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AFFINE ISOPERIMETRIC INEQUALITIES
FOR L,-INTERSECTION BODIES

LU FENGHONG AND MAO WEIHONG

ABSTRACT. An Lyp-analog of the Busemann intersection
inequality and an Lp-dual analog of the L,-Petty projection
inequality for the Lp-intersection body (p < —1) are estab-
lished. Moreover, the Busemann-Petty problem is studied
and inequalities for the volume of an Ly-intersection body
(p < —1) are proved.

1. Introduction. Intersection bodies were first explicitly defined
and named by Lutwak in the important paper [11]. The closure
of the class of intersection bodies was studied by Goody et al. [8].
The intersection operator and the class of intersection bodies played a
critical role in Zhang’s [20] and Gardner’s [5] solution of the famous
Busemann-Petty problem. (See also Gardner et al. [7].) The study
of projection bodies has a long and complicated history. Projection
bodies go back to Minkowski [6, 19]. An extensive article that details
this is by Bolker [1]. After the appearance of Bolker’s article, projection
bodies have received considerable attention, see, e.g., [2, 6, 10, 19].
As Lutwak [11] shows (and as is further elaborated in Gardner’s book
[6]), there is a duality between projection and intersection bodies. A
number of important results regarding these notions were proved, in
particular, two fundamental inequalities: the Busemann intersection
inequality ([3]) and the Petty projection inequality ([17]).

In recent years Lutwak in [12, 13], using Firey’s p-sum [4], extended
the Brunn-Minkowski theory to the so called L,-Brunn-Minkowski
theory. In the L,-Brunn-Minkowski theory, Lutwak, Yang and Zhang
introduced the notion of the L,-projection body and established the
following L,-Petty projection inequality (1.1), see [15].

2010 AMS Mathematics subject classification. Primary 52A20, 52A40.

Keywords and phrases. Lp-intersection body, L,-centroid body, Ly-projection
body, Lp-Petty projection inequality, Busemann intersection inequality.

Supported by Innovation Program of Shanghai Municipal Education Commission

No. 10YZ1.
Received by the editors on June 18, 2007, and in revised form on August 22,

2007.
DOI:10.1216/RMJ-2010-40-2-489 Copyright (©2010 Rocky Mountain Mathematics Consortium

489



490 LU FENGHONG AND MAO WEIHONG

Theorem A*. If K is a convex body that contains the origin in its
interior in R™, then, forp > 1,

(L.1) V(E) PPV (I K) < w0/,

with equality if and only if K is an ellipsoid centered at the origin.

Haberl and Ludwig in [9] define the L,-intersection body and estab-
lish some properties of L,-intersection bodies.

One purpose of this paper is to establish the following star dual analog
of the above L,-Petty projection inequality.

Theorem A. If K € 8} and p < —1, then
(1.2) V(E) " PPV K) > wplP,

with equality if and only if K is a ball centered at the origin.

In fact, in Section 3 we will establish the L,-analog of the Busemann
intersection inequality (Theorem 3.3) and the star dual analog of L,-
Petty projection inequality for L,-intersection body (p < —1).

The other aim of this paper is to study the Busemann-Petty problem
and to establish some inequalities for volume of L,-intersection bodies
(p < —1), Section 4.

2. Notation and preliminaries.

2.1. Support function, radial function and polar body. Let
K™ denote the set of convex bodies (compact,convex subsets with
nonempty interiors) in the Euclidean space R"; for the set of convex
bodies containing the origin in their interiors in R, write K. Let
8§71 denote the unit sphere in R™.

If K € K™, then its support function, hx = h(K,-) : R* = R, is
defined by

(2.1) h(K,z) =max{z-y:y € K}, x€R",

where x - y denotes the standard inner product of z and y. The
Hausdorff distance, §(K, L), between K,L € K", can be defined by
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0(K,L) = |hg — hL|s, Where | - | is the sup-norm on the space of
continuous functions, C'(S™1).

Associated with a compact subset K of R™, which is star-shaped
(about the origin), is its radial function, px = p(K,-) : R"\ {0} = R,
defined by

(2.2) p(K,z) =max{A\ >0: Az € K}, xe€R"\{0}.

If pg is positive and continuous, K will be called a star body (about
the origin). Let S” denote the set of star bodies (about the origin) in
R"™. Two star bodies K and L are said to be dilates (of each other) if
p(K,u)/p(L,u) is independent of u € S™ L.

If K € K7, its polar body K*, is defined by
(2.3) K'={zeR":z-y<l,ye K}

It is easy to verify that (K*)* = K. From definition (2.3), it follows
that if K € K7, then the support function and the radial function of
K™ satisfy

1 1
2.4 hg = — and .= —
(2:4) K PK pK hk

2.2. L,-dual mixed volume. For K,L € S} and p > 1, € > 0, the
L,-harmonic radial combination K +p ¢ - L is defined (see [13]) as the
star body whose radial function is given by

p(K +pe-L,)7P = p(K,- )P +ep(L,-)">.

The Ly-dual mixed volume V,p(K, L) of star bodies K, L, for p > 1,
was defined in [13] by

(2.5) Y (K,L)= lim V(K +pe- L) — V(K)
p :

e—0t £

The definition above and the polar coordinate formula for volume
give the following integral representation of the L,-dual mixed volume

V_p(K, L) of star bodies K, L, for p > 1 ([13, Proposition 1.9])

~ 1

20 VL) = [ o0 (L) P dS (),
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where integration is with respect to the spherical Lebesgue measure S
on S"~ 1,

From the definition of the L,-dual mixed volume, it follows immedi-
ately that for every K € S,

(2.7) V_,(K,K) = V(K).

We shall also need a basic inequality for the L,-dual mixed volumes.
For p > 1, the L,-Minkowski inequality for the L,-dual mixed volumes
states that for star bodies K and L, see [13],

(2.8) V_p(K,L) > V(K)"t)/ny(L)=r/m,
with equality if and only if K and L are dilates.

2.3. Ly-projection body and L,-centroid body. If K € K} and
p > 1, then the L,-projection body II,K of K is the origin-symmetric
convex body whose support function is given by ([14])

1
(2.9) h(IL, K, u)” = m/g Ju- v dSy (K, v),
n,p*n n—
where
__ Wnip
Cnyp = —
WaWnpWp—1

and w,, denotes the n-dimensional volume of the unit ball B in R",

namely,
_ . n/2 n
Wy =T /F<l + 5)

If K € S} and p > 1, then the L,-centroid body I'y K of K is the
origin-symmetric convex body whose support function is given by

1
2.10 hI‘K,upzi/ u - z|Pdx,
( ) ( p ) Cnth(K) K| |

where the integration is with respect to the Lebesgue measure (see [14,
15]).
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2.4. Star dual of a star body. Associated with a star body L € S8
is its star dual L°, which was introduced by Moszyriska [16]. Let i be
the inversion of R™\{0}, with respect to S"~!:

Then the star dual L° of a star body L € S is defined by
L° = cl(R™\i(L)).
It is easy to verify (see [16]) that for every u € S" 1,

(2.11) p(L°,u) =

3. L,-analog of the Busemann intersection inequality. The
intersection body of a star body is defined by Lutwak in [11]. If K € 8",
then the intersection body I K of K is the origin-symmetric star body
whose radial function, restricted to S™~1, is given by

p(IK,u) = v(K Nu'),

where v(K Nut) denotes the (n — 1)-dimensional volume of the section
of K by the linear hyperplane orthogonal to u, see [11].

In [9] Haberl and Ludwig introduced the notion of the L ,-intersection
body I,K of a star body K for p < 1. If K € § and p < 1, then the
L,-intersection body I, K of K is the origin-symmetric star body whose
radial function, for u € S"~!, is given by

(3.1) p(I, K, u)? = / |u-z|7Pde.
K

Further, Haberl and Ludwig [9] established the following relation
between the intersection body and the L,-intersection body:

1-p),K —IKasp—1".
( P)ip p
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In the present paper, we only discuss the case p < —1. For p < —1,
we modify slightly definition (3.1): If K € 8” and p < —1; then the
L,-intersection body I, K of K is the origin-symmetric star body whose
radial function, for v € S, is given by

1
(3.2) p(ILK,u)? = —/ |u-z| P de.
Cn,—pWn JK
The normalization above is chosen so that for the standard unit ball B
in R", we have I,B = B.

From equality (2.4) and definitions (2.10) and (3.2), we can immedi-
ately get

Theorem 3.1. If K € S and p < —1, then

V(K)>1/pF* K.

Wn

(3.3) LK = <

Equality (3.3) shows that, up to a factor, the L,-intersection body is
just the polar of the L_,-centroid body when p < —1.

Theorem 3.2. If K € 8 and p < —1, then for ¢ € SL(n),
(3.4) LoK = ¢ LK,

where ¢t denotes the inverse of the transpose of ¢.

Proof. Note that, if ¢ € SL(n), then I',¢K = ¢I',K (see [14, 15]).
Thus, by equality (3.3), we immediately obtain the result. o

One of the classical affine isoperimetric inequalities is the Busemann
intersection inequality:

Theorem 3.3 [3]. Let K be a star body in R™. Then
V(K)'" "V(IK) <wi ™"

with equality if and only if K is an ellipsoid.
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We will establish the L,-analog of the Busemann intersection in-
equality.

Theorem 3.3. If K € S} and p < —1, then
(35) V)® V(1K) < wlE

with equality if and only if K is an ellipsoid centered at the origin.

The following statement is a “star dual” version of the L,-Busemann
intersection inequality, which may also be considered as a “dual”
version of the L,-Petty projection inequality (1.1), concerning the polar
duals of convex bodies.

Theorem 3.4. If K € S and p < —1, then
(3.6) V(E)"P/PV(IPK) > wit/?

with equality if and only if K is a ball centered at the origin.
In order to prove Theorems 3.3 and 3.4, we need the following lemma.

Lemma 3.1 [15].If K € S} and p < —1, then
V(K)V(* ,K) < w}

with equality if and only if K is an ellipsoid centered at the origin.

Proof of Theorem 3.3. From Theorem 3.1 and Lemma 3.1, for p < —1,

T () ) <

By the volume formula,

V(E)V (LK)V(K) ™™ < whw, "7,

that is,
V(K)(p_")/pV(IpK) < wr(fp—n)/p

with equality if and only if K is an ellipsoid centered at the origin. O



496 LU FENGHONG AND MAO WEIHONG

Proof of Theorem 3.4. From equality (2.11), the Holder inequality
([6, 19]) and the polar coordinate formula for volume, we have

in=1 / oI, u)"2p(K, w) /%S (u)
Snfl
1

= [ (e ) S )
n Sn—1

(% /STH p(K,u)" dS(u)> V2 (% /STH D(K°,u)" dS(u)> 1/2
= V(K)*V(K°)'?,

IN

that is,
(3.7) V(K)V(K®) > wy,

According to the equality condition of the Hélder inequality, we know
that equality in inequality (3.7) holds if and only if K is a centered
ball.

Combining inequality (3.5) with inequality (3.7), we have
V(K)("_p)/”V(I;K) > WP,

According to the equality conditions of inequality (3.5) and inequality
(3.7), we know that equality in inequality (3.6) holds if and only if K
is a ball centered at the origin. O

4. Monotonicity of volume for L,-intersection bodies. The
work of Lutwak [11] represents the beginning of Busemann-Petty prob-
lem’s ([6, 19]) eventual solution. In fact, Lutwak’s result (Theorem
10.1) can be formulated as follows. Let I"™ denote the set of intersec-
tion bodies of star bodies.

Theorem 4.1 [11]. Let K € I", and let L be a star body in R™. If

IK C IL,
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then
V(K) < V(L),

with equality if and only if K = L.

We will establish a similar result for L,-intersection bodies. Let Ig
denote the set of L,-intersection bodies of star bodies.

Theorem 4.1. Let K € I}, and let L be a star body in R". If
p<—1 and
I,K CI,L,

then
(4.1) V(K) > V(L),

with equality if and only if K = L.

Theorem 4.1 is just an Ly-version of Busemann-Petty problem’s
solution for the Lp-intersection body, which is the dual analog of
Shephard problem’s solution for the L,-projection body, which was
studied by Ryabogin and Zvavitch [18].

Moreover, we establish the following inequality for L,-intersection
bodies.

Theorem 4.2. Let K,L € 8} and p < —1. If, for every star body Q
in R", V,(K,Q) < V,(L,Q), then

(4.2) V(LK) > V(I,L),

with equality if and only iof I, K = I, L.
We need the following lemma in order to prove Theorems 4.1 and 4.2.

Lemma 4.1. If K,L € S} and p < —1, then

Vo(L,I,K) = V, (K, I L).
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Proof. From definitions (2.6) and (3.2), combined with Fubini’s
theorem, it follows that

1
V(L LK) = /S L) (L )P dS ()
1 1
n Jgn-1 NCp—2 pWn
. / |u-v| Pp(K,v)" PdS(v)dS(u)
Sn—1

1 1
Y
n Jgn-1 NCp—2,pWn

. \/Snil lu - v|"Pp(L,u)" P dS(u) dS(v)

1

-1 /SH (K, v)" P p(I, L, v)P dS(v)

= V,(K,I,L). ©

Proof of Theorem 4.1. Let p < —1. Since I, K C I,L, using definition
(2.6), we have

Vo(Q, LK) > V,(Q, L,L),
for any @ € S'. From Lemma 4.1, we get

(4.3) VoK 1p,Q) 2 Vi (L, 1,Q),

with equality if and only if K = L. Since K € I}, taking I,Q = K in
(4.3) and using equality (2.7) and inequality (2.8), we obtain

(44)  V(K)=Vp(K,K) > V,(L,K) > V(L) Py (K)P/m,

Therefore,
V(K) > V(D).

According to the equality conditions of the L,-Minkowski inequality
(2.8) and inequality (4.3), we know that equality in (4.1) holds if and
only if K = L. |
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Proof of Theorem 4.2. Let p < —1. Since K,L € 8§ and

V,(K,Q) < V,(L,Q),

for any Q € S;. Taking Q) = I, M for any M € S}, we get

(45) VoK, 1,M) < Vy(L, I,M).
By Lemma 4.1,
(4.6) Tp(M, I,K) < Tp(M, I, ).

Let M = I,L; by (2.7) and (2.8),
(4.7) V(I,L) > V,(I,L, I,K) > V(I,L)" P/"V(I,K)?/;

therefore,
V(I,K) > V(I,L).

Because inequalities (4.5) and (4.6) are equivalent, but V,,(M, I,K) =
Vp(M, I,L) for any M € S8? if and only if I, K = I,L, and equality in
inequality (4.7) holds if and only if I, K and I, L are dilates. Therefore,

equality in inequality (4.2) holds if and only if I, K = I, L.
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