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CHARACTERIZATIONS OF CLASSES OF
I, SETS IN DISCRETE ABELIAN GROUPS

COLIN C. GRAHAM AND KATHRYN E. HARE

ABSTRACT. A subset E of a discrete abelian group is an
Ip set if every bounded function on E is the restriction of the
Fourier transform of a discrete measure. Special examples of
Iy sets include (real) RIp sets and (real) FZIy sets (short
for Fatou-Zygmund interpolation sets): F is called (real) RIp
lor (real) FZIy] if every bounded (real) Hermitian function
on E can be interpolated by the transform of a discrete, real
[respectively, nonnegative] measure.

The two pairs of classes, (real) Rlp and (real) FZIp, are
shown to be identical for sets not containing the identity; the
class of real RIy sets is strictly smaller than the class of Iy
sets, and the class of FZIy sets is strictly smaller than the
real F'ZIp sets. That completes the problem of determining
which of these classes are different and which are the same.
Topological characterizations of these classes of sets are given,
as are some union results.

1. Introduction and summary of results. Let G be a compact
abelian group with discrete, dual group I'. A subset £ C I' is called
a Sidon set (respectively I, set)! if every bounded function on E can
be interpolated by the Fourier Stieltjes transform of a (respectively
discrete) measure on G. There are examples of Sidon sets that are not
Iy, but both classes are plentiful. Indeed, every infinite subset of I'
contains an infinite Iy set. For proofs, see [2, 3, 7, 10, 12, 13].

Iy sets have been extensively studied. During the 1960s and 70s
much of the work was related to topological characterizations of the
property, cf., [13, 14, 18, 22]. This line of research was extended in
[8, 20] where it was also proven that Sidon sets can be characterized by
having proportional I subsets that possess these topological properties
in a precise quantitative sense. More recent work, such as [5-9] and
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[16], has emphasized the study of particular classes of examples of I
sets, such as Hadamard sets and e-Kronecker sets (also called e-free
sets [4]).

In this paper we continue the study of subclasses of Ij sets, requiring
that the interpolating measure be real or nonnegative, in addition
to discrete. This continues [7], where the emphasis was on proving
the existence of infinite interpolation sets with those properties. Our
emphasis is on characterizing those classes of I sets and determining
whether they are the same or different from one another.

1.1. Definitions and results.

Definition 1. A function ¢ on a subset £ C I' is Hermitian if
o(X) = p(x~1) for all X € E with x~! € E.

Definition 2. A set £ C I is called:

(1) (real) RIy if every (real-valued) bounded Hermitian function ¢ on
E is the restriction of the Fourier-Stieltjes transform of a real, discrete
measure to E.

(2) (real) FZI, if every (real-valued) bounded Hermitian function ¢
on F is the restriction of a Fourier-Stieltjes transform of a nonnegative,
discrete measure.

The set E is called asymmetric if v € EN E~! implies v = y71.

Notice that a set E is (real) RIy (or FZI) if and only if EU E~! is
the same, so there is no loss in working with asymmetric sets, as we
frequently do.

The classes RIy and FZI, were introduced in [7]. Some trivial
observations include: RIy (or FZI) sets are real Rly (real FZIy);
and real RI; asymmetric sets are Iy. The class of real FZI, sets is
smaller than the class of RI, sets since the singleton consisting of the
identity element {1} of I is RIy but not real FZI,.

Less trivially, it is shown in [7] that E is Rl if and only if £ U £~}
is Iy and, consequently, in contrast to the analogous result for Sidon
sets?, the class of Rl sets (even in Z) is strictly smaller than the class
of I sets.
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Here we complete the argument, determining the classes which are the
same and which are different. We show that classes (real) RIy and (real)
F Z 1 are identical for sets not containing the identity (Proposition 3.1),
and that real RIj is the same as RIj for asymmetric subsets of Z. The
three classes Iy, real RIy/F ZIy, and Rly/F ZI, are distinct, as shown
by Examples 4.1 and 4.2.3

Our results are based, in part, on topological characterizations of
(real) RIg/FZIy sets; these are in the spirit of the classical work on
Iy sets. We use these characterizations to study the union problem in
Section 5.

The first sets where these kinds of interpolation properties were
studied were the Hadamard sets E = {n;} C N, where there is a
1 < g such that ¢ < njy1/n; for all j. Adaptation of the arguments
in [6, 16] shows that Hadamard sets are FZI, (see also [7, 15, 22]).
Other examples of F ZI, sets include e-Kronecker sets with e < /2, see
[5, 6, 9], and independent sets [7]. A main result of [7] is that every
infinite subset of I' contains an F'ZI set of the same cardinality.

2. Preliminaries.

2.1. Notation. For a compact abelian group G, G4 denotes the
corresponding group with the discrete topology. The Bohr compactifi-
cation of I' is denoted by T'. If E C T, E denotes the closure of E in T.
We write B(¢*°(E)) for the unit ball of ¢>°(E). A superscript r or 4+ on
a space of measures will denote the real-valued, respectively positive,
measures in that class, and the subscript d denotes discrete measures.

The following result is proved, with slightly more generality, in [7,
2.1 and 2.4]. The analogous result for I sets removes the constraints
that p should be real and ¢ Hermitian.

Proposition 2.1. Let G be a compact group and E C I'. The
following properties are equivalent.

(1) E is RIy (respectively FZIy).

(2) There is a constant N such that, for all Hermitian ¢ € B({>(E)),
ihere exists a p € MJ5(GQ) (respectively M (G)) with ||u]| < N and
1(v) = ¢(v) for ally € E.
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(3) There exists 0 < ¢ < 1 (equivalently, for every 0 < & < 1)
and integer N such that for all Hermitian ¢ € B({®(E)), there
exists a p € Mj(G) (respectively M7 (G)) with |pllp@e) < N and
[5(v) = e(v)| <€ for all vy € E.

(4) There exists a0 < € < 1 (equivalently, for all0 < & < 1) such that
for all Hermitiariga € B({>*(E)), there exists a pp € M} (G) (respectively
M (G)), with |i(y) = ¢(v)| < € for all y € E.

(5) There exists a 0 < & < 1, equivalently, for every 0 < ¢ < 1,
such that, for each pair of Hermitian functions r : E — {1} and
s : E — {0,%i}, there are measures pi,pu2 € MJ(G) (respectively
M7 (Q)), such that

lE1(X) —r(X)| < € and |p2(X) — s(X)| <€ for all X € E.

We call the least of the constants N satisfying (2) the RIy (respec-
tively F'Z1I,) constant of E.

Similar equivalencies hold for real RIy and real FZI, with “Her-
mitian ¢” replaced by “real-valued Hermitian ¢.” Consequently, an
asymmetric real Rl set is I.

”

We shall use the following result [7, Theorem 2.3] at several points.
Theorem 2.2. E C T is Rl if and only if EU E~! is Iy.

3. Properties and examples of (real) Ry and real FZI sets.

3.1. When (real) RI, sets are (real) FZI,. We recall that
a closed subset E of the locally compact abelian group I' is Helson
if, for every element f € Cy(FE), there exists a measure p on G such
that 1 = f on E. See, for example, [11, Chapter 2] for properties of
Helson sets. In our context, the important fact is that the closure of an
Iy set in the Bohr compactification T is a Helson subset of I.* Using
that observation about the Bohr closures of I sets, we will prove the
following proposition.

Proposition 3.1. Let E C '\ {1}. Then E is (real) RIy if and only
if E is (real) FZI,.
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Proof. Suppose E is RIy. We must show that for every bounded
Hermitian function ¢ on E U E~! there exists v € M (G) with U = ¢
on EUE™!.

Let A=FENE'and B=E\A,so EUE"'=AUBUB !isa
disjoint union of I sets. Applying Theorem 2.2, the closures of A, B
and B! are disjoint Helson sets in the Bohr compactification I'. Let
E denote the closure. Because E U E~! is Iy, we may extend ¢ to a

continuous Hermitian function ¢’ on EU (E)~ 1.

By a theorem of Smith [11, 2.5.1] or [21], for every continuous
Hermitian function ¢’ on the Helson set E U (E) !, there exists a
nonnegative v € My(G) = L*(G4) such that ¥ = ¢/ on E U (E)~ L.
(Here we apply Smith’s theorem to the case where his G, our T, is
compact.)

Then v € M (G) has ¥ = p on EUE~L.

The argument is similar if E is real RIy. The possibility that EUE !
is not Iy is irrelevant here, because if 1 € M (G) interpolates a bounded
real-valued Hermitian ¢ on E, then fi is continuous and Hermitian on
all of T and hence the same on the Helson set E U E—1, whether or not
that union is of disjoint sets.

It is obvious that if F is (real) FZI, then E is (real) RIy. o

3.2. Topological characterizations of real RIy/FZI; sets. It is
well known that I sets can be characterized by topological properties.
We list below the main classical results and refer the reader to [13, 18,
20] for proofs and further discussion.

Theorem 3.2. For E C T, the following are equivalent:
(1) E is Ip;
(2) For every subset F' C E, the sets F' and E \ F have disjoint

closures in T

(3) For every subset F C E there exists a 0 € My(G) such that (F)
and 6(E \ F) have disjoint closures in C.

(4) Ewvery 0,1 valued E-function can be extended to a continuous
function on E, equivalently, T'.
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The equivalence of these properties is due to the facts that Tisa
normal space and that C(T') is the uniform closure of {ii : u € M4(G)}.

In this section we obtain similar characterizations for real Rl sets.

It is convenient first to introduce some notation.

Notation 3.3. Let [' denote the quotient space of T where we
identify each X with its inverse x~!. We give I' the quotient topology
induced by the natural map ¢: ' — T.

As q is both closed and continuous, it follows that Tis compact and
normal.

Theorem 3.4. For an asymmetric subset E C T' the following are
equivalent:

(1) E is real RIy;
(2) For every F C E, q(F) and q(E \ F) have disjoint closures in T.

(3) For every F C E there exists a 0 € MJ(G), with ¢ real-valued,
such that G(F) and 6(E \ F) have disjoint closures in C;

(4) Every {0,1} valued E-function can be extended to a continuous,
real-valued function on q(E) (equivalently to T').

To prove Theorem 3.4, we need the following lemma.

Lemma 3.5. Let E,F C T, and suppose that q(F) and q(E) have
disjoint closures in T'. Then, for any € > 0, there ezists a p € M} (G),
with 1 real-valued, such that |[G(F) — 1| < € and |u(E)| < e.

Proof of Lemma 3.5. By normality, there exists a continuous function
f:T — R such that f(¢(F)) =0 and f(¢(F)) = 1.

Let S ={f: p € M}(G) and [ is real-valued}. Since a real measure
p with real-valued transform has the property that fi(x) = @(x!), any

it € S can be viewed as a function on I'. Moreover, such functions are
continuous with respect to the quotient topology on I'.
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The set S is a subalgebra of real-valued, _continuous functions on I’
that contains the real constants, namely kd.. If g(X) # ¢(¢), then
X # 1,91, and there exists a i € S separating the points ¢(X) and
q(). (One way to see this is to note that {X,X '} and {¢,% '} are
disjoint closed sets in I' and hence there exists a p € My(G) whose
Fourier transform is 0 on the first set and 1 on the second. Replacing
wby (u+5) + (m), we see that we have a real measure with real
transform.)

The Stone-Weierstrass theorem implies that S is dense in CR(f), and,
hence, that f can be approximated by some ji € S. mi

Proof of Theorem 3.4. (1) = (4). We interpolate a given {0, 1}
E-function by the Fourier-Stieltjes transform of p € MJ(G) and take
v =(1/2)(pn+ f1), so ¥ is real.

(4) = (3). Since the function that is 1 on F' and 0 on E'\ F has a
continuous extension to ¢(E), the sets ¢(F) and ¢(E \ F') must have
disjoint closures. By the lemma, there exists a p € MJ(G) with i

real-valued such that fi(E) and i(E \ F) have disjoint closures.

(3) = (2). Since & can be viewed as a continuous function on I', the
conclusion follows.

(2) = (1) follows easily from Lemma 3.5 by standard arguments. A
similar argument for Iy sets can be found in [15, page 129]. O

Corollary 3.6. An asymmetric set E s real RIy if and only if the
quotient map q is one-to-one on E (equivalently, E is asymmetr_ic) and
for all subsets FF C E, F and E \_F have disjoint closures in I.

Proof. (<). The two assumptions imply property (2) of the theorem.

(=). Property (2) of the theorem certainly implies FNE \ F = @. If
q is not one-to-one on E, then there is some X, X! € E with x # x 1.
Thus, X, X! must belong to the closure of disjoint subsets of E, say F
and E \_F respectively. But then ¢(X) belongs to the closure of both
¢(F) and g(E\ F). Thus (2) of the theorem implies both conditions. O

Corollary 3.7. An asymmetric set E is real Ry if and only if E is
Iy and E is asymmetric.
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3.3. Topological characterizations of RIy/FZI, sets. In this
subsection we topologically characterize R, sets.

Theorem 3.8. An asymmetric E is Rl if and only if

(1) For every F C E, there exists a 0 € Mj(G), with ¢ real-valued,
such that 5(F) and o(E \ F) have disjoint closures in C and

(2) The Bohr closure of {x € E: x> # 1} in T does not contain any
elements of order 2.

Remark 3.9. Condition (2) of the theorem holds, for example, if there
exists a 0 € MJ(G) such that o(E) = i. Example 4.1 shows that it is
not always the case that (1) implies (2).

Proof. Assume F is RIy. Since E is asymmetric, it follows that, for
each bounded Hermitian E-function ¢, there exists a 0 € M} (G) such
that o|g = . In particular, we can take ¢(F) = {0}, o(E \ F) = {1}.
Replacing ¢ by o + o we see that condition (1) holds.

Let E; = {X € E : X # 1}, and suppose that there is a v € E; of
order 2. Suppose o € M} (G) interpolates the Hermitian function ¢ =4
on F; and 0 otherwise on E. For any such o, we have o(y) = 4.

As 5(X) = 6(x~"), we have 5(X) = —i for X € E; ' and hence also
on the closure. But v € El_l, which gives a contradiction.

Now assume that conditions (1) and (2) hold. Then (1) implies E is
Iy, so it is enough to prove E U E~! is Iy by Theorem 2.2. As E~! is
also Iy, it is enough to prove that E and E~!\ E have disjoint closures.

So assume there are nets {X,}, {¢o} in E and E~!\ E, respectively,
that have the same limit . Since E is Iy, v ¢ I'. In particular, v # 1.
If o = 931, then ¢, € E71 N E, and this is not the case; thus, 1, is
not of order 2. As y~! = lim !, it follows from condition (2) that v is
not of order 2. Consequently, {X»},{%,'} are nets in E with different
limits and so, without loss of generality, they are distinct (eventually
they belong to disjoint neighborhoods of v and y~!, respectively).

Let F = {X,} and obtain o € M (G) as in hypothesis (1), separating
Fand E\F. Asy € F, 5(v) € 6(F) and, similarly, sincey~! € E\ F,
g(y~') € G(E\ F). But, as o is a real measure with real-valued
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transform, (y~!) = (), and this contradicts the assumption that
o(F) and o(E \ F) have disjoint closures. o

Corollary 3.10. Suppose G is divisible. An asymmetric set E C T’
is RIy if and only if it is real RIy.

Proof. If E is real RIy, then property (1) of Theorem 3.8 holds.

If 2 = 1, then y(z?) = 1 for all z € G. Since G is divisible, for
every g € G, there exists some = € G such that g = 2. Hence, v = 1,
property (2) of Theorem 3.8 is vacuous, and so F is RIj. mi

Corollary 3.11. For an asymmetric subset EE C Z the following are
equivalent:

(1) E is Rly;
2) E is real Rly;
3

(
(3) For every F' C E, there exists a 0 € Mj(T) and € < ¢ such that
G(F) <eand|G(E\F)|>9.

If 0 € E, then the preceding are equivalent to E being FZ 1.

4. Two examples.

Example 4.1. A set that is Iy but not real RIy:
Consider F; = E U F where

E={10+10j+1:j>1}and F = {-10/ —1:j > 1}.

E and F are both FZ I sets, being Hadamard [7]. If we put b = 27/10,
then 6, (E) = {€2™/10} while §,(F) = {e2""/10}. Thus, ENF is empty,
and, hence, Fj is Ij.

However, E N F~1 is not empty, so Fy U E; is not I and therefore
E; is not RIy by Theorem 2.2. It also follows from this that ¢(E) and
q(F) do not have disjoint closures, and, although ¢ is one-to-one on the
asymmetric set F, the mapping ¢ is not one-to-one on the closure of
E,. Thus, the failure of Theorem 3.4 (2) implies that E; is not real
RIy.
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Example 4.2. A set that is real FZI, (hence real RIy) but not Rly:

Consider I' = Z x D5, and take E = {(j,7;) : j € N}, where {v;}
is an independent set in Dy. Proposition 2.1 (5) implies that F is real
FZI since the independence of {v,} ensures we can interpolate +1
valued sequences by positive measures having real transforms. This
also shows that (1) of Theorem 3.8 is satisfied and that E is .

Now E~' = {(—j,7;) : 7 € N}. If we choose a net {j,} of positive
integers that tends to 0 € Z, then {—j,} also tends to 0 and so F and
E~1! do not have disjoint closures. Thus, E U E~! is not Iy and so, by
Theorem 2.2, E is not Rlj.

One can also directly see the failure of hypothesis (2) of Theorem 3.8
(and hence hypothesis (1) of Theorem 3.8 does not imply hypothesis
(2)). Indeed, any cluster point of the net {(ja,7;.)} is of order 2 and
is contained in the Bohr closure of {X € E : X not of order 2}.

5. Union results. In contrast to the situation for Sidon sets, it
is not in general true that the union of two Iy sets is again Iy; see
Example 4.1. Indeed, the union of two I sets is Iy if and only if the
sets have disjoint closures in I'. Similar results hold for unions of real
RIy and RIy/FZIy sets.

Proposition 5.1. Suppose that E and F are (real) RIy sets, and
assume that q(E) and q(F') have disjoint closures in T'. Then EUF is
(real) RIy.

Proof. Let N be the larger of the (real) RI; constant of E and F.
Apply Lemma 3.5 to choose p € M7 (G), with real transform, such that
|Z(F) — 1] < € and |(F)| < € for e < 1/2N. Given (real) Hermitian
© € B((I°°(E U F)), obtain real, discrete measures u1, u2 with gy = ¢
on E and -

= 14 _A'ul on F.
o

Then, for w = p1 + p2 * u, we have |G(y) —p(y)|<1forye EUF. O

Corollary 5.2. Suppose that E and F are (real) RIy sets, and
assume that there is some o € M} (G), with real transform, such that
0(E) and 5(F) have disjoint closures. Then E'UF is (real) RIy.
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Example 5.3. A union example: separation by the Fourier trans-
forms of positive, discrete measures is not enough for the union of FZ I
sets to be F'Z1I.

Take E, F' as in Example 4.1. Then E and F are F'Z I, sets, but their
union is not RIy. If we put b = 27/10, then §y(E) = €*>™/1°  while
8,(F) = e~2mi/10_ Consequently, in the union results for RIo/FZI,
sets, it is not sufficient for the two sets F and F to have disjoint closures
in T or for a positive, discrete measure o to exist with the property that
0(F) and ¢(F) have disjoint closures.

Here is a union result for FZI; sets which is again topological, but
of a different flavor.

Proposition 5.4. Let E,F C I'. Assume F = U;y:IFj, and that, for
all 7, Fji NE is empty, Fij_l NE is empty and 1 ¢ E. Then there is
ap € M](G) such that i =0 on E and fi > 1/2 on F. If, in addition,
FE and F are FZ1,, then so is EUF.

Proof. The assumptions on E and F ensure that one can choose a
neighborhood V of the identity in I" such that

V.VYnE=g@, (FF'.v.Vv-)nE=g,

and

—1 _ e
(Fj-Fj -V.V-HNE=2.
Now set f = Zil fj, where
1
fi= m (1(Fj-V)UV * l(Fj_l-V—l)uV—1> :
Then f; > 1/2 on F; and f; = 0 on E. Since f is positive definite on
', there is a positive discrete measure y such that f = j.

The existence of such a measure certainly ensures that if £ and F
are F'ZI, then so is their union. O

Corollary 5.5. If E is FZI, and F is a finite set with 1 ¢ F, then
EUF is FZI,.
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Proof. As EUE~! is FZI, there is no loss of generality in assuming
FENE is empty. Take F; = {)\;},1 < j < N, where F = {\1,...,An},
and use the fact [19] that the Bohr closure of an I set has no cluster
points in I to see that the hypotheses of the proposition are satisfied. O

ENDNOTES

1. Short for interpolation set.

2. An asymmetric Sidon set in the dual of a connected group has
the property that every bounded Hermitian function on the set can
be interpolated by a nonnegative measure ([1]); the term “Fatou-
Zygmund” (or FZ) property was used for such sets in [17].

3. It is convenient in some ways to carry on the “distinction” since
(real) RIy is easier to establish and (real) F'ZI, can be easier to apply.
We keep this in mind by writing “(real) RIy/FZI,.”

4. This is easily seen from the fact that the closure of an I set E in the
Bohr compactification is identical to the Stone-Cech compactification
of E.
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