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ARITHMETIC PROGRESSIONS IN
THE SOLUTION SETS OF NORM FORM EQUATIONS

ATTILA BERCZES, LAJOS HAJDU AND ATTILA PETHO

1. Introduction. Let K be an algebraic number field of degree
k, and let a,...,qa, be linearly independent elements of K over Q.
Denote by D € Z the common denominator of ag,...,a,, and put
Bi = Daj, v =1,... ,n. Note that f,...,[3, are algebraic integers of
K. Let m be a nonzero integer, and consider the norm form equation

(1.1) Ng/q(ziar + -+ +zp0,) =m

in integers x1,...,2,. Let H denote the solution set of (1.1) and |H|
the size of H. Note that, if the Z-module generated by a4, ... ,a, con-
tains a submodule, which is a full module in a subfield of Q(as, - .. , ay)
different from the imaginary quadratic fields and Q, then this equation
can have infinitely many solutions (see, e.g., Schmidt [19]). Various
arithmetical properties of the elements of H were studied in [8, 11].
In the present paper we are concerned with arithmetical progressions
in H. Arranging the elements of H in an |H| X n array H, one may
ask at least two natural questions about arithmetical progressions ap-
pearing in H. The “horizontal” one: do there infinitely many rows of
H exist, which form arithmetic progressions; and the “vertical” one:
do arbitrary long arithmetic progressions in some column of H exist?
Note that the first question is meaningful only if n > 2.

The “horizontal” problem was treated by Bérczes and Pethd [4]
by proving that if oy = o' !, i = 1,...,n, then in general H
contains only finitely many effectively computable “horizontal” APs,
and they were able to localize the possible exceptional cases. Later
Bérczes and Pethd [5], Bérczes Pethé and Ziegler [6] and Bazsé [2]
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computed all horizontal APs in the solution sets of norm form equations
corresponding to the fields generated by the polynomials z" — a,
2<a<100,23—(a—1)z?—(a+2)r—1,a € Zand 2" +a,2 < a < 100,
respectively.

For quadratic norm form equations, which are called Pell equations
if K is a real quadratic field, only the “vertical” problem is interesting.
In this direction Pethd and Ziegler [18] proved among others that the
length of the “vertical” APs in H is bounded by a constant, which
depends on the coefficients of the (quadratic) form and on m. On the
other hand, they proved that every three term AP occurs in the second
column of infinitely many H. Dujella, Pethé and Tadié [7] were able
to extend this result to four term APs.

The main goal of the present paper is to generalize the result of Pethd
and Ziegler [18] to arbitrary norm form equations. In the sequel AP
in H always means a “vertical” arithmetical progression belonging to
H. A sequence in H, with the property that all the corresponding
coordinate sequences form “vertical” APs, will be called an algebraic
AP in H.

2. Results. Now we summarize our main results.

Theorem 2.1. Let (xij),... ,ac(j)), j=1,...,t, be a sequence of
distinct elements in H such that :cl(-J) s a nonzero arithmetic progression
for some i € {1,... ,n}. Then we have t < c¢1, where ¢; = c1(k,m, D)
is an explicitly computable constant.

Theorem 2.2. The set H contains at most cy arithmetic progres-
sions of the form z + hd (h = —1,0,1). Here ca = ca(k,m,D) is an
explicitly computable constant, x = (x1,... ,x,), d is a nonzero integer,
and d is the n-tuple with all entries equal to d.

By Theorem 2.1 the length of any AP in H is bounded. In the
particular case k = 2, H does not contain any algebraic AP (see Peth§
and Ziegler [18]). However, it is not possible to give a bound for the
number of APs in H for k£ > 3. It is demonstrated by the following
example. Let P(z) = z(z —1)---(z — k + 1) + (—1)* and denote by
a one of its roots. It was proved in [14, Lemma 2.2], see also [1, 13,
17], that P(X) is irreducible; thus o, @« — 1,... ,a — (k — 1) are units



SETS OF NORM FORM EQUATIONS 385

of norm 1 in the algebraic number field Q(«); moreover, they form an
AP of length k. If p is an algebraic integer in Q(a) of norm m, then
po, e+ 1), ..., u(a+ k — 1) also have norm m and form an AP of
length k.

The next theorem shows that in general if H contains algebraic APs
at all, then it contains infinitely many.

Theorem 2.3. Suppose thatn =k > 3. Let t > 3 be an integer. If H
contains a nonconstant t-term algebraic AP, then it contains infinitely
many.

Now we prove that the algebraic APs from the example before
Theorem 2.3 are the longest ones. More precisely, we have the following
theorem.

Theorem 2.4. Let K be an algebraic number field of degree k.
Assume that aq,...,ap € K have the same field norm and form a
nontrivial AP. Then t < k.

Remark. We note that Newman [16] (see also [17]) proved that the
length of arithmetic progressions consisting of units of an algebraic
number field of degree k is at most k. Theorem 2.4 is a generalization
of his result.

To formulate the next result, for a nonzero integer a, let w(a) denote
the number of prime divisors of a, and for a prime p denote by ord,(a)
the highest exponent u such that p* divides a.

Theorem 2.5. Suppose that the Galois group of the normal clo-
sure of K is doubly transitive. Then the number of those solutions
(1,...,2,) of equation (1.1), for which there exists another solution
(Y1, Yn) # (T1,. .. ,@p), such that [[—, (z; —yi) = 0, is bounded by

¥ (k,n, mD*) exp (k(12n)%"),

(k. m D) ::( k )““”D’“{ 10 (ordp(ka)—i—n—l)'

n—1
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Theorem 2.6. Let S be a set of s rational primes, and let T be the
set of integers without prime divisors outside S. Suppose that the Galois
group of the normal closure of K is doubly transitive. Then the number
of those solutions (x1,...,x,) of equation (1.1), for which there exists
another solution (y1,...,Yn) # (21,... ,&y), such that z; —y; € T for
some i € {1,...,n}, is bounded by

U (k,n, mD¥) - exp ((s + k)(12n)5"F3)

where ¥ s the function defined in Theorem 2.5.

Remark. With the help of Theorems 2.5 and 2.6 one can easily give
a bound for the number of sequences x; = (acgj) ,x%)) € H such
that one of the coordinates of x; forms an arithmetic progression whose

difference is zero or is an S-unit, respectively.

3. Auxiliary results. In this section we present some lemmas which
will be needed in the proofs of our theorems. For this purpose we need
to introduce some notation. Let L be a number field of degree [, and
denote by Ur, the unit group of L. The next statement is an immediate
consequence of a result by Hajdu [12]. Note that a similar result was
independently proved by Jarden and Narkiewicz [15].

Lemma 3.1. Let n be an integer, and let A be a finite subset of L™.
There exists a constant Cy = C1(l,n,|A|) such that the length of any
nonconstant arithmetic progression in the set

n
{Zaiyi : (al,--- 7an) €A7 (yla"' 7?Jn) € UZ}
i=1
is at most C.

For some other arithmetical properties of the set occurring in
Lemma 3.1, see [11].

Let K be a number field of degree k, a1, ... , o, linearly independent
algebraic integers in K, m € Z, and A\ € K. Consider now the equation

(3.2) Ng/qlauzy + -+ anzp +A) =min zq,... , 2, € Z.
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The next lemma is a special case of Corollary 8 of [3].

Lemma 3.2. Suppose that ay, ... ,a, and A are linearly independent
over Q. Then the number of solutions of equation (3.2) does not exceed

the bound
(217k) ((2/3)(n+1)(n+2)(2n+3) —4) (w(m)+1) '

Let F' be an algebraically closed field of characteristic 0. Write F™* for
the multiplicative group of nonzero elements of F', and let (F*)™ be the
direct product consisting of n-tuples x = (z1, ... ,z,) with z; € F* for
i=1,...,n. For z,y € (F*)" write x*xy = (1Y1,- .- ,ZnYn). Let T be
a subgroup of (F*)™, and suppose that (a1, ... ,a,) € (F*)™. Consider
the so-called generalized unit equation

(3.3) a1+ -+ apzT, =1

in x = (z1,...,2n) € I'. A solution x is called nondegenerate if no
subsum of the lefthand side of (3.3) vanishes, that is, >, ; a;x; # 0 for
any nonempty subset I of {1,... ,n}. The next lemma is Theorem 1.1
of Evertse, Schlickewei and Schmidt [10].

Lemma 3.3. Suppose that I' has finite rank r. Then the number of
nondegenerate solutions x € I' of equation (3.3) is bounded by

exp ((6n)*"(r +1)).

Let M be the Z-module generated by the elements aq,...,ay,.
Clearly, equation (1.1) can be transformed to the equation

(3.4) Nic/q(6) =m in § € M.

Lemma 3.4. The set of solutions of (3.4) is contained in some union
01Q% U---U§:Q7%, where

t < W(k,n,m) = <n ﬁ 1>w(m) - (Ordp(:)fl"— 1)

plm
p prime

and 01,...,0: are solutions of (3.4).

Proof. This is a special case of Lemma 4 of [9]. O
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4. Proofs.

Proof of Theorem 2.1. Recall that H is the solution set of (1.1), D is

the common denominator of ag,... ,ay, and ; = Da;, i =1,... ,n.
Suppose first that we have a ponconstant sequence (ac:(lj), e ,xSZ)),
j=1,...,t, in H such that xZ(]) is constant (but nonzero) for some

ie{l,...,n}. Let \:= a:l(J) - Bi # 0. Then equation (1.1) is of the
shape (3.2) and by Lemma 3.2 we see that the number of such solutions
of (1.1), i.e., t, is bounded by

- w(m k
(217k)((2/3)"(n+1)(2n+1) 4)(w(mD")+1) < ¢1(k,m, D).

Assume next that (azgj) ,:c,(f)) € H for j =1,...,t such that :UE])
forms a nonconstant arithmetic progression for some i € {1,...,n}.
Writing o1, ... , 0 for the isomorphisms of K into C, foru =1,... ,k,
we have

$1Uu(51) +---+ xnau(ﬁn) = Uu(E)Uu(H)

where 4 is an element of norm mD* and ¢ is a unit in the Z-module
Z[31,...,5,). By Lemma 3.4 u can be chosen from a set having at
most ¥ (k,n, mD¥) elements. Consider a fixed value of . Choose the
order of the isomorphisms o7y, ... ,o0, such that the matrix

o1(B1) ... 01(Bn)
(4.5) B=| : :

Un(ﬁl) . Un(ﬁn)

has nonzero determinant. Hence, we have

a1 o1(e)or(p)
(4.6) =t
Zn on(€)on(u)
Writing
Y1 oo Vin
(4.7) B = = :

Yn1 Tnn
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we get
Z; = 0pY1 + 0+ GinYn

for all ¢ = 1,...,n, where a;; = vipop() and yp, = op(e) for
h = 1,...,n. Noting that the y,, h = 1,...,n, are units in the
splitting field L of K, and deg (L) < k!, using n < k the theorem
follows from Lemma 3.1. o

Proof of Theorem 2.2. Obviously, in view of Theorem 2.1, it is suffi-
cient to give an upper bound for the number of three-term progressions
in H. For this purpose, assume that (z1,...,z,) is the middle term
of a three-term arithmetic progression in H, with common difference
d. Denote by Uk the unit group of the ring of algebraic integers of the
field K. Put

px1 = (z1 £d)Br+ -+ + (zn £d)Bn and po = 161 + - + T fn.

Note that Ng;q(k-1) = Ni/q(ro) = Nx/q(r1) = mD*, and further
that pp = eppy,, h = —1,0,1, where €_1,e9,e1 € Uk and p* , ug, 17
belong to a finite set whose cardinality is bounded in terms of k, m, D.
Thus, we have

wie 1 —2ugeq + pier = 0.

Hence, Lemma 3.3 implies that
(5—1a €0, 51) = E(Sila 535 5*{)

with some e € Uk, where (¢* ;,f,¢}) belongs to a finite subset of Us-,
of cardinality bounded by some constant depending only on k,m, D.
Thus, we conclude that

Hh:’f)\h; h:—l,O,l

holds, where € € Uk and A_1, Ag, A1 belong to a finite set of cardinality
depending only on k,m, D again. Observe that d = ¢(A; — Ag) holds,
and further that this d can be rational for at most one choice of ¢ € Uk
(up to a factor —1), for any fixed (A_1, g, \1). Hence, the theorem
follows. O
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Proof of Theorem 2.3. Suppose that (a;gj), e ,:cﬁf')), ji=1,...,¢t
is a nonconstant algebraic AP in H. Let ¢ be an arbitrary unit in
Z[3,. .. ,Bn) of norm 1, and define (y?), - ,yy(f)) by

B+ 4y DBy = @B+ + 2B, for j=1,... ¢
(4) ()

Obviously, then (y;”"’,... ,ys"), j = 1,... ,t, is a nonconstant algebraic
AP in H. As there are infinitely many units in Z[81, ... ,B,] of norm 1,
the theorem follows. u]

Proof of Theorem 2.4. Denote by m the common norm of aq, ... , a;.

As these numbers form an AP, we have ; = a1 + (i — 1) (a2 — a1),i =
1,...,t. This implies o;;/8 = (a1/B) + i — 1 with 8 = az — a;. Put
M for the norm of 8 and P(z) = z% + py—12* ' + -+ + po,p; € Q
for the minimal polynomial of oy /3. It is well known that the defining
polynomial of a; /(3 is a power of its minimal polynomial, i.e., u|k and
pe/" = (=1)*m/M. If k = u, then we even have py = (—1)Fm/M;
otherwise, because both py and m/M are rational numbers, there are
at most two possibilities for pg, which differ from each other only in
their sign.

Consider the polynomials P;(z) = P(x — (i — 1)), ¢ =1,...,t. They
are with P(z) irreducible and we have

(3)-r(5 -0-)e(5) -

i.e., a;/B is a root of P;(x), which together with the irreducibility of
P;(z) implies that it is the minimal polynomial of «;/8. Thus, its
constant term is equal to pg if & = u and may differ from py only in
its sign, otherwise. Hence, P(—i +1),4=1,... ,t is constant if k = u
or can assume only at most two different values. If k = u this implies
P(z) =xz(x —1)---(z —t +1) + po and we have t < k as stated. If
u < k, then there exists a subset I C {1,...,t} of size |I| > t/2 such
that P(—i + 1) takes the same value for all ¢ € I. By the theory of
interpolation, the degree of P must be at least |I|, i.e., u > |I| > /2.
On the other hand, v < k and ul|k imply u < k/2. From the last two
inequalities we get ¢ < k in this case, too. ]

Proof of Theorem 2.5. We shall bound the number of those solutions
of equation (1.1), for which there exists a solution (yi,...,¥yn) #
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(1,...,%,) with z; = y; for some ¢ € {1,... ,n}. Now equation (1.1)
means that

(4.8) prz1 + Baxe + - + Bprn = 11

and

(4.9) Bry1 + Baya + - + Bnyn = p2e2

where p; and pg are elements of norm mD¥* and €1,€9 are units in the
Z-module generated by Sy, ... ,3,. By Lemma 3.4 both y; and po can
be chosen from a set having at most ¥(k,n, ka) elements. Consider
fixed values of p; and pe. Denote again by o1,... , 0y the isomorphic
embeddings of K into C, choosing their order such that the matrix B
in (4.5) has nonzero determinant. Using (4.7), equation (4.8) leads to
equation (4.6). This means that

(4.10) T = Z'Yijo'j(ﬂl)aj(sl)'

j=1

Similarly, using equation (4.9) we can show that

(4.11) Yi = Z'Yijaj(ﬂ2)0'j(52)'

Jj=1

One can easily check that 7;; # 0 for at least two indices j € {1,... ,n}.
Thus, without loss of generality we may assume that v;1,...,7v;n are
nonzero and y; 41 = -+ = Yin = 0, for some 2 < N < n. Now
subtracting equations (4.10) and (4.11) we get

(4.12) Z Yij05(p1)oj(e1) — 7ijo(u2)oj(e2)) = 0.
j=1

This is a homogeneous unit equation consisting of 2N terms. We shall
bound the number of solutions of this equation. First we count the
nondegenerate solutions of (4.12). Dividing the equation by the last
term we obtain

(4 13)

%ijoi(p) oiler)  vijoi(p2) oj(e2) on(p1) on(e1) _
Z <7m0N Mz) (62) 'YiNUN(,UQ) UN(€2)> M L

= on(p2) on(e2)
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which is an inhomogeneous unit equation having 2N — 1 terms. We
easily see that all solutions to this equation are contained in the
subgroup

o {<a1(51) 01(52)’ oa(e1) oa(ea) UN(51)> ‘51,52 . Q;{}

O'N(EQ),O'N(EQ) O'N(Eg)’O'N(Ez), ,UN(EQ)

of (C*)2N =1, Clearly, this group has rank at most 2rx, where rg is the
unit rank of the field K. Indeed, if n;,... ,n,, denotes a fundamental
system of units in K then, the subgroup I'y of (C*)2VN~1 generated by
the vectors

aj = (Ul(nj)’1702(nj)717"'7170N(nj))7 .7: ]-a yTK,

and
b, = < 1 01(773') 1 0'2(77j) UN—l('ﬂj) 1 )
" \ow(ny) on(ng) on(ng) on(n)’ " on(g) Ton(ng))’
j: 17' - TK,

has rank at most 2rg. Further, the factor group I'/T'y is a torsion
group. This means that the solutions of equation (4.13) belong to a
subgroup of rank at most 2k — 2 of (C*)2V=1. Thus, oy(e1)/on(e2) is
contained in a set of at most

exp ((12N — 6)°V 3(2k — 1))

elements. Fix now such a value. Then using that the Galois group of
K is doubly transitive, we see that (oy(e1))/(0j(e2)) is also fixed for
each j,l € {1,...,k}. By multiplying the ratios (c1(e1))/(0;(e2)) for
j € {L,...,k} and using that H§:1 oj(e2) = £1 we get that ¢; may
assume at most 2k values. Similarly, e2 may assume at most 2k values.
These altogether show that the number of nondegenerate solutions of
equation (4.12) is bounded by

(4.14) exp (12N — 6)°N 2(4k — 2)) .
Now we have to estimate the number of degenerate solutions of (4.12),

too. If 'Yijo'j(l/fl)o'j(gl) — ’yijO'j(ug)O'j(Ez) = 0 for allj € {1,... ,N}
then we get that oy(u1)oi(e1) = or(p2)oi(e2) for some I € {1,... ,N}
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and thus p1e; = poes. Now subtracting equations (4.8) and (4.9) and
using that 3i,..., 3, are linearly independent, we get that x; = y; for
all j € {1,... ,n}, which is a contradiction. Thus, we must have one of
the following two cases:

(i) Equation (4.12) has a minimal vanishing sub-sum, i.e., a sub-
sum with no further vanishing sub-sums, which contains both o;(e1)
and oy(e3) for some j # 1, j,l € {1,...,N}. Similarly to the case of
nondegenerate solutions, we can prove that the number of solutions of
(4.12) is bounded by the expression in (4.14).

(ii) Equation (4.12) has both a minimal vanishing sub-sum which
contains o;(e1) and oy(e1) for some j # I, j,l € {1,...,N}, and a
minimal vanishing sub-sum which contains o, (e2) and o,(e2) for some
u # v, u,v € {1,...,N}. Further, these vanishing sub-sums contain
at most N terms. Thus, we infer again a much better bound than the
bound (4.14) on the number of solutions in this case.

Finally, we have 22¥~1! possibilities for choosing the considered sub-
sums, so altogether the number of solutions (e1,e3) of equation (4.12)

is bounded by
(4.15) exp (12N — 6)°N 1 (4k — 2)) .

Thus (using that N < n) the number of those solutions of equation
(1.1), for which there exists a solution (yi1,... ,yn) # (z1,... ,zn) with
x; = y;, is bounded by

T(k,n,mD*) exp ((12n — 6)°" ! (4k — 2)) .
Thus, the number of those solutions (z1, ... ,,) of equation (1.1), for
which there exists another solution (yi,...,yn) # (21,...,2,), such
that [, (@; — y;) = 0 is bounded by
n¥(k,n,mD*)exp ((12n — 6)°" " (4k — 2))
< U(k,n,mD")exp (k(lQn)G") . o
Proof of Theorem 2.6. We start the proof of the present theorem

exactly in the same way as the proof of Theorem 2.5. The first difference
is that instead of equation (4.12) we get

(4.16) Z (vijoi(p1)oj(er) — vijoj(puz)oj(e2)) = d € T.

N
j=1
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Now divide this equation by d to get an inhomogeneous S-unit equation
having 2N terms. Using Lemma 3.3 we can bound (similarly to
the proof of Theorem 2.5) the possibilities for either the values of
(ou(e1))/d, or the values of (o,(e2))/d for some u, depending on the
vanishing subsums in the unit equation. This bound is given by

(4.17) exp ((12N)*N (s + 2k — 1)) .

Since d € Z and oy(e1) is a unit, thus if (o,(e1))/d is fixed, then
d may assume at most two values and by fixing one of those, o, (¢1)
becomes also fixed. Then we can fix €3, too. A similar argument
works also when first we are able to fix (o,(e2))/d. Thus, for the
number of solutions of equation (1.1) for which there exists another
solution (y1,...,Yn) # (z1,... ,y), such that z; — y; € T for some
i € {1,...,n}, is bounded by

U (k,n,mD") exp ((s + k)(12n)5"13) . O

Acknowledgments. The authors are grateful to the referee for his
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