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CHUNG’S LAW FOR
HOMOGENEOUS BROWNIAN FUNCTIONALS

AIME LACHAL AND THOMAS SIMON

[Mocssamaercss Erzo Opcunrepy B uectot ero 60-maetus.

ABSTRACT. Consider the first exit time Tg ; from a finite
interval [—a, b] for a homogeneous fluctuating functional X of
a linear Brownian motion. We show the existence of a finite
positive constant I such that

lim t~!logP[Tyy > t] = —K.

t— o0

Following Chung’s original approach [8], we deduce a “liminf”
law of the iterated logarithm for the two-sided supremum of
X. This extends and gives a new point of view on a result of
Khoshnevisan and Shi [12].

1. Introduction. Let {B;, ¢ > 0} be a linear Brownian motion
starting at 0 and X = {X;, ¢ > 0} be the homogeneous fluctuating
additive functional defined by

t
Xt:/ V(B,)ds, t3>0,
0

where V(z) = 2* if £ > 0 and V(z) = —Az|* if z < 0, for some
fixed a, A > 0. The process X appears in mathematical physics as
the solution of a generalized Langevin equation involving a harmonic
oscillator driven by a white noise, and we refer to [14] and the references
therein for more details on this subject. Notice that X is (14 «/2) self-
similar, but has no stationary increments. In the case a = X =1, it is
the integrated Brownian motion:

t
Xt:/ Bsds, tZO,
0
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and also a Gaussian process. However, in the other cases, it is not
Gaussian any longer. For every a,b > 0 consider the bilateral exit time

Top = inf{t >0, X; ¢ (—a,b)}.

As a rule, studying the law of T} is a difficult issue because X alone is
not Markov, so that no spectral theory is available. We refer however
to [14, 15] for several distributional properties of the bivariate random
variable (Typ, Br,,) and for the solution to the two-sided exit problem,
i.e., the computation of the probability P[Xr,, = a]. In [14], it was also
shown that the variable T,; has moments of any power, and an explicit
upper bound was given on the latter, see Proposition 7.1 therein. Before
this, the upper tails of T,; in the case o = A = 1 had been precisely
investigated in [12], with an elegant argument relying on Chung’s law
of the iterated logarithm. This result was then generalized in [18] to
a broad class of Gaussian and sub-Gaussian processes, with a different
method relying on wavelet decomposition. In this paper, we aim at
extending the results of [12] to the above non-Gaussian functionals X,
with a more elementary proof:

Theorem. For every a,b > 0, there exists a finite positive constant
K such that

(1.1) tliglo t™ og P[Typ > t] = —K.

This exponential tail behavior is typical for exit-times from a finite
interval for self-similar random processes. Actually, in most examples
available, it appears that the upper tails of the variable T,; are those
of an exponential random variable. Some comments on this somewhat
intriguing universal behavior are given in the last section of [18] in the
case of a sub-Gaussian symmetric process exiting a symmetric interval.
See, however, Example 3.3 in [20], where the tail behavior is shown to
be subexponential. Notice also that the upper tails of the unilateral exit
time Ty of X had been thoroughly studied in [10, 11] and exhibit an
entirely different, polynomial, behavior which again in the framework of
self-similar random processes is typical for exit-times from a semi-finite
interval.
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Taking a = b = 1, the estimate (1.1) entails by self-similarity that
there exists a finite positive constant K’ such that

(12) lim ==/(+2) log P[] X]|oo < ] = ~K,

where ||.||s stands for the supremum norm over [0,1]. This other limit
theorem is known as a small ball probability estimate, a subject which
has given rise to intensive research over the last years, with interesting
connections to different questions in analysis, probability and statistics.
We refer to [17, 23] for recent accounts on this topic concerning both
Gaussian and non Gaussian processes; see also [16, Chapter 7] for an
abstract Wiener setting. Originally, this kind of estimate had been used
by Chung [8] for random walks and Brownian motion, in connection
with his celebrated law of the iterated logarithm. In [12], Khoshnevisan
and Shi’s original approach for integrated Brownian motion consisted
in proving first Chung’s LIL and then deducing the small deviation
estimate (1.2). In this paper, we will follow the more standard approach
viewing Chung’s LIL as a consequence of (1.2). We introduce the
notations

X; = sup{|X,|, s <t} and f(t) = (t/ loglogt)™+?)/?

for every t > e and set Ky for the constant appearing in (1.1) when
a=b=1.

Corollary (Chung’s law of the iterated logarithm). One has

X *
lim inf =%

_ g(at2)/2
ttoo f(t) Ky

a.s.

Notice that if we introduce the family of time-stretched functionals

Xnt
X' = fei0.1
b7 (n/loglogn)(a+2)/2’ €10,1],

for every n > 3, then by a straightforward monotonicity argument our
Chung’s LIL is equivalent to

_ K§a+2)/2

.. n
lnlgl_il_lggHX oo a.s.
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From this fact and in the spirit of Wichura’s functional LIL, it is
an interesting question to determine the cluster set of the family of
processes {X"™, n > 1} for the weak topology. This was indeed recently
investigated by Lin and Zhang [19] for m-fold integrated Brownian
motion, yielding Chung’s LIL for these processes as a corollary, see
Theorem 1.1 and Corollary 1.1 therein. However, in our framework,
the nonlinearity of the kernel z +— V(z) and the non Gaussianity of X
makes the situation significantly more complicated in general, as will
already appear in our proof. Setting now

X Xnt
X! = teiol
K (Tlloglogn)(a+2)/2’ E[ ) ]7

for every n > 3, our result reads
limJirnf(log log n)* 2| X™||0o = K{*T/2 almost surely.
n—-+0oo

From this fact and in the spirit of Strassen’s functional LIL, it is
somewhat tantalizing to determine the set of functions f such that

(1.3) lim inf (log log n)* 2| X™ — f]/s

n—-+oo

almost surely exists, as an explicit function of f and ;. In the case
of Brownian motion, this (hard) problem had been initiated by Csdki
[9] and De Acosta [1], hinging upon shifted Brownian small balls. Of
course, before investigating (1.3) one should first determine the cluster
set for the weak topology of the family of processes {)?”, n > 1}. To
the best of our knowledge, no results of this kind seem to exist even for
integrated Brownian motion.

2. Proof of the theorem. Fix a,b > 0 once and for all, and
introduce the notation 7' = T, for concision. For every z,y € R, set
P, for the law of the strong Markov process ¢t —+ (B, X;) starting
at (z,y). We keep the notation P = P g o) for brevity. Considering the
function

@(t) =sup{P [T > t], (z,y) € R x (—a,b)},
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the simple Markov property yields for every ¢,s > 0

ot +s) =sup{P [T >s,T >t+s], (z,y) € R x (—a,b)}

b
~ sup { /R/ P, [(Bo, X,) € dudv, T > s|P(u[T > 1],

(z,y) € R x (—a,b)}
< p(t)

b
X sup { /R/ P, [(Bs, Xs) € dudv, T > 5],

(z,y) € R x (—a,b)}
< p(t)e(s),

so that the function ¥ (t) = log ¢(t) is subadditive. Hence, there exists
a K € [0, +o0] such that

. —1 . —1 _
Jim ¢ L) = inf( () = K.
Besides from the second equality we see that x > 0, since the function
1 is clearly not identically zero. This entails

(2.1) limsupt™*log P[T > t] = —K < 0.

t—o0

The remainder of the proof will be given in two steps. First, we
will show the finiteness of IC, which is usually the difficult part in
small deviation problems. In the case @« = A = 1, it had been
obtained in [12] through an original yet lengthy argument relying
on random normalization and Chung’s LIL. Here we will provide
two proofs which are considerably simpler. The first one adapts the
elementary arguments of Lemma 1 in [5] to the two-dimensional Markov
process (B, X), while the second one is based on the time-substitution
method which was used in [10] for unilateral passage times; let us stress
that its main idea relying on the a.s. continuity of the Brownian paths
was also implicitly used in [12, page 4258] to obtain Chung’s LIL. The
latter proof is slightly more involved than the former; nevertheless, it
allows to bound the constant from above (see Remark 1 below).
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Second, we will show that the above limit in (2.1) is actually a true
limit, which appears to be more complicated. In the Gaussian case
a = A =1 and for a symmetric exit interval, it is an easy consequence
of Anderson’s inequality, as already noticed in [12]. However, no
isoperimetric inequalities seem available when X is not Gaussian, and
this argument breaks down, so that we had to use more barehand
estimates, following roughly the outline of Lemma 1 in [5].

First proof of the finiteness of the constant. Fixing A < 0 < B and
a < c <0 <d<b introduce the functions (t) = inf{P, [T >
t], (z,y) € [A, B] x [c,d]} and

&(t) = inf{P 4 [(Br, X;) € [4,B] x [¢,d], T > 1,
(z,y) € [4,B] x [c,d]}, t>0.

For every (z,y) € [A, B] X[¢,d] and t, s > 0 the simple Markov property
entails

P(z,y) [T >t+ 8]
> Py)(Bs, Xs) € [A,B] x [¢,d], T >t + s
// l(Boy Xo) € dudy, T > 8] x Py [T > 4
)[(BS,X ) € [A,B] x [¢,d], T > s] x ¢(t)
‘I’( (1),
so that @(t + s) > @(s)®(t) for every t,s > 0. In particular,
p(n) 2 ¢(n) > @(1)g(n —1) > --- > 2(1)"p(0) = &(1)"

for every n € N, which entails t 19 (t) > log ®(1) for every ¢ > 0, since
the function ¢ — t 14(t) is decreasing. We finally get

> P
2

K < —log ®(1).
Now the function (z,y,t) — P4, [(Bs, Xt) € [A, B] x [¢,d], T > t] is
continuous on the compact [A4, B] X [¢,d] x [0, 2], since it satisfies the
heat equation
1 0? 0o 0
S L V()= = =
2022 TV Way = b
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on R x (—a,b) x RT. In particular, the function
(Q}‘,y) — P(z,y)[(Blel) € [AvB] X [C, d]v T > 1]

is continuous on the compact [A4, B] X [¢,d] and, since it is obviously
everywhere positive, one has ®(1) > 0, which completes the proof. ]

Second proof of the finiteness of the constant. Let L = {L(t,z),
t >0, z € R} be the local-time process associated with B and

7t = inf{u >0, L(0,u) >t}, t>0

be the inverse local time of B at zero. It follows easily from the Markov
property and a scaling argument that the process t — (73, X,,) is
a two-dimensional Lévy process such that ¢ — 7, is a (1/2)—stable
subordinator and Y : ¢t — Y; = X, a 1/(a + 2)-stable process.
Introducing

© =inf{t > 0, X,, ¢ (—a,b)},

the a.s. continuity of Brownian trajectories yields the key-inequality
(2.2) T>79_ as.

As in the proof of Theorem B in [22], we now decompose, for every
c >0,
PO>t|<Plr<ct]+P[O >t 7 > ct]

<Pl <ct '+ Plrg_ > ct]
<Pln <ct '+ P[T > ct],

where we used the 2-self-similarity and the a.s. increasingness of 7 in
the second line, and (2.2) in the third. By [4, Proposition VIIL.3] and
a scaling argument, there exists /Cy finite such that

lim ¢ 'log P[O© > t] = — K.

t—o00
By Theorem 5.12.9 in [7] there exists K. — +o0 as ¢ — 0 such that

lim t~'logP[ry < ct™'] = —K..
t—o0
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Taking ¢ small enough and putting everything together yields
litminft_l log P[T > t] > —Ky/c > —o0,
— 00

which entails I < +o00 as desired. m]

Remark 1. The positivity parameter P[Y; > 0] of the non completely
asymmetric Lévy 1/(a+2)-stable process Y had been computed in [11];
see Remark 4 therein. This makes it possible to bound from above the
constant Ky explicitly: when A = 1, i.e., Y is symmetric; this can be
done in subordinating Y to some Brownian motion, see [3, Theorem
4] or [21, Proposition 8|, whereas when A # 1, the same method
works in subordinating Y to some completely asymmetric stable process
with infinite variation, see [4, Exercise VIIL1], and using the explicit
calculations of [5] in the completely asymmetric case. On the other
hand, the scaling parameter of the stable subordinator 7 is explicit, so
that the constants K. are also explicit, again by [7, Theorem 5.12.9].
To put it in a nutshell, our second proof allows to exhibit an explicit
upper bound on X, which we will however not include here for the
sake of brevity. Notice that in the case of integrated Brownian motion
in a symmetric interval, a lower bound had been given in [12, Remark
1.4]. Recall also that in the non completely asymmetric framework, the
exact computation of Ky is a long-standing and challenging problem,
see [2, 3, 5] and the references therein.

Proof of the existence of the constant. Suppose first that a = A =1
and a = b. Then, by self-similarity and by linearity of the integral one
has, for every z,y € R and t > 0,

P(a:,y) [T > t] = P(q;tfl/Z,yt—am)[HXHoo < atiS/z]

= P[|X + f*¥|0 < at™3/?]

where || - ||oc stands for the supremum norm over [0,1] and f*¥! : u
yt=3/2 + uat—'/2. Hence, Anderson’s inequality, see e.g. (7.5) in [16],
entails

P[> 1] = P|X + f7% |0 < at~*/?] < P[|X |0 < at*/?]
=P[T > t],
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so that ¢(t) = P[T > t| for every t > 0, and (2.1) is a true
limit. Unfortunately, this simple Gaussian argument cannot be used
in general, and we will have to use a lengthier yet elementary method,
which will be divided into three lemmas. For every € > 0, we introduce

T. =inf{t >0, X; ¢ (—a+¢e,b—¢)}.

Lemma 2. There exist ¢y, c3, K > 0 such that for every e
small enough and every t large enough, there exist x5 € (—K, K) and
y; € (—a+e,b—c¢) such that

(2.3) Pz ye) [Tt > 1] > cpe KIFe)t,

Proof. For every t > 0, we can choose (z5,y5) € R x (—a+¢,b—¢)
such that

(2.4) P(ﬁ,yg)[Tg >t+1]

1
> 3 sup{P (5 )[Tc >t +1],(z,y) ER X (—a+¢,b—¢)}.

Besides, by scaling and translation, we have for every (z,y) € R x
(_a7 b)v

P(w,y) [TE >t 4+ ]_] = P(zs,ys)[Tab > ts]
with the notations z. = z/(1 — 2¢/(a + b))/ (@2 4. = (y — (b —
a)/2)/(1—2¢/(a+b))+(b—a)/2,and t. = (t+1)/(1—2¢/(a+Db))>/(@+2),
Hence, choosing some constant ¢; > 0 such that 1 +c;e > (1 —2¢/(a+
b))~ 2/(2+2) for every e small enough and by the definition of K, we get

sup{P [T >t +1], (z,y) € R x (—a+¢e,b—¢)}
= sup{P ;) [Tap > t], (7,y) € R X (—a,b)}
2 sup{P (g4 [Tap > (1 + c16)(t + 1)),
(z,y) € R X (—a,b)}
S o~K(+ere)(t+1)

for t large enough, so that by (2.4),

(25) P(wi,yts)[Ts >t + l] Z Czef’c(1+61€)t
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for t large enough with ¢, = e *(1+¢1) /2. Set now K = 2(1VA~Y*)(a+
b)t/e, fix ¢ > 0 and ¢t large enough. If |zf| < K, then by (2.5)

P( [TE > t] > P(Ef,yf)[TE >t+ 1] > 626—’C(1+cle)t

z5,y5)

and (2.3) holds since necessarily y§ € (—a+¢,b —¢). If 2§ > K, then
introducing the stopping time

S =inf{s > 0, Bs = K/2},
the definition of K and the strong Markov property at S entail
Plguplle > t+ 1] =P yplS < 1,1 > t+1].

Indeed, if S > 1, then By > K/2 for every s < 1, so that X; >
—a+¢e+ (K/2)* >b—¢and T. < 1. Hence,
P(zf,yf)[Ts >t+ l]
< B yn)[Lis<i,xse(—atep ) P/2,xs)[Te > t]]
< Pazye)[S < 1 sup{Px/2,)[T: > t], y € (—a+¢,b—¢)}
< Sup{P(K/Z,y) [Te > t]a ye (_a +e,b— E)}

In particular, setting ¢, = e *(1t<1) /4 and & = K/2, we see by (2.5)
that there exists §§ € (—a +&,b — ¢) such that

P(if,gf)[TE > t] Z Cl2€7K(1+cls)t.

The case z; < —K can be handled similarly, and the proof of Lemma 2
is complete. ]

We now need to show that the estimate (2.3) remains true in a suit-
able neighborhood of (zf,y). Fixing ¢ > 0 and (z§,y;) € (—K, K) %
(—a+¢,b—¢) as above for t large enough, introduce

pe _ 5,0f + 1 x F — e/2,07 +¢/2] ifaf 20,
* 7 st - Laf) x [oF — ¢/207 /2] ifaf <.

The key feature of this neighborhood is that its volume does not depend
on t and, for this reason, the proof of the following lemma is a bit
technical:
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Lemma 3. There exists a cg > 0 such that for every € > 0,

inf{P(, [T > t], (z,y) € V} > czge ¥ ¢ foo.

Proof. First, by translation invariance, one has

(2.6) inf{P (4 [T >t], y € [y; —&,y; + €]}
2 Pog ) [Te > 1] 2 cpe™ XUt

as t — 400, where ¢y is the constant in (2.3). Suppose now z§ > 0 and
introduce the stopping time

o; =inf{s > 0, Bs =z} }.
For every (z,y) € V£, one gets from the Markov property

P(z,y) [T > t] > P(z,y) [T >t > O'ts]

t pb
:/ / P($7y)[0t€ S dS,Xats S dv]
0 Ja

X P(zf,v)[T >t — S]

t b
> / / P(a:,y) [0’? S dS,XUtE S dv]P(wf,v) [T > t]
0 Ja

t py;te
Z/ / P(Ly) [Uts S dS,XUtE S d’U]
0 Jy;—e
X inf{P(mfyz)[T >t], |z —yi| <e}

> P (ay|0f <1, [Xop — yf| < gl FOFa,

where we used (2.6) in the last step. Hence, since [—¢/2,e/2] C
[yf —y —¢&,yf — y + €], it suffices to bound

Puylor <t [Xo: —yi| <] 2 Prgloy <t, [Xos| <e/2]
from below. Now, since o > 0, there exists an M > 0 such that

(2.7) u+ o] < M(Ju|* + |v[*)



572 AIME LACHAL AND THOMAS SIMON

for every u,v € R, so that P, o) a.s.

| Xoe| < Mog (2% + (Bg:)),

Ot

with the notation Bf = max{|SBs|, s < t} for every t > 0, where
{Bs, s > 0} is a Brownian motion starting at zero. With the notations
0f =x —af, pf =inf{s >0, 8, = —0;} and 0, = inf{s > 0, Bs = 2}
for every z € R, this entails
P(z,O) [Uf <t, ‘ths| < 5/2]
> Plp; <t, pf((By)" +2%) < ¢/2M]
> Plof < t, pu(Bl)® < o/AM, pia® < c/AM]
> Plp; <tA(e/4Ma®), B < |
[pf <tA(e/AMz*) A 6,],

where in the fourth line we used the obvious fact that p; < 0_, a.s. By
scaling, and since 0 < §; < x, we know that

(65,62) £ (65)%(0-1,6,/5:) and 6,5 > 6 as.

By Lemma 2 we know that z < K 4 1 and, since 6 € [0, 1], we finally

get

tA(e/4AMz®)
(67)?

> P01 < (¢/AM|K + 1]%) A 4],

P(w,O) [0’? <t, |X<Tf‘ < 5/2] >Pl0_;1 < A 0z/5t5

which finishes the proof of Lemma 3 because the righthand side does
not depend on t. o

Our last lemma is intuitively obvious, but we will give a proof for the
sake of completeness.

Lemma 4. For every € > 0, there s a constant c. such that
P[(By,X1) eV, T>1] >c.

for every t large enough.
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Proof. Fix € > 0 and define K as in Lemma 2. For every (z,y) €
(—K,K) x (—a + €,b — ), there exists a piecewise linear function
f®¥:]0,1] — R starting at zero such that f{"Y =z +1/2if x > 0 and
Y=x-1/2ifz <0, g7"Y =y and 7Y > 1, with the notations

t
gf’”=/ V(f2¥)ds, t20, and Y =inf{t > 0, gPY ¢ (—a,b)}.
0

Besides, since from (2.7) we know that a.s. || X — ¢"¥||e < M||B —
foY||% for every (z,y), by the definition of Vi we have for every ¢ > 0,
{IIB = f*¥ |loo < (/2M)Y*} C {(B1, X1) €V}, T > 1},

On the one hand, by compacity, we can clearly choose the functions
f®Y such that

2y 2
M := sup { /01 (%) ds, (z,y) € (—K, K)x(—a+s,b—6)} < +00.

On the other hand, the Onsager-Machlup formula, see e.g. [16, Theo-
rem 7.8], entails

P[|B — [ ¥ s < (¢/2M)"]

1L /dfeeve?
Zc’sexp[—i/ < fds > ds] Zc'gefM/2
0

where ¢, = P[|| Bl < (¢/2M)'/*]. Putting everything together and
setting c. = c’se_M/2 completes the proof of Lemma 4. a

We can now conclude the proof of existence of the constant. Fix
e > 0, take ¢ > 0 large enough and suppose first that =i > 0. By the
Markov property at time 1,

PT >t >P[(B1,X1) €V;, T >t
>P[(By,X1) €V, T>1]
X inf{P [T >t — 1], (z,y) € Vi}
> ce inf{P, [T > t], (z,y) € Vi }

> 05036_K(1+015)t,
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where we used Lemma 4 in the third line and Lemma 3 in the fourth.
The case zf < 0 being handled analogously, we finally obtain, for every
>0,

|
lggﬁg : log P[T > t] > —K(1 + c1¢),

which completes the proof in letting € tend to 0. u]

Remark 5. (a) By the self-similarity of B, one can actually extend
the definition of the functionals X to every a > —1 with an absolute
convergence of the integral. In the symmetric case A = 1, it is even
possible to extend this definition to every a € (—3/2,1], viewing X as
a Cauchy principal value process:

t
X, = ;135/0 1015, 5} |Bs“sgn (By) ds

=lim [ 1gg>ep/z|*sgn (z)(L(t,z) — L(0,z))dz,
e—0 Jr
where in the second equality we used the occupation formula and where
the second limit exists almost surely since the map x — L(t, z) is almost
surely n-Holder for every n < 1/2. For a = —1, the process X is then,
up to a multiplicative constant, the Hilbert transform of L, while for
a < —1, it can be viewed as a fractional derivative of L, and we refer to
the seminal paper [6] and [4, Chapter 5] for much more on this topic.

Above, the subadditivity argument and the finiteness of the constant
do not rely on the specific value of «, so that one gets with the same
notations

—00 < liminf ¢t log P[T,p > t] < limsupt ' log P[T,, > t] < 0,
t—o0 t—oc0
which is a weaker version of our main result. However, the positivity
assumption on « is crucial for Lemma 2 which is the key-step in our
proof of the existence of the constant. We believe that the limit in (2.1)
is also a true limit when « is negative, but the proof requires probably
less bare-hand arguments than ours.

(b) In the case @ = A = 1, the process (B, X) is a Gaussian diffusion
and in this case it is known that the function f; : (z,y) = P (g, [T > t]
is log-concave for every t > 0, see e.g. [13, Proposition 1.3]. Hence,
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in the case of a symmetric interval, its maximum is attained in (0, 0),
and this gives another proof of the existence of the constant. Despite
Theorem 1.2 in [13], our intuition is that the function f; remains log-
concave in general, but we were unable to prove this. If this were true,
the existence of the constant would follow immediately in the case A =1
and for a symmetric interval. Let us stress that the function f; already
exhibits some concavity properties in the framework of non Gaussian
symmetric stable processes [2].

3. Proof of the corollary. We will follow the outline of [12,
subsections 2.4 and 2.5], which are themselves a variation on Chung’s
original argument. First, arguing with (1.2) and the first Borel-Cantelli
lemma exactly as in subsection 2.4 of [12], one can show that

*

e X (a+2)/2
. —_— > .S.
(3.1) ltan_#&f ) 2 Ky a.s.,

and we leave verification to the reader (beware the minor correction
R — log R on the last line page 4258). Moreover, the arguments of
subsection 2.3 in [12] applied to our Lévy (1 + «/2)-stable process
Y : t — X,, entail without major modification

*

X,
(3.2) liminf % < oo a.s.
i F

By the 0-1 law, we know that the liminf on the lefthand side is a.s.
deterministic, so that Chung’s law holds by (3.1) and (3.2), with an
unknown finite positive constant. Notice in passing that (3.1) and
(3.2) give also a third proof of the finiteness of K in the symmetric
case a = b, which is actually Khoshnevisan and Shi’s in the case of
integrated Brownian motion.

However, to prove that

X*
(3.3) liminf -t < IC§OC+2)/2 a.s.,

t—+o0 f(t)

we will have to modify slightly the arguments of subsection 2.5 in
[12], since the kernel x — V(z) is not linear in general. Fixing
a small € > 0, introduce the numbers ¢, = n*", s, = n**t3 and



576 AIME LACHAL AND THOMAS SIMON

Yo = (1 + 25)]C§a+2)/2f(tn) for every n > 1. Define the sequence of
stopping times

So=0 and Sn:inf{t>tn+5n_1, BtZO}, n>1.

Finally, consider the events

¢
E, = { sup ||/ V(Bs)ds < yn+1} and
Sn

S <t<tnp1+Sn

F, = {Sn < 8, + Snfl}

for every n > 1. On the one hand, setting r, = s, — t,, P, for
the law of B starting at x, and resuming the notations of Lemma 3,
the strong Markov property, the symmetry of Brownian motion and a
scaling argument yield

P[F¢] = / P(Bs, .11, € da]Py[f > 7]
R
- / P[B,. € dz|P[B, < |z, Vt < ]
R

:/ P[B; € dulP[B; < |u|\/tarnt, Vt < 1]
R

~C tnrﬁl Ncn_3/2, n — oo

for some positive finite constant ¢, so that

> P[FS] < foo.

n>1

By the Borel-Cantelli lemma, for almost every w there exists ng(w)
such that

Sn(w) < Sno(w) (w) + sng(w)+1 + ot Sn

for every n > mng(w). Hence, by the definition of s,, there exists
n1(w) > ng(w) such that

(3.4) Sp(w) < 2y,
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for every n > n1(w). On the other hand, since

E, = { sup

< yn-l-l}a
0<t<tn+41

t
/ V(Bs,+s — Bs,)ds
0

it follows readily from the strong Markov property and the definition of
Sy, that the events E,, are mutually independent. Besides, using (1.2)
and reasoning exactly as in [12, page 4259] entails

Y P[E,] = +oo.

n>1

By the second Borel-Cantelli lemma, an infinity of events FE, occur
almost surely and by (3.4), we know that almost surely eventually
[281, tnt1] C [Sn,tnt1 + Sy This entails

/5 CV(Bds

By Khintchine’s LIL for Brownian motion,

sup < (14 28)K§a+2)/2f(tn+1) i.o.

28p <t<tn41

lim inf #
n—r+0o f(tn-i-l)

28n
‘ / V(Bs)ds
Sn

2(1
< 1iminfw

B )*=0 as.
n—+4o0o (tn+1) ( ")

Putting everything together and letting ¢ — 0 yields

1
(3.5) liminf——  sup < clet2/z

a.s.
n—+o0 f(tn) 25, 1 <t<t,

/2 Cv(Bds

Sn—1

Finally, we know from (3.2) that

*
25n-1

f(tn)

— 0 a.s.

which together with (3.5), the usual monotonicity argument, and the
fact that a.s.
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?

/2 C V(B

Sn—1

X < X5, ,+ sup
25p-1<t<t,

yields (3.3) as desired. o
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