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LIMIT CYCLES FOR A CLASS
OF THIRD-ORDER DIFFERENTIAL EQUATIONS

JAUME LLIBRE, JIANG YU AND XIANG ZHANG

ABSTRACT. In this paper we study the limit cycles of
the third-order differential equation = — u% + & — pr =
eF(z,&,%,t), where pu # 0, € is small enough and F € C2
is a 2m-periodic function of variable t.

1. Introduction and statement of the main results. One of
the main problems in the theory of differential equations is the study of
their periodic orbits, their existence, their number and their stability.
As usual, a limit cycle of a differential equation is a periodic orbit
isolated in the set of all periodic orbits of the differential equation.

In this paper we study the limit cycles of the following class of third-
order ordinary differential equations

(1) T — pi + i — pr = eF(z, i, #,t),

where p # 0, and the dot means derivative with respect to the variable
t, € is small enough and F € C? is a 2m-periodic function of variable t.
Here the variables = and ¢, and the parameters p and € are real.

There are many papers studying periodic orbits of third-order differ-
ential equations. Thus, our class of equations is not far from the ones
studied in [3, 13]. But our main tool for studying the periodic orbits of
equation (1) is completely different from the tools of the aforementioned
papers. We shall use the averaging theory, more precisely Theorem 5
of the Appendix. Many of the papers dealing with periodic orbits of
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third-order differential equations use Schauder’s or Leray-Schauder’s
fixed point theorem, see for instance [5, 8, 9], or the nonlocal reduc-
tion method, see [2] and others [6].

In order to state our main result, we need some preliminaries. We
define

fl(X07Yb)
_ /Q"Sw pX(W) () X0+ pY() pXO YO ),
o Ltp> 7 I 7 142 )
f2(Xo,Yo)
:/%COStF<#X(t)—Y(t) X)) +pY () —pX(t)+Y() t) &t
0 1+,U,2 ’ 1+,U,2 ’ 1+M2 ’ )
where

(2) X(t) = Xgcost — Yysint, Y (t) =Yycost+ Xpsint.
Our main result is the following.

Theorem 1. If there exists an (Xo,Yy) € R? such that f1(Xo,Yo) =
f2(Xo,Yo) = 0 and det (9(f1, f2)/9(Xo, Yo)) # 0, then for e € [—€o, 0]
with €9 > 0 sufficiently small there is a 2m-periodic solution z(t,e) of
the third-order differential equation (1) such that

Xo—Yy —Xo—uYy —uX Y.
(2(0,¢), (0, ), (0, ¢)) — (20— Y0 ZT0 MY Zpd0+ 1o
14 p? 14 p? 14 p?

as € = 0. Moreover, for e € [—eg,¢c0] \ {0}, the 2m-periodic solution
z(t,e) is a limit cycle.

Theorem 1 will be proved in Section 2.

The linear differential equation of third-order T — pZz + & — px =
0 provides a linear system in R3 having a two-dimensional center.
Theorem 1 reduces the study of limit cycles of the differential equation
of third-order (1) bifurcating from the periodic orbits of that center
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to find the nondegenerate zeros of the system of two equations and
two unknowns given by fi(Xo,Yy) = f2(Xo,Yy) = 0. The zeros are
nondegenerate in the sense that the Jacobian of the system on them
must be nonzero. In general, the problem of finding the zeros of two
nonlinear equations with two unknowns is not easy, but of course is
easier than to look for the periodic orbits directly.

Using Theorem 1 we have studied the limit cycles of some third-order
differential equations. Thus, in the next result we present a third-order
differential equation (1) having as many limit cycles as we want.

Proposition 2. We consider the third-order differential equation
(3) T —&+&—x=ccos(x+t).

Then, for all positive integers m, there is an €, > 0 such that if
€ € [—em,em] \ {0} equation (3) has at least m limit cycles.

Proposition 2 will be proved in Section 3.

The following third-order differential equation (1) only has finitely
many limit cycles obtained using Theorem 1. As usual, [] denotes the
integer part function.

Proposition 3. We consider the third-order differential equation

(4) T -+ —z= s( Z aijrx'dI #F + cos t) .

i+j+k=0

i,4,k>0
Then for ¢ # 0 sufficiently small equation (4) has at least m €
{1,2,...,2[(n — 1)/2] + 1} limit cycles choosing conveniently the coef-
ficients a;ji.

Proposition 3 will be proved in Section 4.

The third-order differential equation studied in the next proposition
when 1 = ¢ is close to the equation studied in Example 1 of [3].
Moreover, that equation without the term (cost)/2 is the equation of
the Ezeilo problem mentioned in [2].
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Proposition 4. We consider the third-order differential equation
(5) ac—um+x—um:6<s1nm—:p+§cost>.

Then for € # 0 sufficiently small equation (5) has at least two limit
cycles.

Proposition 4 will be proved in Section 5. As we shall see in its
proof, Theorem 1 applied to equation (5) provides at most one limit
cycle bifurcating from the linear center of system (5) with ¢ = 0. But
eventually equation (5) can have for € # 0 other limit cycles which do
not bifurcate from the aforementioned linear center.

2. Proof of Theorem 1. If y = & and z = &, then system (1) can
be written as

T =y,
(6) y =z,
Z=px—y+pz+eF(x,y,z2,t).

The origin (0, 0, 0) is the unique singular point of system (6) when ¢ = 0.
The eigenvalues of the linearized system at this singular point are =+
and p. By the linear invertible transformation (X, Y, Z)T = C(z,y, 2)7,
where

w =1 0
C=10 —u 1],
1 0 1

we transform the system such that its linear part is the real Jordan
normal form of the linear part of system (6) with ¢ =0, i.e.,

X =-Y,
(7) Y =X +eF(X,Y, Z,t),

Z =upZ +eF(X,Y, Z,1),

where

. X-Y47Z -X—puyY +pZ —pX+Y + 22
F(x,Y,z,t)=F(~ +tZz pL e pd —pX + ¥ 2 )
14 p? 14 p? 1+ p?
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Using the notation introduced in the Appendix, we have that x =
(X,Y, Z), Fo(x,t) = (=Y, X,pZ2), Fi(x,t) = (0,F,F) and Fy(x,t) =
0. Let x(t; Xo,Yy, Zo,e) be the solution of system (7) such that
x(0; Xo, Yo, Zo,€) = (X0, Yo, Zp). Clearly the unperturbed system (7)
with £ = 0 has a linear center at the origin in the (X,Y)-plane, which
is an invariant plane under the flow of the unperturbed system, and
the periodic solution x(¢; Xo, ¥p,0,0) = (X (¢),Y(¢), Z(t)) is

(8) X(t) = Xpcost —Yysint, Y (t)=Yycost+ Xgsint, Z(t)=0.

Note that all of these periodic orbits have period 2.

For our system the V and the a of Theorem 5 of the Appendix are
V = {(X,Y,0) : 0 < X? 4+ Y? < p} for some arbitrary p > 0 and
o = (Xo, Yb) evV.

The fundamental matrix solution M (t) of the variational equation of

the unperturbed system (7).—¢ with respect to the periodic orbits (8)
satisfying that M (0) is the identity matrix is

cost —sint 0
M(t)= | sint cost O
0 0 ert

We remark that it is independent of the initial condition (X, Yy, 0).
Moreover, an easy computation shows that

00 0
M7*0)-M'2r)=10 0 0
0 0 1—e 2

In short, we have shown that all of the assumptions of Theorem 5 of
the Appendix hold. Hence, we shall study the zeros a = (X, Yy) € V of
the two components of the function F(a) given in (22). More precisely
we have F(a) = (Fi(a), Fa(a)), where

.7:1(01)
27 -

:/ sin tF (x(t; Xo, Yy, 0,0), t) dt
0

/2” SintF(MX(t) —Y()  X()+aY() —pX(0) +Y(t>,t> "

L+p? 7 L+p? 7 L+ p?
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Fa(a)
27 "

:/ cos tF(x(t; Xo, Yy, 0,0),¢) dt
0

_/ZWCOStF<uX(t)—Y(t) X(t) + 1Y (t) —MX(t)JrY(t),t) at.

1+p2 ° 1+p2 14 p?

where X (t),Y(t) are given by (8). Now the rest of the proof of
Theorem 1 follows directly from the statement of Theorem 5 in the
Appendix.

3. Proof of Proposition 2. First we consider the third-order
differential equation (3). For this equation we have that

2m ]
Xo — Y t— (Xo+ Y t
fl(Xo,Yo)Z/ sint cos <t+( o — Yg) cost — (Xo + ¥p) sin )dt,
0

2
(Xo — Yp)cost — (Xo + Yp) Sint> it
5 .

27
f2(X0,Y0)=/ cost cos <t+
0

To simplify the computation of these two previous integrals, we do
the change of variables (Xg, Yy) — (r, s) given by

(9) Xo—Yy=2rcoss, Xo+Yy= —2rsins,

where r > 0 and s € [0,27). From now on and until the end of the
paper, we write fi(r, s) instead of

f1(Xo,Y0) = f1 (r(coss —sins), —r(cos s + sin s))

Similarly for fa(r,s).

We compute the two previous integrals, and we get
fi(r,s) = —wJa(r) sin 2s,

10 1
(10) fa(r,s) = 27T<—J1(T) — Jo(r) cos? s>,

r
where J; and Jy are the first and second Bessel functions of the first
kind. These computations become easier with the help of an algebraic
manipulation, such as Mathematica or Maple.



THIRD-ORDER LIMIT CYCLES 587

Using asymptotic expressions of the Bessel functions of the first kind,
it follows that Bessel functions Ji(r) and Jo(r) have different zeros.
Hence, fi(r,s) = 0 for ¢« = 1,2 imply that s € {0,n/2,7,3w/2}.
Therefore, we have to study the zeros of

1) F2(1,0) = far7) = 2 21(r) = () ).

(12 Falr7/2) = folr,3m/2) = T ().

We claim that function (11) also has infinite zeros for r € (0, 0).
Note that, if p is sufficiently large, and we choose r < p also sufficiently

large, then
To(r) ~ 2 nw f 1.9
nr~1/ﬂ_Tcos -5 q ) forn=12,

are asymptotic estimations, see [1]. Considering (11) for r sufficiently
large, we obtain that

f2(7“,0) ~ %\/?(COS (T‘— 32%) + rcos <7-_ %))

2
=z z((r—1)cos7“+(r—i—l)Sin?‘)-
r\r

The above function has infinite zeros because the equation
1—r

tanr =
r+1

has infinitely many solutions.

For every zero ro > 0 of function (11), we have two zeros of system
(10), namely, (r,s) = (r,0) and (7, s) = (rg, 7).

We have from (10) that

O(f1, f2)
1 ‘ 0(r:5) L(r,0)=(r0.0)
_ 47['2(J0(7‘0)1"0 — 2J1(7‘0))(J0(7"0)7‘0 + (T'(z) — 2)]1(7‘0))
= 7-8
4qr?

= T—0J2(r0)(J1(ro)To — Ja(ro)),
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where we have used several relations between Bessel functions of the
first kind, see [1]. Clearly, it is impossible that (11) and (13) are
equal to zero at the same time. Therefore, by Theorem 1, there is
a periodic orbit of system (3) for each (rg,0), that is, for each value of
(Xo, Yo) = (70, —70).

In an analogous way, there is a periodic orbit of system (3) for each
(ro,m), that is, for each value of (Xo,Yy) = (—ro,70). In fact, the
periodic orbit with this initial conditions and the previous one with
initial conditions (X, Yy) = (19, —7¢) are the same.

Similarly since J;(r) has infinitely many zeros (see [1]), the function
(12) has infinitely many positive zeros r;. Every one of these zeros
provides two solutions of system (10), namely, (r,s) = (r1,7/2) and
(r,s) = (r1,3m/2).

Moreover, we have from (10) that

w5

4r
= —J3(r1) # 0.

(rs)=(r1,m/2) "1

Therefore, by Theorem 1, there is a periodic orbit of system (3) for
each (ry,7/2), that is, for each value of (Xo,Yy) = (=71, —71).

In an analogous way, there is a periodic orbit of system (3) for each
(r1,3m/2), that is, for each value of (Xo,Yy) = (r1,71). In fact, the
periodic orbit with this initial condition and the previous one with
initial conditions (Xo,Yp) = (—r1, —r1) are the same.

Taking the radius p of the disc V = {(Xo,Y5,0) : 0 < X2 +Y? < p}
in the proof of Theorem 1 conveniently large, we include in it as many
zeros of the system f1(Xo,Yy) = f2(Xo,Yo) = 0 as we want, so from
Theorem 1, Proposition 2 follows.

4. Proof of Proposition 3. Now we consider the third-order
differential equation (4). In order to estimate the number of the
periodic solutions of equation (4), according with Theorem 1 we study
the solutions of f1(Xo,Yy) = f2(Xo, Yo) = 0.

For our equation the function F which appears in the integrals of the
definitions of the functions f; and fs is

F(X(t)—Y(t) XM +Y() -X()+Y() t>
2 ’ 2 ’ 2 )
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Therefore from the change (9) and the expressions (2), a monomial
x’y’zk which appears in F(z,y, z,t) becomes (—1)Frititk cosith(s —
t)sin’ (s — t). Hence, we obtain the following expressions

n

2m
fi(r,s) = / sint Z (=1)ka;p, I TF costF (s — t) sind (s — t) dt,
0 i+j+k=0
n

2m
fa(r,s) = / cost Z (=1)*a;p r Ttk cos™F (s — t) sin? (s — t) dt
0 i+j+k=0

+ .

Taking u = s — t, the functions f; and f; can be written as

fi(r,s) = I1(r)sins — I(r) cos s,

(19) f2(r,s) = I1(r) cos s + Iz(r) sin s + T,

where

2m n
ILi(r) = f/ cos u Z (—1)*a;jp r" Tk cos'™ u sind udu
0 i+j+k=0
n 2m
Z (—1)kHla,p ritITh / cos ¥+ sind u du,
0

i+j+k=0

2m n
- / sinu E (=1)*a;p Ttk cos™* 4 sind u du
0

i+j+k=0

IQ(T‘)

n 2m
Z (=1)F+ta, itk / cos'* u sin? T u du.
i+j+k=0 0

Using symmetries, the integral f027r cos? u sin? udu is not zero if and
only if p and g are even. Hence, I;(r) and I2(r) are polynomials in r
having all their monomials of odd degree. Moreover, if n is even the
degree in the variable r of the polynomials I (r) and I>(r) is n — 1, and
if n is odd that degree is n. So their degree always is odd and equal
to 2[(n — 1)/2] + 1. Of course, we are playing with the fact that the
coefficients of those polynomials can be chosen arbitrarily.
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It is clear that the system f; = fo = 0 given by (15) is equivalent to
the system

-1
Li(r)\ _ (sins —coss 0 [coss
(16) <I2(r) " \coss sins w) " "\sins /)
We claim that (16) has at most 2[(n — 1)/2] + 1 solutions providing

different limit cycles of the third-order differential equation (4), and
that this number is reached.

For proving the claim, first we observe that system (16) is equivalent
to the system

_[2(7‘)

2 200) = 2
(17) Li(r) + 13(r) = ==, ()

= tans.

Since the first equation of system (17) is a polynomial equation in
the variable r? of degree 2[(n —1)/2] + 1 playing with the fact that the
coefficients of the polynomials I;(r) and I;(r) are arbitrary, it follows
that it has at most 2[(n — 1)/2] + 1 zeros in (0, 00), and we can choose
the coeflicients a;; such that it has exactly m simple zeros r; > 0 with
me{1,2,...,2[(n—1)/2] + 1}.

There are two solutions s; and s; + in [0, 27) of the second equation
for each zero r; > 0 of the first equation of (17). But, as in the proof
of Proposition 2, these two solutions only provide two different initial
conditions of the same periodic orbit. In short, applying Theorem 1,
we would get at most 2[(n — 1)/2] + 1 limit cycles for the third-order
differential equation (4) if the Jacobian det(9(f1, f2)/0(r,s)) # 0 at

(r,8) = (74, 8i).

Playing with the coefficients a;;x, we get
(18) I (ri) 1 (rs) + Lo(ri) I (r:) # 0,

for every solution (r;, s;) of system (17). Then we compute the Jacobian
of g1(r,s) = I (r) — wcos s and ga(r, s) = Ix(r) — wsins, i.e.,

8(g1 (7’, S), g2 (7‘7 8))
d(r, s) (r,5)=(rs,51)

= —nr(I(r;) cos s; + I}(r;) sin s;)

= Li(ro)Ii (i) + I (r) I5(r:) # 0.
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Hence, it is easy to check that

A(fi(r,s), f2(r, 5))

£0.
8(7", S) (r,8)=(ri,8:)

In short, the claim is proved and consequently so is Proposition 3.

5. Proof of Proposition 4. In this section we consider equation
(5). We remark here that F(z,y,2,t) = sinz — x + cost/2. Doing the
change,

pXo—Yy = (14 p?)rcoss, Xo+ pYy = —(1+ p?)rsins,

where r > 0 and s € [0,27). We compute the two integrals of f; and
f2, and we get

fi(r,s) = /0 i sin t(sin(r cos(t — s)) — 7 cos(t — s)) dt,
fa(r,s) = /0 cost(sin(r cos(t — s)) — rcos(t — s)) dt + 3

Taking u =t — s, then we have

2m
fi(r,s) =sins </ cos usin(r cosu) du — 7r7“>
0
=m(2J1(r) — r)sins,
27
fa(r,s8) = cos s (/ cos u sin(r cos u) du — 71'1") + g
0

=m(2J1(r) —r)coss + g

It is clear that, if fi(r,s) = 0 and fy(r,s)=0, then sins = 0. Con-

sequently, we need to estimate the zeros of the following function for
s=0orm

27
g+(r) = :I:(/ cos usin(r cosu) du — 7TT> + g =+r(2J1(r)—7)+ g
0
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We claim that there is a unique zero of the function g4 (r) for r > 0.
For example, we note that for s = 0 and r > 0 we have that

d 2m 2m
g\ (r) = gjj_(r) = / cos? u cos(rcosu) du — </ cos®> udu —m = 0.
r 0 0

Hence, our claim is true from the fact that g, (0) =7/2 > 0, g4+(r) <0
for r sufficiently large and g, (r) is strictly decreasing. We denote by
r4 the unique zero of the function g4 (r) for r > 0.

Writing the zeros of f; and f; as (r4,0) and (r—, ), we have that

‘ a(fl(ra 5)7 fZ(Ta 5))
a(r, s)

e
= 59;(”—) <0.

(r,s)=(r0,0)

Similarly, it can be shown that this Jacobian at the point (r_,=) is
also different from zero. This implies that the system fi(Xy,Yp) =
f2(Xo,Yy) = 0 has two solutions (Xo,Yy) = 74+ (g, —1) and (Xo, Yo) =
r_(—pu, 1) corresponding to (r4,0) and (r_, ) with Jacobian different
from zero. Since 74 # r_, these two solutions provide distinct periodic
orbit of the linear center from which it bifurcates one limit cycle of
equation (5). So Proposition 4 is proved.

Acknowledgments. We thank the referee for comments which
allowed us to improve Proposition 3.

APPENDIX

In this appendix we present the basic result from the averaging theory
that we shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions
from the differential system

(19) x'(t) = Fy(x,t) + eFi(x,t) + 2 Fy(x, t,€),

with € = 0 to € # 0 sufficiently small. The functions Fp, F; : @ x R —
R" and Fy : QxR x (—€g,g09) — R™ are C? functions, T-periodic in the
variable ¢, and (2 is an open subset of R™. One of the main assumptions
is that the unperturbed system

(20) x'(t) = Fo(x,t),
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has a submanifold of periodic solutions. A solution of this problem is
given using averaging theory. For a general introduction to averaging
theory see the books of Sanders and Verhulst [11], and of Verhulst [12].

Let x(t,z) be the solution of unperturbed system (20) such that
x(0,2) = z. We write the linearization of the unperturbed system
along the periodic solution x(t,z) as

(21) y' = Dy Fy(x(t,2),t)y.

In what follows we denote by M,(t) some fundamental matrix of the
linear differential system (21), and by ¢ : R¥ x R** — RF the
projection of R™ onto its first k coordinates, i.e., &(z1,...,z,) =
(ZL‘l, ce ,:Uk).

Theorem 5. Let V C RF be open and bounded, and let By : C1(V) —
R"™ % be a C? function. We assume that

(i) 2 = {2a = (o, bo()), a € CI(V)} C Q and that, for each
Z, € Z, the solution x(t,2,) of (20) is T-periodic;

(i) for each zo € Z there is a fundamental matriz M,_(t) of (21)
such that the matriz M, *(0) — M, *(T) has in the right up corner the

kx (n—k) zero matriz, and in the ;ight down corner a (n—k) x (n—k)
matriz A, with det(A,) # 0.

We consider the function F : C1(V) — RF
T
(22) Fla) = 5(/ M, (t)Fy(x(t, 24), 1) dt).
0
If there exists an a € V with F(a) = 0 and det((dF/da)(a)) # 0,

then there is a T-periodic solution ¢(t,e) of system (19) such that
©(0,€) = 24 as e — 0.

Theorem 5 goes back to Malkin [7] and Roseau [10]; for a shorter
proof see [4].
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