 { Vml? + 2’ [([Vp2 + 22)(IVmP? + €2)] 172" [Vp|? +62}

Proof. Consider the difference of the bilinear forms for any ¢ € H*(f2),
1 1
Jstsp:/Vq-Vq( — >dx
m) - Je) = | (V0 Vo) s - ey
+/ ((Vp-Vq)(Vp-VQ)> _ <(Vm-Vq)(Vm-Vq)> dx
o\ (VIVoP+ e (VIVmP+ e
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We take the absolute value of both sides and apply the Cauchy-
Schwarz and triangle inequalities to obtain

|Je(m) — Je(p)]

dx

1 1
( (IVmP? +e2)12 — (|VpP? +52)1/2>

2 |Vl |Vm|

—Vpld

+/Q|Vg| <(|Vp|2+62)3/2+(|Vm|2+s2)3/2 [Vm = Vp|dx
Vm — Vp|

< v 2 | d

—/ v ((Vm|2+52>1/2<|Vp|2+52>1/2> *

Vm|

Vq|? P | Vm — Vp|d

+ [ v (|vp|2+ez>3/2+<|Vm|2+62>3/2>' m - Vpldx
1

Vq|”|Vm||V -
A e e e

< /Q V2 |Vim — Vo

dx

1 1
X <|Vp|2 T o2 T (VPR + )RV + 212

f—— s ) ax
Vmp? 1 &2
+ [ 194V v
Q

1 1
(IVpl+e)1/2 (IVm] +e2)1/?

1
X e —
<Vp2 +e?

1 1
d
T VBP + ) (VP + 22 T [Vmp +a-2) *
S/ [Vq|?|Vm — Vp|x
Q

1 1 1
2 d
(o= Qoo e o * )
< c1(e)IValZa o [IVm = V| L2 (o)
< a1(e)IVallelVm — Vol 2
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< 01(5)”@1”%{1(9)”7’1 —plla (),

where ¢ (¢) is as in (10). This establishes inequality (9). O

Proposition 2. Let u € H'(Q). If the Jacobian J.(u) is symmetric
positive definite, then it has a bounded inverse with bound

(11) 17 () 7| < e2(e) = (min {2, A}) ™"

where

7 = mi

Proof. For any m € H'(Q2), we have that

Js(u)z/ﬂ<((vm'vu)2 . (Ym-Vm) +)\m2>dx.

VIVUE+e2)3 | /[Val? + e

Taking absolute values and applying the Cauchy-Schwarz inequality,
we have

uw)| > ‘/ 2|Vm|2 + dm? dx
VIVu? +e2)3

g2 }/ 9
> m _— Vm dx—i—)\/m dx.
xGQ{(VVuP—i—EZ [Vmi

Letting
. e }
U=min{ ——————— o,
{(\/w e

|Je ()| > [m]| 71 () min {7, A}

we have

Therefore, we obtain that
— . __ —1
T (w) 7 < lm| 3 gy (min {o,A})

for all m € H'(Q). This establishes (11) with constant c(¢). u]
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Let (9 be an initial iterate for Newton’s method. Denote the p-ball
of radius 7 centered at the point u(®) by B, (u(?,r) = {u: [|u—u®||, <
r}. Recall the following theorem, see for example Dennis and Schnabel
in [6].

Theorem 3 (Kantorovich). Consider a function, L. : R™ — R" that
is defined on a conver set C' C R™. Let the Jacobian operator of L.
be J. and further assume that J. is a Lipschitz function with Lipschitz
constant ap,. Assume that u(® is some starting point selected from C
and that the following are all satisfied for some u(®) € C,

1. ||IJe(u) — Je(0)||| < apl|lu — v||, for all u,v € C,
2. 17 () M| <

3. (1 (u©@) T Le ()] < .

If

d=arpajas <1/2,

and if B,(u®),r) C C with

(12) r=az(l—1-26)/6,

then the Newtonian sequence {u(™} given by

(13) w(P D) — () _ Ja(u(n))—lLs(u(”)),

is well defined, remains in the ball Bp(u(o),r), and converges to the
unique solution of L.(u*) = 0 inside By(u®,r).

The Kantorovich theorem establishes criteria on the initial iterate
u®) of Newton’s method for the iterative method to attain conver-
gence. The statement of the Kantorovich theorem does not assume the
existence of u* € H'(Q) nor the nonsingularity of J.(u*), [6]. However,
since Ru is approximated using finite element methods, we can assume
that a solution u* € H() of (5) exists.

Therefore, condition 3 holds because ||| L.||| and |||J- ||| are bounded.
Then, the sequence {u(™} generated by Newton’s method in (13), is
well defined, converges to u* and obeys

n+1)

[ul™ — | g1 () < Claw, an)[u™ = w* || q),
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where C(ar,a;) > 0, ar is the Lipschitz constant presented in The-
orem 3 and |||Jo(u*)"Y|| < a1/2, [6]. The latter inequality can be
obtained via induction in the proof of local convergence for Newton’s
method, see [6]. From Propositions 1 and 2, we see that the constants
ar, and oy are dependent upon €. Thus, the radius r of the Kantorovich
ball given in (12) depends upon the regularization parameter €, hence
we have r = r(¢). We note that ar = c¢i(¢) and ag = c2(e). By
Theorem 3, we have § = arajas < 1/2; hence,
az(1 — /1 = 26) 1 1

(14) 0<r(e) = 4 = arer  ci(e)ea(e)

From (10) and (11) we have

C1 (E)

1 1 1
=6
xch { Vm[2 + &2 [([Vp|? + e2)([Vm]? + 2)]1/2 [Vp|® + &2 }

and

ca(e) = (min {7, A}) ",
respectively. The term v was given in Proposition 1. We take the limit
as € — 0 in (14) and obtain

Jim, 7 =0,

since [c1(¢)] 7! > 0 has a constant limit as ¢ — 0. Furthermore, from
condition 2, we assume that |Vu(?)| # 0 since u(?) is the observed noisy
image. Therefore, for [ca(¢)]™! > 0, we take the minimum between
and ) for each value of €. For sufficiently small values of €, the minimum
between ¥ and \ will be 7. So, as € — 0 = [ca(e)] ™1 — 0.

The Kantorovich theorem is presented in a discrete setting. The
results presented in Propositions 1 and 2 do hold in a discrete setting
as well. Let

N(Q)
Q=] Q
k=1

where N(Q) is the total number of partitions in Q with the partitions
having the form

Qr = ((¢t = Dh,ih) x ((7 = 1h, jh),
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for k=1,2,...,N(Q) with appropriate values of i and j; and h = 1/N
is the mesh size for IV partitions along both coordinate axes. Then, the
approximation for the partial derivatives of Vu is

Ou/0x = (w(wit1,y;) — w(zi-1,9;))/(2h) and
Ou/0y = (u(zi, yj+1) — w(zi,yj-1))/(2h),

where u(z;,y;) are function values at the nodes (x;, y;) with ; = ¢h and
y; = jh. Using this approximation we define the following equivalence
between the Hilbert space norm || - |2(¢,) of Vu and the vector norm
| - |l2 of Vu

IVullz2 (@i = AlIVulls-

Similarly, using a midpoint quadrature rule yields

[ull z2(@u) = Pllull2-

Combining these approximations for functions u and v and the Cauchy-
Schwarz inequality yields

N(Q)

/Vu-Vvdx: Z/ Vu-Voudx
Q2 k=1 Y@k

NQ)
=h> > [Vu- Vg,

k=1

N(Q)
<k Y [IVull2|Volls]g, -

k=1

These techniques can be used to modify the proofs of Propositions 1
and 2 for a discrete setting.

3. Conclusion. In [13], the augmented Lagrangian was constructed
to numerically approximate a minimizer of the optimization problem
(5). Throughout this presentation, we have focused on the Lagrangian
associated to the optimization problem (5). The minimizer of the
augmented Lagrangian is also the solution to (5) for the well-chosen
penalty parameter, [14]. In [14] it is shown that the Hessian of the
objective function is positive definite in the nullspace of the gradient
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of the equality constraint. This requirement is often referred to as the
sufficiency condition. Therefore, the numerical solutions computed in
[13] are also saddle points of the Lagrangian presented here. Taken
together this suggests that the radius of the Kantorovich ball increases
as € increases.
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