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DIRECT SUMS OF
VORONOVSKAJA’S TYPE FORMULAS

MICHELE CAMPITI AND CRISTIAN TACELLI

ABSTRACT. Using a general procedure we consider some
combination of different approximation processes by means
of projections on orthogonal subspaces. We concentrate our
attention on some particular positive approximation processes
in spaces of L2-real functions in order to satisfy a prescribed
Voronovskaja’s type formula.

1. Direct sums of approximation processes and associated
Voronovskaja’s type formulas. We are mainly interested in the ap-
plication of a general and simple method which consists in constructing
a new approximation process starting with a decomposition of a Hilbert
space into the direct sum of orthogonal subspaces and associating to
each subspace an assigned approximation process.

In this way we obtain some noteworthy results regarding the possibil-
ity of obtaining new Voronovskaja’s type formulas from assigned ones
and extending the class of differential problems under consideration.

The general method can actually be applied in different settings. In-
deed, we may have the necessity of using different approximation pro-
cesses on orthogonal subspaces as done in Section 2 in connection with
Bernstein-Kantorovich and Bernstein-Durrmeyer operators; this may
happen for example in studying diffusion models in population genet-
ics where different factors may depend on the subspace containing the
initial condition. Indeed, it is well known that the differential operator
arising from the Voronovskaja formula for both Bernstein-Kantorovich
and Bernstein-Durrmeyer operators describes the evolution process as-
sociated with some diffusion models in population genetics through
the representation given in (2.13) which depends only on the initial
condition wug in (2.14). Hence, the method used in Section 2 allows
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us to better arrange the choice of subspace V' and the approximating
operators to the initial condition. A different motivation can be the
preservation of some functions by a modified classical approximation
process; this was already realized in [4] for some sequences of algebraic
polynomials, and now we have also considered an example concerned
with convolution operators in Section 3. Different applications to pro-
jections onto splines can also be considered; here we have not dealt
with this case due to the large literature already existing in this field
(see [8, Section 13.4]) and also because we are only interested in the
possibility of approximating the solution of wider classes of differential
problems and consequently only to more general Voronovskaja’s type
formulas.

The method is based on some simple properties of Hilbert spaces.
Consider a Hilbert space (H, (-,-)) and a decomposition

H=EPv

iel

of H into the direct sum of orthogonal closed subspaces V;, i € I, and
for every i € I denote by P; the canonical orthogonal projection onto
the subspace V;.

Now, let (L;)ier be a family of linear operators from 7 into itself,
and consider the linear operator L : H — H defined by setting, for
every u € H,

(1.1) L(u) =Y Pi(Li(u)).

iel

In this way we associate operator L to the families (V;);cr and (L;)icy-

Observe that if u,v € H and L;(u) = v for every i € I, then we have
L(u) = v too. In particular, if all the operators L;, i € I, coincide with
an operator T, we also have L =T

Moreover, it is interesting to observe that we can also study pertur-
bations of an operator L having the form (1.1) by modifying some of
its components L;; this will be performed in Section 3 in connection
with Jackson convolution operators.

At this point, we apply the preceding procedure to a sequence of
families (L; )icr of linear operators, and using (1.1) we define the new
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sequence (L,)n,>1 of linear operators given by

(1.2) Ly (u) = ZPi(Li,n(u))'

iel

It is immediate to check that if every sequence (L;,)nen, @ € I,
is an approximation process on #, then (L,),>1 satisfies the same
property. Moreover, if every sequence (L;,),>1 satisfies an abstract
Voronovskaja’s type formula

(1.3) nll)rfoo n(Lipu—u) =A4;(u) weD,

where A; : D — H is a linear operator and D is a subspace of H, then
the sequence (Ln)nZI satisfies the Voronovskaja’s formula

(1.4) lim n(Lyu—u)= ZPi(Ai(u)), u€ D.

n—+oo
icl

Using this general scheme, we pass to consider some cases of par-
ticular interest in different settings where we can add more details on
the convergence of constructed operators and their Voronovskaja’s type
formulas.

It will be useful to observe that, if a finite-dimensional subspace
V of H is generated by the independent system {ai,...,am}, then
the projection Py of H onto V can be easily obtained by considering
the square matrix A := ({aj,a;));j=1,.. m and taking into account
that, for every f,g € H we have Py (f) = g if and only if AG = F
where F' is the column vector with components ({f, ®;))i=1,...m and
G = (9i)i=1,..,m is the vector of the components of Py (f) in the
subspace V, ie., Py(f) = Y.~ gia;; imposing (Py(f) — f,a;) = 0
for every i = 1,... ,m we find

(1.5) G=A"1'F

and in particular, if {a1,...,a;} is an orthogonal system
f7 Q;

(16) g = 02

el
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2. Bernstein-Kantorovich-Durrmeyer operators. In this sec-
tion we split the space L?(0, 1) into two components and consider a com-
bination of classical Bernstein-Kantorovich and Bernstein-Durrmeyer
operators. Obviously the same construction may be carried on by con-
sidering different orthogonal subspaces of L?(0, 1) or different sequences
of operators.

First, we recall that, for every n > 1 the nth Bernstein-Kantorovich
K, : L*(0,1) — L?(0,1) and respectively the nth Bernstein-Durrmeyer
operator M,, : L?(0,1) — L%(0,1) are defined by setting, for every
f € L?(0,1) and z € [0,1],

(k+1)/ (n+1)

1) K@) =0+ pusl) /k F(2)dt,

/(n+1)
and respectively

(22)  Muf(@) =+ 1) pas() / Pk (0 F () dt,

where, as usual, p, k(z) := (}) 2" (1 — z)"*.

We also recall that (see, e.g., [10, page 31] and [2, subsections 5.3.7,
5.3.8))

. 2nz +1
(2.3) Ki(1)=1, K.d)@) = ;5
2 _ 3n(n—1)z* 4 6nz + 1
K, (id%)(z) = 3(n+ 1) )
(2.4) Mo(1)=1, M,(id)(z) = "n”“"j;,
12 _ n(n—1)2? + 4nz + 2
M (id7)(z) = (n+2)(n+3)

for every z € [0,1] and these formulas ensure the convergence of
the sequences (K,)n>1 and (M,),>1 to the identity operator by the
classical Korovkin’s theorem (see, e.g., [2, Theorem 4.2.7]).

Moreover, estimates of the convergence can be found with respect to
the classical modulus of continuity

w(f,d) := sup w(f,d,z),

z€[0,1]

w(f,6,2) = sup £ () = f(®)];

t€[0,1)N[w—58/2,5+6/2]
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in spaces of continuous functions (see [2, (5.3.38)—(5.3.42) and (5.3.51)—
(5.3.53)])

K f(2) — F(2)] < 2 (f, (n— Dzl - ”) ,

n+1
2(n—3)x(l—z)+2
which give

1Knf (@) — £(@)o < 2w(f, %)
1Mo f (&) - F(2) o < 2w<f, %)

for every f 6 C’([ ]) and with respect to the averaged modulus of

smoothness 7( fo w(f,6,2)2dx) /2,
1

(2.5) I1Knf = fll2 < 7487’(f, ﬁ);
1

(2.6) |Mnf — fll2 < 7487-<fa \/n:—H>2

for every f € L?(0,1).

Finally, we also recall the following Voronovskaja's type formulas

(27) imn(Ka(f) - ) = 5 (D),
(28) im_n(Ma(f) -~ ) = A(P),

which are satisfied for every f € C?([0,1]), where A : C*([0,1]) —
C(]0,1]) denotes the differential operator defined by

Au(z) := L (z(1 — )/ (z)),
u € C*([0,1]), =z €]0,1].
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Now, let V be the subspace of L?(0, 1) consisting of all linear functions
on [0,1] and W its orthogonal subspace given by

1
W= {v € L*(0,1) | / (a+ bt)v(t)dt = 0 for every a,b € R};
0

it is easy to recognize that

W= {UEL201 \/ dt—O/Oltv(t)dtzo}
:{veLz(o,l)/O tv(t)dtzo,/ol(l—t)v(t)dtzo};

moreover, Py and Py denote the orthogonal projections onto the
subspaces V' and respectively W.

According to the general procedure, we can define the new sequence
(Lp)n>1 of linear operators on L?(0,1) by setting

Lnf(z) := Pv(En(f)) (@) + Pw (Mn(f))(2),

29) fero, el

In order to write a more explicit expression of the operators L,,, we
consider the orthogonal basis of V' consisting of the two functions 1
and 1 — 2id.

Using (1.5), for every f € L?(0,1) and z € [0,1], we get

Py (Kn(f))(

/ K0 fol(l —2)K, f(t)dt (1 - 22)
Jo(1—2t)2dt

Ki(n — k) [O+D/04D)
=(n+1) kZ() et 1) /k f(s)ds

/(n+1)

e )

k=0

(k+1)/(n-+1)
x/ f(s)ds (1— 2z)
K/ (n+1)
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/ f(s ds+3z<l2ﬂ>

(k+1)/(n+1)
x/ F(s)ds (1— 2z)
K/ (n+1)

1 n
:(47695)/0 f(s)dsfnLHZ(kﬁLl)
k=0

(k+1)/(n+1)
x/ F(s)ds (1— 2z)
k/(n+1)

and consequently,

-2 Myf(t) dt
[ —2t)2dt

=M,f(x /f ds—SZ/ Pk (s s (1-2z)

+n—Z(k+1)/ Pok(s)f(s)ds (1 — 2z)

—4 + 6z) / (s

n+2/0 (ns+1)f(s)ds (1 —2z).
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Hence, from (2.9) we obtain
(2.10)

L (@) = My f(e) + 2020
1 n (k+1)/(n+1)
ds — k d
X </0 (ns+1)f(s)ds kzzo( +1)/k/(n+1) f(s) s>
= Mof(@) + ,;)/k/(nm =)

for every f € L?(0,1) and z € [0, 1].

The convergence of (L,),>1 to the identity operator on L?(0,1) is
ensured by (2.9) and the analogous properties of the sequences (K,,),>1
and (Mn)nZI-

As regards to a quantitative estimate of the convergence, again from
(2.9) and (2.5)—(2.6) we get, for every f € L?(0,1),

1
Lof — flla <1496 7( f, —— ) .
Lo~ fl < 14907 (1, =)
We explicitly observe that
L,a1=1,
. nx +1 n(2z —1) n 1
L = =
@) = S A DD nrlt T 3D
_ 2 _
Lnid?(x) = n(n —1)z? 4+ 4dnx + 2 n(2z — 1)
(n+2)(n+3) 2(n+1)(n+2)
_ n(n—1) 24 n(bn +7) .
(n+2)(n+3) (n+1)(n+2)(n+3)

n2—n—4

24+ 1) (n+2)(n+3)°

Moreover, the following result establishes a Voronovskaja’s formula
for the sequence (L,,),>1.
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Theorem 2.1. For every f € C?([0,1]), we have

(211) tim n(L,f(z)~ f(z) :Af(a:)+3(1—2x)/0 (1—2¢) £(t) dt.

uniformly with respect to x € [0, 1].

Proof. Indeed, from (1.4) and (2.7)—(2.8) and using twice the inte-
gration by parts, for every f € C%(]0,1]) and z € [0, 1] we have

lim_n(Lf@) - 1(2)
_p (; Af> (z) + Pw (Af) ()
5 [ -0y 520
X /0 (1—2t) (t(1 —¢t) f'(¢)) dt
1
+Af@) -~ [ w0 r)
— 3(1— 22) /1(1 _20) (t(1—t) £(1) dt
0
— Af(z) - 3(1— 23;)/0 H1—t) F(t) dt
— Af(z)+3(1 - 22) /1(1 ~20) F(t) dt
and this completes the proof. O

Finally, we observe that the differential operator B : C%([0,1]) —
C(]0,1]) defined by

1
Bu(z) := Au(z) + 3(1 — 2z) /0 (1 —2t) u(t) dt,

u e C*([0,1]), =z€]0,1],
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may be considered as a bounded perturbation of the operator A since

/01 (3(1 P /01(1 2ty u(t) dt)de < 9</01 u(t) dt>2 < ofjull%

hence, A — B is bounded and ||[A — B|| < 3.

It is well known that the closure (A4, D(A)) of (A, C?%([0,1])) is defined
on the domain

D(A) := {f € L*(0,1) | f is locally absolutely continuous in ]0, 1]

and z(1 — ) f'(x) € Wy?(0,1)},

and generates a Co-semigroup (7(t)):>o0 of contraction on L%(0,1)
which is analytic (with angle 7/2) and immediately compact (see,
e.g., [1, Theorem 2.3]). From the classical perturbation theory of the
Co-semigroup (see, e.g., [9, Section III.1] or also [12, Section 3.1])
we conclude that (B, D(A)) also generates an analytic Cy-semigroup

(S(t))+>0 on L%(0,1) with angle 7/2 on the same domain D(A). From
this, it also follows that C2([0, 1]) is a core for (B, D(A)), and further,

(2.12) IS@) < eMPIT ()] < €.

Moreover, in connection with the operators L,,, we have the following
representation of the semigroup (S(¢))¢>o.

Theorem 2.2. For every t > 0, and for every sequence (k(n))n>1 of
positive integers satisfying lim,, .~ k(n)/n =t, we have

(2.13) 11)111 LE™ = S(t) strongly on L*(0,1).

Proof. Since (B,D(A)) generates a Cy-semigroup in L*(0,1) with
growth bound < 3, the range of A — B coincides with L?(0, 1) for every
A > 3. Moreover, for every n > 1, we have

1a(f) — Ma()IE < 36@0 / B (s )s ds>2

/(n+1)

. %(/Olf(s) ds>2 < IR
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and consequently ||Ly| < ||My| +6/(n + 1) < 1+ 6/(n + 1) which
yields, for every k > 1,

6 k 6 n\ k/n
ILE < (14— ) =((1+ < ebk/m,
n+1 n+1

Hence, the stability condition in Trotter’s theorem [13, Theorem 5.1]
is satisfied and its application completely yields the proof. a

The preceding result ensures the possibility of approximating the
solutions of the evolution problem

(2.14)
Ou/ot(t,z) = (Ou/0x) (x(1 — z) (Ou/0z)(t,x))
+3(1 — 22) [ (1 — 2s) u(t, s) ds, t>0, zelo,1],
u(0, z) = uo(x), ug € L?(0,1),

using iterates of the operators L, applied to the initial condition;
namely, for every ¢t > 0 and z € [0, 1] we have

u(z,t) = S(t)ug(z) = lim LMy (x),

n—+4oo

in norm L? with respect to z € [0, 1] and uniformly in compact intervals
with respect to t > 0.

Quantitative estimates of the above convergence formulas can be
obtained on suitable subspaces using some results in [2, Section 6.2]
and [6]. These estimates are based on quantitative versions of (2.7) and
(2.8); for the sake of brevity we state it only for Bernstein-Durrmeyer
operators, since the same methods can be applied to obtain a similar
estimate for Bernstein-Kantorovich operators.

Proposition 2.3. Let 0 < a < 1. Then there exist C1,Co > 0 such
that, for every f € C*%([0,1]) and 8 € R, we have

C
In(Mn(f) = f) = Aflleo < 71 (£ Moo =+ 1" lloo)

M Cy 7
2 n2B+ap—1 + nl—28 Hf ||oo

+
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Proof. Since f € C%([0,1]), for every =z € [0,1] and ¢ € [0,1], there
exists £(t) in the segment joining x and ¢ such that

Hence,
z)(id—z-1)+ = f”( )(id — z - 1)?
(f"o&—f"(z)-1)((id —z-1)?)

and consequently, evaluating M, of the preceding expression at the
point z, from (2.4) we get

n(My f(x) — f(z)) — Af(x)
= n f'(x)Mn(id — z)(z) + 5 f”( )M, ((id — 2)?) (x)

n

x 5 M (f" 0 € = f"(2))(id - 2)%) (z) — Af(2)

= f(@)(Myid(z) - 2) + 3 [ (@)
x (M, (id*)(z) — 20M,(id) + 2?)

£ 0M (7 o€ f1(@))(id -~ 2)?) ()

- (1-22)f'(z) —2(1 - )" ()
, nr+1
~ flan (" <o)

AT n(n—l):v2+4na:+2_ nx+1 9
+f ($)2< (n+2)(n +3) T2 t7

£ 2M, (1 0~ [ (@)(id ~ 2)°) ()
- 2x)f’( ) — (1 —z)f"(z)

_ ! 2z — " (8332 —8r + ]‘) — 6%(1 — LE)

= f'(z)2 ] +f() (n+2)(n+3)

F ML (17 0 € — (@) (id — 2)%) (@)
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As regards the last term in the preceding sum, we observe that for
every 6 > 0

SMu (f70 &~ f'(@)(id — 2)?) (x)

n n
< 5 kz_opn,k(n + 1)

<[ pus)17€0) = (@) (¢ = 2 a
= g kzn:_opn,k(n +1)
" /t—z<5pn’k(t) |1"(6@) = " ()] (t — z)*dt

n n
+ ) kz_opn,k(n +1)

[ halE©) - @I 2P d
[t—xz|>d

n

272Mn((id —2)%) ().

< Z0%(f", ) + 201"l

Now straightforward calculus gives, for every m > 1,
M, (id™)(z) = (n+1) > p(z) / ( >tk(1 )y gy
k=0 o \F

n

=(n+1) ke (Z) Blk+m+1ln—k+1)
,;p <k>

e (k+1)---(k+m)
_kzﬂ]p"’k(x)(n+2)---(n+m+1)’

where B(z,y) := fol t*~1(1 — ¢t)¥ 1 dt is Euler’s beta function. So we
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have

(kD +2)(k +3)

MG kZ Dt D)+ 3t 4)

~ n3B,(id%)(z) + 6n°B,(id*)(z) + 11nB,(id)(z) + 6
N (n+2)(n+3)(n+4)
nz(1+3z(n—1) + z%(n — 1)(n — 2))
(n+2)(n+3)(n+4)
6nz(l+z(n—1))+1lnz +6
(n+2)(n+3)(n+4)

and
4 +1)(k+2)(k+3)(k+4)
n(id) kz n+2)(n+3)(n+4)(n+5)

_ n*By(id")(2) + 10n° B, (id*) (z) + 35n° B, (id*) (x)
(n+2)(n+3)(n+4)(n+5)
50nB,,(id)(z) + 24
(n+2)(n+3)(n+4)(n+5)
1
- (n+2)(n+3)(n+4)(n+5)

x [nz(1+4 Tz(n — 1) + 62%(n — 1)(n — 2)
+2%(n —1)(n—2)(n - 3))
+ 10nz(1 + 3z(n — 1) + 2*(n — 1)(n — 2))
+ 35nz(1+ z(n — 1)) +50nx + 24]

and consequently, using (2.4), we obtain

M, ((id - )*) ()
= M, (id*)(z
— 4x3M,,(id)(z) +
m4(1_ dn 6n(n—1)  4n(n—1)(n—2)
N n+2 (n+2)(n+3) (n+2)(n+3)(n+4)
n(n—1)(n —2)(n — 3) >
(n+2)(n+3)(n+4)(n+5)

) — 4z M, (id*)(z) + 622 M, (id*)(z)
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_n+2+(n+2)(n+3) (n+2)(n+3)(n +4)
16n(n—1)(n—2) >
(n+2)(n+3)(n+4)(n+5)
) 12 2n
te ((n+2)(n+3) T mrmi3)(ntd
72n(n —1) >
(n+2)(n+3)(n+4)(n+5)

+ac3( 4 24n 36n(n—1)

+x< 24 n 96 >
(n+2)(n+3)(n+4) (n+2)(n+3)(n+4)(n+5)
24
(n+2)(n+3)(n+4)(n+5)
B 12n? e oL
 (n+2)(n+3)(n+4)(n+5) (1=2)"+ <n2>

+

Then, collecting the above inequalities,

In(Mn(f)(z) - f(z)) — Af(z)| < % (1 Moo + 11" l1o0)

n o2 U %Hf””w
+ 5 0%w(f",0) + = g,

where C7 and Cs are suitable positive constants independent of n and f.

Since f € C*%([0,1]), we have w(f",§) < M §%; taking § = 1/nP,
the above estimate becomes
(2.15)

In(Mn f(z) - f(z)) — Af(2)] < % (1 oo + 11" llo0)

M Cs

"
+ 2n2ﬂ+0¢ﬁ71 + nlfzﬁ ||f ||007

and this completes the proof. u]

Remark 2.4. If 8 € ]1/(2+ «),1/2], the second member in (2.15)
converges to 0 and its order of convergence is given by the minimum
of 26+ af —1 and 1 — 203; taking 8 := 1/(2+ a/2) = 2/(4 + a) we
obtain the best order of convergence. Hence, taking this value of §,
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from (2.15), we obtain

(/)
(2.16) In(Mn(f) = f) = Aflleo < al(atd)’
where C(f) is a suitable constant depending on f. o

A similar estimate holds for Bernstein-Kantorovich operators (with
different constants) and the same estimates continue to hold for both
operators with respect to the L?-norm.

Hence, for every f € C%*([0,1]) and n > 1, we have

(2.17) [[n(Ln(f) = ) = Bfllz < ¥u(f),  [In(Lnl(f) = D2 < enlf),
where

C
vl = S (1) = IBU + — s

At this point it is useful to recall a general result obtained in [6] which
yields a quantitative estimate of the convergence in (2.13) by means of
(2.17).

Theorem 2.5. Let (L,)n>1 be a sequence of bounded linear operators
on a Banach space E and assume that there exist M > 1 and w > 0
such that

(2.18) |LE|| < Me?* ™ nk>1.

Moreover, assume that D is a dense subspace of E such that, for every
u €D andn > 1, we have

(2.19) [n(Lnu — u)|| < ¢n(u),
and the following estimate of the Voronovskaja type formula holds
(2.20) In(Lyu — uw) — Au|| < 9, (u),

where A: D — E is a linear operator on E and ¢, ¥, : D — [0, 400
are seminorms on the subspace D such that lim,_, ¥n(u) = 0 for
every u € D.
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If (\=A)(D) is dense in E for some X > w, then the closure of (A, D)
generates a Co-semigroup (T'(t))i>0 on E satisfying || T'(t)|| < M e“? for
every t > 0.

Moreover, for everyt > 0 and for every increasing sequence (k(n))n,>1
of positive integers and u € D such that T'(s)u € D for every s € [0,t],
we have

(2.21) HT(t)u - Lf}%H
< M exp(we“/™t) /t exp(—swe®/™) ¢, (T(s)u) ds
0

+M<exp(we“’/"tn) ‘— —t‘

N \/gewkm)/n Vk(n)
n

Y o exp <w e/ @)) on(u)

n

where t,, := sup{t, k(n)/n}.

From (2.12) the growth bound of the semigroup (S(t)):>o is less
than or equal to 3 (and constant M = 1) and therefore, applying
Theorem 2.5 and using [7, Erratum|, we obtain the following result.

Proposition 2.6. For every t > 0, (k(n))n>1 sequence of positive
integers and f € C**([0,1]), we have
(2.22)
1
|2 — sy, < S exp(3e¥™ 1) g(w)
2

+ <exp(363/”tn) ‘M —t
n

N \Ees kmy/n V()
n

% ™) exp (3 e3/m @)) P (u),

n

3t

> 3

+

where t,, := sup{t, k(n)/n}.
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In particular, if we take k(n) = [nt], we obviously have ¢, = t and
|([nt]/n) — t| = (nt/n) — ([nt]/n) < 1/n. Hence, (2.22) yields
HLﬁ(")u - S(t)uH2 <t exp(3e3/™t) P (u)

Vn T
+ % exp (363/” t) > on(u).

1 [exp(3e3/mt) 2t 4,
(2.23) + 7n <7 +

Of course the definition of (L, ),>1 depends also on the decomposition
of the space L%(0,1). Using different decompositions, we can describe
the solution of different evolution problems in terms of iterates of
suitable operators.

A different interesting example can be performed using the one-
dimensional subspace X generated by the function id(1 — id) and its
orthogonal subspace Y given by

Y- {veﬁ(o,l) | /Olt(l—t)v(t)dtzo}.

Taking the same sequences as before, in this case we obtain the operator
(Qn)n>1 of linear operators on L?(0,1) by setting

Qnf(x) := Px (Kn(f))(z) + Py (Mn(f)) (),

(2.24) feL?*0,1), zelo,1].

Similarly to the preceding case, from (1.6) we obtain, for every
f € L?0,1) and z € [0,1],
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[t - K f(t)dt
e -2t

“/n\ (k+ 1) (n—k+1)!
:30(n+1)2(k>( ()n(+3)! )

k=0

(k+1)/(n+1)

X / f(s)ds z(1 —z)
k/(n+1)

Px (Kn(f))(2)

z(l—x)

30 -
RCEPICEE] kz—o(k +1)(n—k+1)

(k+1)/(n+1)
X / f(s)ds z(1 —z),
K/(nt1)

and consequently,

Py (M (f))(x) = My f(z) — Px (Mn(f))(x)

— M, f(z) - 30/01 H(1— )My f(£) dt o(1 — )

30
= Mnf(z) (n+2)(n+3)
x Y (k+1)(n—k+1)
k=0

<[ (1)t ds oo - .
Hence, from (2.24),

(2.25)
Qnf(x) = My f(x) -

n

% (k+1)(n—Fk+1)

L\ - (k+1)/(n+1)
X </0 (k> sT(1—8)"""f(s) ds/k/(n+1) f(s) ds)

z(1—z)

for every f € L?(0,1) and x € [0, 1].
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Clearly, the sequence (Q,)n>1 converges to the identity operator on
L?(0,1), and a quantitative estimate of the convergence can be obtained
as before from (2.24) and (2.5)—(2.6).

A Voronovskaja’s formula for the sequence (Q,)n,>1 can be also
established using the same arguments of Theorem 2.1 and yields, for
every f € C*((0, 1)),

(226)  lim n(Laf(2) - f(z))

= Af(x) —15z(1 — 2) /01 (6% — 6t + 1) £(¢) dt,

uniformly with respect to z € [0, 1].

Finally, the differential operator arising from (2.26) is again a
bounded perturbation of operator A and, consequently, its closure gen-
erates an analytic Cp-semigroup (Q(t));>o in L*(0, 1) with angle 7/2 on
the same domain D(A). The semigroup (Q(t)):>0 can be represented
as

lim QF(™ = Q(t) strongly on L(0,1),
n—+oo
whenever ¢t > 0 and (k(n)),>1 is a sequence of positive integers
satisfying lim,,—, y o k(n)/n = t.

Hence, even in this case we have the possibility of approximating
solutions of the associated evolution problem using iterates of the
operators (@, evaluated at the initial point.

Remark 2.7. It is worthwhile mentioning that, if we consider the
identity operator in place of one of the preceding sequences, we obtain
the operators considered in [4] in connection with a best approximation
property with respect to a linear operator.

Hence, the problem considered in [4] in the one-dimensional setting
can be completely framed in the more general setting considered here.

In the following section we give an example of such a situation by
considering the case of convolution operators. |

3. Best perturbation of Jackson convolution operators. In
this section we consider a perturbation of the classical Jackson convolu-
tion operators obtained by imposing a best approximation property on
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the subspace of all trigonometric polynomials having degree less than
or equal to 2. Since the treatment of this case is very similar to the
preceding one, we shall omit several details and we shall only describe
the main steps.

We consider the space L3, of all real 27-periodic functions which are
square summable on the interval [—m, 7] endowed with the usual scalar
product

<fvg>27r = % /_ﬂ-f(x)g(x) dZL', fvg € ng

For every n > 1, we recall that the nth Jackson operator J, : L3, —
L3 is defined by setting, for every f € L3 and z € R,

3 " sin nt/2

1 dt.
@ =9

(3.1)  Juf(z) T o2+ 1) )

It is well known that J,(f) is a trigonometric polynomial of degree
2n — 2 and the following estimate is satisfied for every f € LZ_ (see
[11, pages 79-84], [3, page 60] and also [2, (5.4.45)])

||‘]n(f)7f||27r S (l+7‘l’) w(Z) <f7n—]i-1>a

where w(? (f,0) := SUp|p|<s 1f(-+h) = fll2r-

We consider the subspace V of L3, generated by the trigonometric
polynomials with degree less or equal to 2 and its orthogonal subspace
W. If Py and Py denote the orthogonal projection onto the subspaces
V' and respectively W, we can define the sequence (H,),>1 of linear
operators on L3 _ by setting

Hyf := Py(f) + Pw(In(f)) = Ju(f) + Pv (f = Jn()),

(3.2) fert

Taking into account that Jackson convolution operators preserve the
trigonometric polynomials having degree less or equal to 1, from (1.5)
we get, for every f € L_and x € R,
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o f @) = Juf(@) = =2 [ (1,50 - 1(0)) cos 20
(3.3) . . o
- Sl‘f“’ / (Jnf(8) — £(£)) sin 2t dt

—T

for every f € L2, and = € R.

It is clear from (3.3) that (H,),>1 converges to the identity operator
on L3 _; moreover, for every f € L2_,

|Hof = fllze < (1 +7) 0 <f, %ﬂ)

Huf — f = Py(f)+ Pw(Ju(f)) — (Pv(f) + Pw(f)) = Pw(Jn(f) — f)-

Since the Jackson convolution operators preserves the trigonometric
polynomials of degree less or equal to 1, the same happens for the op-
erators H,; moreover, by definition H,, also preserves all trigonometric
polynomials having degree less or equal to 2.

Finally, we recall that Jackson convolution operators satisfy the
following Voronovskaja’s type formula, for every f € Ci_

(3.0 lm n(n(f) =) = L g,

n—-+4oo 2
(see also [3] and [2, 365-369, 357]).

Consequently, the operators H,, satisfy the following Voronovskaja’s
type formula, for every f € C3_,

. V3 , cos2id [™
nkrfoon(Hn(f)—f)—Tﬂ<f - 77rf(t) cos 2t dt
19id [T
_sin2id [T gin ot dt>
™ —T

= \/7§ 7 f' — /3 cos 2id f(t)sin 2t dt

+V3sin2id [ f(t)cos2tdt.
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In this case, if we denote by C' the differential operator arising from
the preceding Voronovskaja formula, we can also point out that the
closure of (C%,C'(R)) generates a cosine function (C(t));er on L3,
and every C/(¢) is the strong limit of iterates of the operators H,, (see
[5, Theorem 1.2] for more details).
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