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OSCILLATORY PROPERTIES OF SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

7. DOSLA AND N. PARTSVANIA

ABSTRACT. Necessary and sufficient conditions for oscil-
lation and non-oscillation of the differential equation

u + f(t,u,u') =0
are given, where f : [a,+00) x R? — R is a continuous
function such that f(¢t,z,y)z > 0 for t > a, z and y € R.
The results obtained extend recent results of [21-23] stated
for the equation u'' +h(t)g(u) = 0, where g(z)z > 0 for z # 0.

Some examples illustrating the sharpness of oscillation criteria
are also given.

1. Introduction. We consider the second order nonlinear differen-
tial equation

(1.1) u + f(t,u,u’) =0

on the infinite interval [a, +00), where @ > 0, and f : [a, +00) xR? — R
is a continuous function such that

(1.2) flt,z,y)x >0 fort>a, x and y € R.

A solution u of this equation is said to be proper if it is defined on
some interval [ag, +00) C [a, +00) and satisfies

sup{|u(s)| : s>t} >0 for¢> ag.

A proper solution is said to be oscillatory if it has a sequence of zeros
tending to +00, and it is said to be non-oscillatory in the opposite case.
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Equation (1.1) is said to be oscillatory if all its proper solutions are
oscillatory, and it is said to be non-oscillatory otherwise. Equation (1.1)
is said to be strongly non-oscillatory if all its proper solutions are non-
oscillatory.

In the well-known works by Kneser [16], Hille [8], Nehari [18, 19],
Atkinson [2], Kurzweil [17], Kiguradze [9-13], Belohorec [4, 5], Butler
[6] and Wong [25-27], one can find conditions for oscillation, non-
oscillation, and strong non-oscillation of various classes of equations of
the type (1.1). These conditions are unimprovable, in a certain sense,
and later have been generalized by a number of authors. Main results
obtained in this direction are contained in the monographs [1, 3, 14,
24].

During the last decade, several papers have been devoted to the
investigation of oscillatory properties of the differential equation

(1.3) u” + h(t)g(u) =0,

where h : [a,+00) — [0,400) and g : R — R are continuous functions
such that
g(x)z >0 for x #£0,

see [20-23, 28] and the references therein. The oscillation (non-
oscillation) theorems, given in these papers, concern the case where

t?h(t)>1 fort>a (0<t*h(t) <1 fort > a),
and there exists r > 0 (there exist 7 > 0 and o € {—1,1}) such that

ole)

NG

+(jz|) for |z| >r <M < i + 4(|z|) for o > r>,
T

where 6 : [r,4+00) — (0,+00) is a continuous function satisfying the
condition

lim §(z) =0.

Tr—+00

In particular, results in this direction are obtained by Sugie and
Yamaoka [22, 23] which are formulated in terms of the iterated
logarithms as follows.

Denote

(1.4) eg =0, er =expler_1) (k=1,2,...).
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Following Bellman [3], for an arbitrary natural n > 2 and ¢ > e,,_1, we
set

(1.5) In; t = Int, Ingi1t =In(lngt) (k=1,...,n—1).
Moreover, throughout the paper, we assume that

lnot =1.

In [22] and [23], respectively, the following theorems are proved.

Theorem 1.1. Let 0 < t?h(t) < 1 for t > a. Suppose that there
exist o € {—1,1}, n € N and a sufficiently large constant r > 0 such

that
glz) 1 - u 2 -
= < 1 E (il_lolni:c > for ox > r.

k=0

Then equation (1.3) is strongly non-oscillatory.

Theorem 1.2. Let t>h(t) > 1 for t > a. Suppose that there exist
n € N, a sufficiently large constant r > 0 and a constant p > 1 such
that

g($)>1 n—1 kl ) -2 Tbl ) -2 S
T_Z[Z(gniw> +u<i1:[1ni:p> ] for |z| > r.

k=0

Then equation (1.3) is oscillatory.

Note that for n = 1 Theorems 1.1 and 1.2 are proved by Sugie and
Kita [21]. It is also worth noting that in non-oscillation and oscillation
theorems given in [20, 28], a stronger assumption on the function g is
assumed than in Theorems 1.1 and 1.2.

In the present paper, necessary and sufficient conditions for the non-
oscillation of equation (1.1) are given. We establish effective and
optimal, in a certain sense, sufficient conditions for non-oscillation and
oscillation of equation (1.1) when

o f(t,z,y) < p(t)|z] + q(t, |z])|z*

(1.6)
fort >ag, ocx>r, yeR
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and

@ f(tz,y)sgna > p(t)]e] + q(t, |z])|z|*
fort >ag, |z|>7, yeR,

where p : [ag, +00) — [0,400) is a continuous function such that the

equation

(1.8) w”" +pt)w=0

is non-oscillatory, ¢ : [ag,+0o0) X [r,+00) — [0,400) is continuous
function, o € {—1,1}, A € R, ap > a, and r > 0 are constants.

The particular case of one of our oscillation theorems (see Theo-
rem 3.2 and Corollary 3.2 below) is the above formulated Sugie-Kita-
Yamaoka result (Theorem 1.2). Non-oscillation theorems given in our
paper are not generalizations of Theorem 1.1, because under the con-
ditions of these theorems, in contrast to equation (1.3), equation (1.1)
admits the coexistence of nonoscillatory and oscillatory solutions, as
Remark 2.2 below illustrates.

2. Non-oscillation theorems. We start this section with the
following two lemmas which play a crucial role in the proof of our
general oscillation and nonoscillation theorems.

Lemma 2.1. Let u : [ap,+00) — R be a twice continuously
differentiable function satisfying the inequalities

u(t) >0, u’(t) <0 fort > ayp.
Then

u'(t) >0 fort> ap.

Lemma 2.2. Let there exist ag > a and twice continuously differen-
tiable functions w; : [ag,+00) = R (i = 1,2) such that

wi(t) < walt), (1) [wf (8) + F(t,wit), wi(1)] <0
fort>ap (i=1,2).

(2.1)
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Let, moreover,

ft,z,y)z >0 fort > ag,

(2.2) wi(t) <z <ws(t), yeR.

Then equation (1.1) has a solution u : [ap,+00) — R satisfying the
inequalities

(2.3) wi(t) <u(t) <wsq(t) fort > ap.

Lemma 2.1 is a particular case of the well-known lemma by Kiguradze
[9], and Lemma 2.2 is a particular case of Theorem 5.1 by Kiguradze
and Shekhter [15].

Theorem 2.1. Let condition (1.2) hold. Equation (1.1) is nonoscil-
latory if and only if there exist numbers ag > a, 0 € {—1,1}, and a
twice continuously differentiable function w : [ag, +00) — R such that

(2.4) ow(t) >0, J[w"(t) + f(t,w(t),w'(t))} <0 fort> ap.

Proof. The necessity is obvious. Let us prove the sufficiency. For
the sake of definiteness, we will assume that o = 1, because the case
o = —1 can be treated analogously.

In view of (1.2) and (2.4) we have
w(t) >0, w”(t) <0 fort > aop.

Hence, by Lemma 2.1, it follows that w'(¢) > 0 for t > ag, and
consequently,

(2.5) w(t) > w(ag) >0 fort > ag.

Put
wi (t) = w(ag), wa(t) = w(t).
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Then, in view of (1.2), (2.4) and (2.5), inequalities (2.1) and (2.2) are
satisfied. By Lemma 2.2, these conditions guarantee the existence of a
solution u : [ag, +00) — R satisfying inequalities (2.3), i.e.,

0 < w(ag) < u(t) <w(t) fort > ay.

Therefore, equation (1.1) is non-oscillatory. o

Corollary 2.1. Let condition (1.2) hold. Suppose that there exist
o €{-1,1}, n € N and a constant ag > a such that the inequality

(2.6)  of(t,z,y) < % [nzjl <i1i)lni t) B + <I}11nk x2> 2]

k=0
1s fulfilled on the set

n 1/2
(2.7) {(t,:c,y) . t>ag, oT > <tHlnkt> , yER}.
k=1

Then equation (1.1) is non-oscillatory.

Proof. We assume that ag > e,. Let

w(t) = o(t f[ Iny, t>1/2.

Then due to (1.4) and (1.5), the function w : [ag, +00) — R is twice
continuously differentiable,

Ingt>1(k=0,...,n)

and

n
w(t) =t ][Ikt >t fort> ap.
k=0

We have (see e.g. [3])

1 n m —2
w" (t) = ~ 12 Z (kli[olnk t> w(t) fort > ap.

m=0
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From here and (2.6) we get
o[w"(t) + f(t,w(t), w'())] ) L .
< [ (L) (o) |

<0 fort > ag.

Therefore, all the conditions of Theorem 2.1 are satisfied which guar-
antees the non-oscillation of equation (1.1). O

Corollary 2.2. Let condition (1.2) hold. Suppose that there exist
o€ {-1,1}, n € N and constants ap > a and r > 0 such that

n k —2
(2.8) of(t,z,y) < % kzzo (gmi m2>

fort > ag, ox >r, y € R. Then equation (1.1) is non-oscillatory.

Proof.  Without loss of generality we can assume that ap >
max{a, e,,r}. Then

n 1/2
Ingt > 1, lnkaZlnktforaaCZ(tHlnkt) , t>agp.
k=1

Thus (2.8) implies that inequality (2.6) is satisfied on the set (2.7). O

Corollary 2.3. Let condition (1.2) hold. Suppose that there exist
o € {-1,1}, n € N, and constants a € (0,(1/2)), 8 > 0, and
ag > a+ e, such that

29)  oftry) <D [a@ —e)t (% B “)2 (m—tﬂ

In,, 22

fort > ag, ox > t'/2, y € R. Then equation (1.1) is non-oscillatory.

Proof. Let w(t) = ot'/2. Using (2.9) one can verify that the function
w satisfies (2.4). O
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Corollary 2.4. Let condition (1.2) hold. Suppose that there exist
numbers ag > a, r > 0, o € {=1,1} and a continuous function
g : [ao, +00) X [r,+00) = [0,+00) such that

(2.10) of(t,z,y) < g(t,|z]) fort 2 a0, ox=r, y€ER,

and the equation
v +g(t,v) =0

has at least one solution v : [ag,+00) — [r,+00). Then equation (1.1)
is mon-oscillatory.

Proof. Let
w(t) = ov(t).

Then obviously cw(¢t) > 0 for ¢ > ag. Using (2.10) we have

o[w” (t) + f(t, w(t),w' ()]
< ow"(t) + gt [w()]) = " (1) + g(t, v(0))
=0 fort>ag.

Consequently, inequalities (2.4) are satisfied and, by Theorem 2.1,
equation (1.1) is non-oscillatory. O

Let p : [a,+00) — R be a continuous function. Following Hartman
[7], a solution w of equation (1.8) is said to be principal if there exists
an ag > a such that

“+ o0
w(t) # 0 for ¢t > ao, / w2 (t) dt = +oo.

ao

It is well known that if equation (1.8) is non-oscillatory, then it has a
principal solution which is determined uniquely up to a multiplicative
constant (see [7, Chapter XI, Section 6, Theorem 6.4]).

Theorem 2.2. Let conditions (1.2) and (1.6) hold, where ag > a, r >
0, A € R, 0 € {-1,1} are constants and p : [ag, +00) — (0,+00) and
q : [ag,+00) X [r,+00) — [0,+00) are continuous functions. Suppose
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that equation (1.8) is non-oscillatory and w : [ag, +00) — [1,+00) is
its principal solution. Let

t

(2.11) wop(t) =710 + /wfz(s) ds,

ao

where 19 > 1, the function q is non-increasing (non-decreasing) in the
second argument, and either the condition

+oo
(2.12) / wl A () wo(t) (¢, cw(t)) dt < +oo

ao
holds for some ¢ > r/w(agp), or the condition

o0
(2.13) / W (1) wd (8) g(t, ewo (£)w(t)) dt < +oo

ao

holds for some ¢ > r/(wo(ag)w(ap)). Then equation (1.1) is non-
oscillatory.

Proof. For the sake of definiteness, we will assume that ¢ is a non-
increasing function in the second argument. The case when ¢ is a
non-decreasing function in the second argument can be considered
analogously.

By Corollary 2.4, it is sufficient to prove that for some t; > agy the
equation

(2.14) v + p(t)v + q(t,v)v* =0

has a solution v : [tg, +00) — [r, +00).

Using the Liouville transformation
(2.15) T = wp(t), v(t) = w(t)z(r),
equation (2.14) is reduced to the equation

(2.16) 2"+ q(r,2)2* =0,
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where ' denotes the derivative with respect to 7 and

d(r,2) = w3t () q(t, w(t)z).
Obviously, the function G : [r9, +00) X [r, +00) — [0, 400) is continuous
and non-increasing in the second argument.

If for some 71 > 7o equation (2.16) has a solution z : [r,4+00) —
[r,+00), then the function v, given by equalities (2.15), is a desired
solution of equation (2.14). Therefore, it remains to prove that for
some 11 > 19 equation (2.16) has a solution z : [ry, +00) — [r, +00).

Let ¢g > c and
. { cé for A > 0,
C1 =
¢ for A <0.

Let ¢ : [19, +00) — [ag, +00) be a function inverse to wy. Consider the
functions
q1() = crw* A (t)q(t, cw(?)),
¢2(7) = exw® (w5 (H)a(t, cwo(t)w(?)),
where t = ¢(7). Then

(2.17)

(2.18) 0<q(r,z) <qi(r) for 7 > 19, ¢<z<cp,
(2.19) 0<g(r,z) <gr) for > 19, 1 <z<coT.
If condition (2.12) is fulfilled, then due to (2.11) and (2.17) we have

+oo +oo
(2.20) / rq1()dr = o1 / W () wo (£)g(t, cw(t)) dt < +o00;

70 ao

similarly, if condition (2.13) is fulfilled, then

+o0 +oo
(2.21) / e (F)dr = &1 / W () (H)q(t, cwo (t)w(t)) dt < +oo.

By Corollary 8.2 in [14], conditions (2.18) and (2.20) (conditions
(2.19) and (2.21)) guarantee the existence of a number 74 > 7y and a
solution z : 11, +00) — [r, +00) of equation (2.16) such that

TETOO z2(t)=c¢ (TETOO (2(1)/7) = c). O
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Remark 2.1. If

p(t) = 5 <p(t) = M where 0 < a < %)

then

1
w(t) =t/%, wp(t) = Int <w(t) t%, wo(t) = 2at >,

and conditions (2.12) and (2.13), respectively, take the forms

“+ o0 “+ oo

/t““)/Z Int q(t, ct'/?)dt < +o00 (/t“(*‘”“q(t, ct®)dt <+0°>’

ao a0
+00 o
/1,41“)/2 It g(t, ct'/? Int)dt < +oo</t“+)‘(1_a)Q(t, ct'~*)dt <+<>0>-
ao a0

Remark 2.2. The conditions of the above-given theorems and their
corollaries do not guarantee the strong non-oscillation of equation (1.1).
Indeed, if

x for |z] <1,
flt,z,y) =< (2—|z|)sgnz for 1 < |z| < 2,
0 for |z| > 2,

then equation (1.1) is non-oscillatory but not strongly non-oscillatory
since along with the non-oscillatory solution u(t) = ¢, where [c| > 2,
it also has the oscillatory solution u = csint, where ¢ # 0 and
|c] < 1. Note that in this case for equation (1.1) the conditions of
both Theorems 2.1 and 2.2 are satisfied.

3. Oscillation theorems. For an arbitrary p > 0, we suppose

it p) = inf{|f(t,z,y)| : |x| = p, y €R}.
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Theorem 3.1. Let condition (1.2) hold and there exist a number
r > 0 and a continuous function g : [a, +00) X [r, +00) — [0, +00) such
that

(3.1) f(t,z,y)sgnz > g(t,|z]) fort>a, |z| >7, yeR.

Let, moreover,

+o0o
(3.2) / tf«(t,p)dt = +oo0 for p >0,
and the equation
(3.3) " +g(t,v) =0

do not have a proper solution v satisfying the inequality v(t) > r in
some neighborhood of +0o. Then equation (1.1) is oscillatory.

Proof. By contradiction, we assume that equation (1.1) has a non-
oscillatory solution u on some interval [ag, +00) C [a,+00). Without
loss of generality, let

u(t) >0 fort > ao.
Then in view of (1.2) we have
u'(t) <0 fort > aop.
According to Lemma 2.1, these two inequalities result in
u'(t) >0, u(t) >p>0 fort> ap,
where p = u(ag). Thus
u’(t) + fu(t,p) <0 for t > ao.

If we multiply this inequality by ¢ and then integrate from ag to ¢, we

obtain ,

tu'(t) + co + /sf*(s,p) ds <wu(t) fort> ap,

ao
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where ¢g = u(ag) — tou'(ap). Hence, in view of the non-negativeness of
v’ and condition (3.2), we get

t_lgnoou(t) = +00.
Thus there exists a ty > ag such that
(3.4) u(t) >r fort > tp.
Due to (3.1) we have
(3.5) g(t,r) >0, u’(t) + g(t,u(t)) <0 fort > to.

Applying Lemma 2.2, conditions (3.4) and (3.5) guarantee the existence
of a solution v of equation (3.3) satisfying the inequalities

r <wv(t) <wu(t) fort> o,

which is a contradiction. O
Let m € N. We introduce the function

1 m—1 k -2 l+e m —2
Km(T5€) = s Z (Hlni T> + 12 (Hlni T>
k=0 \i=0 i=1

fort > e, €>0.

If m =0, we assume

1+¢

Ko(T;E):F

fort >0, ¢ > 0.

Theorem 3.2. Let conditions (1.2) and (3.2) hold, and

f(t,z,y)sgnx > p(t)|z| + q(t, |z])|z|

(3.6)
fort>aq, |z| >, y €R,

where ay > a and v > 0. Let, moreover, equation (1.8) be non-
oscillatory, let the function q be non-increasing in the second argument
and for any ¢ > 0 there exist € > 0, ty > ap and m € NU{0} such that

(3.7) w*()q(t, cwo(t)w(t)) > K (wo(t);€) fort > to,
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where w : [ty, +00) — (0, +00) is a principal solution of equation (1.8)
and wy is a function given by equality (2.11). Then equation (1.1) is
oscillatory.

Proof. Assume by contradiction that equation (1.1) is non-oscillatory.
Then, by Theorem 3.1 and condition (3.6), without loss of generality
we can assume that the equation

(3.8) v +p(t)v+ q(t,v)v =0
has a proper solution v : [ag,+00) — (7,+00). Using the same

argument as in the proof of Theorem 2.2 the function z : [, +00) —
(0,+00), given by equalities (2.15), is a solution of the equation

(3.9) 2"+ qo(7)2 =0,
where
(3.10) qo(1) = w*(t)q(t, w(t)z(r)), t=¢(7),

and ¢ is a function inverse to wy. Moreover,
2'(r) <0 for 7 > .
Thus there exists a ¢ > 0 such that
z(1) <ecr for T > 1,

ie.,
2(1) < cwo(t) for 7 =wy(t) > 7.

In view of the last inequality and condition (3.7), we have from (3.10)
q0(7) = w'(B)g(t, cw()wo(t) > Km(rie) for 7> 7,

where 71 = wg(tp). Hence by the Kneser theorem (see [3, Chapter
VI, Theorem 10]) it follows that equation (3.9) is oscillatory. This is
a contradiction to the fact that this equation has the non-oscillatory
solution. o
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Corollary 3.1. Let conditions (1.2) and (3.2) hold, and there exist
€ >0, n €N, and constants ay > a and r > 0 such that

(3.11) f(t,z,y)sgnz
 Iel )
> 4t2 Z Hlnl +(1+4¢) Hlni z2
i=1
fort > ag, |z| > r and y € R. Then equation (1.1) is oscillatory.

Proof. Without loss of generality we assume that ag > e, and r > e,,.

Let

n—1

k -2
1
(3.12) = Z <H1ni t> for t > ag

and

(3.13) q(t, )

n -2
Hn, > for t > ag, |z| >

1
Then (3.11) takes the form (3.6).

Due to (3.12), equation (1.8) is non-oscillatory and the function

n—1 1/2
w(t) = (tHlnﬂf) >1 fort>amp

is its principal solution. Moreover,

t
wo(t) = /ufz(s) ds +1n, a9y =1n,t fort> ag.

ao

In view of (3.13), the function ¢ : [ag,+00) X [r,4+00) — [0,400)
decreases in the second argument and for any ¢ > 0 and a sufficiently
large t1 = t1(c) > to satisfies the equality

w (£)g(t, cw(t)wo(t))

= vKo(wo(t); €0 (H Ing, t> (H In, <czt H lnl2 tln,, t>>
k=1 i=1

for t > tq,

-2
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where

g0 = €/2, y=(14¢)/(1+¢ep) > 1.
Obviously,

Ing (Gt In tln, t
i el it )
t—+o00 Ing ¢
Therefore there exists a ty > t; such that
w(t)q(t, cw(t)wo(t)) > Ko(wo(t);eo) for t > to.

Applying Theorem 3.2, the conclusion follows. o
In the sequel, we will apply the following lemma.

Lemma 3.1. Letn > 2. Then for any ¢ > 0 and § > 0, there exists
a tg > 0 such that we have fort > tg

(3.14)kz_l<Hlni(ctln2t)> 22<H1nit> 5<H1nit) .

i=1 k=1 “i=1 i=1

Proof. Let x > 0. Then

1 1 2Int
G R

3.15 — =
(3:15) (z+1Int)?2 In%t (x+1Int)2In’t

for t > ey, whereby
e1(t, ) = 2x(Int) =12,

Similarly,
1 1
— > —eo(t,z)(Ing t -5/2
(3.16) n(z +Int) In’(nt) — 2(t, @) (Ina 1)
for t > es,
where

T
Int

ga(t,z) =1In ( + 1> In(z 4+ 2Int)(Ing t)_3/2.
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Moreover, for any ¢ > 3, according to the Lagrange theorem, we have

1 1
ln?_1 (z +Int) B ln?_1 (Int)

i—2

9 -1
= #(Hlnj(s—i—lnt)) for t > e,

B In} (s +1Int) e}

where s € (0,z). Thus we have

1 1

(3.17) e my WD > it 2)(Ins 8)%2 for t > e,
where o e
gi(t,z) = m(lni t)y~H=.
Let

€n
t; > max {en,exp (—) }
c

Then by virtue of inequalities (3.15)—(3.17), for ¢ > ¢; we have

1 1 1 1
— = — > —e10(t)(Int)%/2,
ln%(ct In? t) ln% t  (In(c In? t) + Int)? In?t — 10(#)(Int)
1 1 1 1

In?(ct In® t) - In? t B In?_; (In(cln®¢t) + Int) B In?_,(Int)
> —eio(t)(In; 6)™%2 (i=2,...,n—1),

where
io(t) = &i(t,In(cln®t)) — 0 as t — +oo.

Thus

(3.18) <i1jllni(ctln2t)>2 > <ilf[11n,»t> —E(t)(}jlnﬂ)z

fort>t; (k=1,...,n—-1),

2

n 2
e(t) = &i(t)(In; t)1/2< H In; t> — 0 ast— 4oo0.
i j=it+1
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Thus there exists a ty > t; such that
e(t) <d/n fort > ty.

From here and(3.18), the inequality (3.14) follows. O

Corollary 3.2. Let conditions (1.2) and (3.2) be fulfilled, and let
there exist € > 0, n € N and constants ap > a and r > 0 such that

(3.19) o
f(t,z,y)sgne > % [:Z:% <E)1ni :c2> - +(1 +8)<;'lf[11ni x2> _2]

fort > ag, |z| > r and y € R. Then equation (1.1) is oscillatory.

Proof. If n = 1, the corollary follows from Corollary 3.1. Let n > 2,
and suppose

1
p(t) = 12 for t > aq,

n—1 k -2 n )
1 9 1+¢ 2
(3.20) q(t,z) = yvel kgil <i1:[11niac > + 12 (il:[llni x >

for ¢t > ag and || > r. Then (3.19) takes the form (3.6). On the other
hand, equation (1.8) is non-oscillatory,

w(t) = /2

is its principal solution and wy(t) = In¢. Thus (3.20) implies
(3.21)

L 1te ﬁln~(c tin?¢) - fort >t
4 1 ) - U1,

where ¢y = ¢?, and t; > ay is a sufficiently large number.
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Let
3 €o
= — 6: .
0Ty 2+

By Lemma 3.1, there exists a ¢ty > ¢; such that

n—1 k —2 n—1 k —2 n -2
2
2\ C0 sl 7 - 7
E <H1n~(c tln t)> > E ( ln-t> (5<Hln~t>
k=1 i=1 k=1 =1 i=1

for t > tg.

Without loss of generality ¢y can be assumed to be so large that

-2

n —2 n
<Hlni(cot In? t)> >(1-9) < Hlni t> for t > tg.
i=1 i=1

Thus from (3.21) we have

\ (=l k -2
w*(t)q(t, cwo(t)w(t)) > 1 Z (Hlni t>

Consequently, all the conditions of Theorem 3.2 are satisfied which
proves the validity of the corollary. o

Corollary 3.3. Let conditions (1.2) and (3.2) be fulfilled, and let
there exist o € (0,(1/2)), 8> 0, ¢ > 0, n € N and constants ag > a
and r > 0 such that

0wt \P
(3-22) f(t,z,y)sgnz > |:—2| a(l = a) + (1 + &)y (a: f) <1Lnn;2> }

fort > ay, |z| > r and y € R, where y1(a, B) = ((1/2) — a)?(2 — 2a)”
and v, (o, B) = ((1/2) — @) for n > 1. Then equation (1.1) is
oscillatory.
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Proof. To prove the corollary, it is sufficient to show that the functions

(3.23) p(t) = M for t > ay,
« n,t \”

for t > ag, |z| >

satisfy the conditions of Theorem 3.2. Indeed, in view of (3.23)
equation (1.8) is non-oscillatory and the function

w(t)=t*>1 fort>ag

is its principal solution. Moreover,

wo(t) = t1_2°‘/(1 —2a).

On the other hand, due to (3.24), for any ¢ > 0 and a sufficiently large
t1 > ap we have

(3.25)  w(t)q(t, cwo(t)w(t))

_ (1+5)'Yn(aw8) w -2 lnnt b or
= R o () Prezn

where ¢y = (1 — 2a) 2¢%. Obviously,

. In,(cot?72%) { 2—2a forn=1,
lim ——— 2 =
t—+o0 In, t 1 for n > 1.

Therefore, in view of (3.25), there exists tp > ¢; such that
= Ko(wp(t);e0) for t > to,

where g9 = €/2. Applying Theorem 3.2, this inequality guarantees the
oscillation of equation (1.1). o

Remark 3.1. Conditions (3.11), (3.19) and (3.22) in Corollaries
3.1-3.3 are optimal in the sense that it cannot be assumed ¢ = 0,
as follows from Corollaries 2.1-2.3.



OSCILLATION PROPERTIES OF EQUATIONS 465

Theorem 3.3. Let conditions (1.2), (1.6) and (3.2) be fulfilled, where
ag > a, >0 and X\ > 1 are constants, and let p : [ap, +00) — [0, 4+00)
and q : [ag, +00) X [r,+00) — [0,+00) be continuous functions. Let,
moreover, (1.8) be a non-oscillatory equation with a principal solution
w : [ag, +00) = (0,400), let wy be a function defined by (2.11) and let
the function q be non-decreasing in the second argument such that

o0
(3.26) / W () wo (£)g(t, cw(t)) dt = +o00

for any to > ap and ¢ > r/w(ty). Then equation (1.1) is oscillatory.

Proof. Assume by contradiction that equation (1.1) is non-oscillatory.
Then by Theorem 3.1 and condition (1.6), for some t; > ag, equa-
tion (2.14) has a solution v : [tg, +00) — (7, +00). On the other hand,
the function z : [r, +00) — (0,+00), given by equalities (2.15), is a
solution of the equation

(3.27) 2" 4 qo(7)|2|*sgn z = 0,
where 71 = w(to),
(3.28) q(7) = W (B)q(t, w(t)2(r)), t=¢(7),
and ¢ : [11, +00) — [to, +00) is a function inverse to wy.
Due to Lemma 2.1,
z2(r) >c¢ fort>m,
where o(to) .

wite) ~ wlto)’

From here, (3.26) and (3.28), we get

c=2z(m) =

+oo +o0
/ rao(r) dr = / W () wo (£)g(t, w(t) = (wo(£))) dt

+oo
> / W (E)wo ()q(t, cw(t)) dt = +oo.

to



466 Z. DOSLA AND N. PARTSVANIA

By the Atkinson theorem [2], equation (3.27) is oscillatory, which is a
contradiction. O

Theorems 2.2 and 3.3 imply the following corollary.

Corollary 3.4. Let conditions (1.2) and (3.2) be fulfilled, and let
there exist constants ag > a, £ > 1, r > 0, A > 1 and continuous
functions p : [ag, +00) — [0,400) and q : [ag, +00) X [r, +00) — [0, +00)
such that

(329)  q(t, 2]z < (f(t,2,y) — p()z)sgnz < Ly(t, |z])|z*

fort > agp, |z| > r andy € R. Let, moreover, (1.8) be a non-oscillatory
equation with a principal solution w : [ag, +00) — (0, +00), wy be a
function defined by (2.11), and let the function q be non-decreasing in
the second argument.

Then, equation (1.1) is oscillatory if and only if (3.26) holds for any
to > ag and ¢ > r/w(ty).

Theorem 3.4. Let conditions (1.2), (1.6) and (3.2) hold, where
ag > a, r >0 and A < 1 are constants, and p : [ag, +00) — [0,400)
and q : [ag,+00) X [r,+00) = [0,+00) are continuous functions. Let,
moreover, (1.8) be a non-oscillatory equation with a principal solution
w : [ag, +00) = (0,+00), wy be a function defined by (2.13), and the
function q be non-increasing in the second argument such that

+oo
(3.30) / W () wo (£)g(t, cw(t)wo (£)) dt = +oo

to

for any ¢ > 0 and sufficiently large ty > ag. Then equation (1.1) is
oscillatory.

Proof. Assume by contradiction that equation (1.1) is non-oscillatory.
Then by Theorem 3.1 and condition (1.6), there exists a ty > ag such
that equation (2.14) has a solution v : [tg, +00) — (7, +00). On the
other hand, the function z : [r,+00) — (0,4+00), given by equality
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(2.15), is a solution of the equation

" z _
(3.31) P +QO(T)—(1+ ey = 0,

where

1—-X
330w = (A7) e O e@Hn), o= o)

and ¢ : [11, +00) = [tg, +00) is a function inverse to wy.

By Lemma 2.1, there exists a constant ¢ > 0 such that
0<z(r)<er forT>m.

Moreover,

(%ﬁgﬂ)lA >1 forr>m.

Without loss of generality, it can be assumed that
cwo(t)w(t) > r fort > to.
Thus from (3.32) we find
go () = wHA()q(t, cwo (t)w(t)), T=wo(t) = 71

Hence, due to (3.30), we have

+o0 o0
[ Pt = [ e o)
L :ooo
> / W (7w (H)q(t, cwo (Ew(t)) dt = +oo.

By the result of Kiguradze (see [14, Corollary 10.3]), the last inequality
guarantees the oscillation of equation (3.31), which is a contradiction. O

Theorems 2.2 and 3.4 imply the following corollary.
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Corollary 3.5. Let conditions (1.2), (3.2) and (3.29) be fulfilled,
where ag > a, £ > 0, r > 0 and A\ < 1 are constants, and
p : [ag,+0) = [0,400) and q : [ap,+0) X [r,+00) = [0,400) are
continuous functions. Let, moreover, (1.8) be a non-oscillatory equa-
tion with a principal solution w : [ag, +00) — (0, +00), wo be a function
defined by (2.11), and let the function q be non-increasing in the second
argument.

Then, equation (1.1) is oscillatory if and only if (3.30) holds for any
¢ > 0 and sufficiently large ty > ag.

As an example, we consider the differential equations
1

(3.33) u” + 2l + g(t, u,u') (1 4 |u))> H|ulfsgnu = 0
and

1—
(3.34) '+ uu + g(t,u,u')(1 + [u)*H|ulfsgnu = 0,
where

w>0, A#1, a€(0,1/2),

and g : [a,+00) x R? — R is a continuous function.

Let
1/{1 for A > 1,

A for A< 1.
Corollaries 3.4 and 3.5 yield the following result.

Corollary 3.6. Let there exist a constant { > 1 and a continuous
function q : [a,4+00) — [0,4+00) such that the inequalities

Q(t) < g(t,x,y) < eq(t)

hold on the set [a,+o0) x R%. Then equation (3.33) (equation (3.34))
is oscillatory if and only if

+00 +oo

/ tFN/2(In ) () dt = +o0 ( / tAFA=2) ety () df = +oo>.

a a
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