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ON e-POWER ,-HAPPY NUMBERS

XIA ZHOU AND TIANXIN CAI

ABSTRACT. Let e and b be positive integers; an e-power
b-happy number is a positive integer, a such that ST ,(a) =1

for some r > 0. Here S, p(a) is the sum of the eth ,powers of

digits of a in base b and S7 ,(a) = S, 5(52751 (a)). Let

A={pprime: p| =1 and (p—1) | (=1}, P= ][] »
peEA

In this paper, we prove that arbitrarily long sequences of P-
consecutive e-power b-happy numbers exist for any e, b.

1. Introduction. For a € Z', we define S3(a) as the sum of the
squares the decimal digits of a. For a € Z*, let S3(a) = a, and for
r > 1, let S5(a) = S2(S5"(a)). A happy number is a positive integer
a such that S%(a) = 1 for some r > 0. In [4], Guy asked whether there
exist sequences of consecutive happy numbers of arbitrary length. In
2000, El-Sedy and Siksek [1] gave an affirmative answer to this question.

Let e and b be positive integers. In 2001, Grundman and Teeple [2]
first defined the so-called e-power b-happy number, i.e., they named
positive integer a an e-power b-happy number if 57 »(a) = 1 for some
r > 0: here S, p(a) is the sum of the eth powers of the digits of a in
base b and S; ,(a) = S, b(S’;_bl(a)).

Let

A={pprime: p|(b—1)and (p—1)|(e—1)}, P=]]p
pEA
If P > 1 for some e and b, there are no consecutive e-power b-happy
numbers. In fact, for any p € A,

k k k k
Se7b<zaj><bj>EZa;EZajEZaijj (mod p).
j=0 j=0 j=0

Jj=0
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That is to say, Se, 5(n) =n (mod P) for every n. So n is an e-power b-
happy number only if n =1 (mod P). In [3], a d-consecutive sequence
is defined to be an arithmetic sequence with constant difference d. It
is natural to ask the following question.

Question. Do there exist sequences of P-consecutive e-power b-
happy numbers of arbitrary length for any e, b?

Some partial answers to this question have been obtained. In [3],
Grundman and Teeple showed that, when e = 2,6 > 2; ¢ > 2, b = 2;
e=3,2<b<130orb=2"+1,3 x2"+1, the answer is yes. Recently,
Pan [5] gave an affirmative answer to this question when P = 1. In this
paper, we give an affirmative answer to the above question completely.

Main theorem. There exist sequences of P-consecutive e-power
b-happy numbers of arbitrary length.

2. Some preliminary properties.

Definition 2.1. Giveneand b, leta =Y. a;b' with 0 < a; < b—1.
We define the function S, , : N — N by

Se, b(a) = Zaf.
=0

A positive integer z is then said to be e-power b-happy if S; p(x) =1
for some r > 0 (sometimes, we simply say z is happy; otherwise, we
say it is unhappy).

As usual, we define S? ,(z) = z.

Lemma 2.1. If S; »(y) = « where r > 0 and x is happy, then y is
also happy.

Proof. Obvious. o

Lemma 2.2. For any positive integer x the set Se_lb(x) ={yeN:
Se, b(y) = x} is nonempty.
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Proof. We simply observe that the number y = ZZ’E:_()I b® has z digits
with each one 1, and so Se, »(y) = . o

Lemma 2.3. Suppose that x, y and t are positive integers such that
b* >y. Then Se u(b" z+y) = Se, v(z) + Se, b(y)-

Proof. This follows from the fact that the digits of b* = + y are the
digits of x and the digits of y with possibly some zeros in between. O

Lemma 2.4. For any positive integers ay,as,... ,a, and r, y, there
exists an integer Y such that S} (Y +a;) = y+S7 y(a;) for1 <i<n.

Proof. Since the set {S’f3 plai) 0 1 <i<mn, 0<j <r}is finite,
there exists a positive integer ¢ such that b > max{Si plai) : 1 <
i <n, 0 <j<r} From Lemma 2.2, there exists an integer Iy
such that S, (1) = y. Now, for each £ > 2, choose I, such that
Se, v(l) = b'li_1. From Lemma 2.3, we have

0 p(0'l 4 ai) = ST (Se, b0l + ai)) = ST (Bl 1 + Se, b(as))
= 5775 (Se, v(0'lr 1 + Se, b(ai)))
= SI (' l—a + 52 4 (ai)
== 8 50"l + 577 (@) = y + L p(ai).

Taking Y = btl, proves the lemma. O
The above four lemmas are similar to those in [1].

Lemma 2.5. There exists a positive integer M such that S., »(a) < a
foralla> M.

Proof. This is clear since S, 5(a) < (b —1)¢log, a. o

Lemma 2.6. Let a be a positive integer. Applying the function Se, p
repeatedly to a, we eventually reach a cycle with finite length or arrive
at 1. Moreover, the number of cycles of Se, p is finite.
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Proof. This follows trivially from Lemma 2.5. u]

From Lemma 2.6, we know that, for any e and b, there exists a finite
set B, such that:

(1) for any positive integer n, S/ ,(n) € B for some integer r > 0.
(2) for any d € B, SL »(d) = d for some integer [ > 0.

Choose the subset D, , = {xr € B|x =1 (mod P)}. Since for any
integer n, S, p(n) = n (mod P), we see that n = 1 (mod P) if and
only if ST »(n) € De, p, for some r > 0.

3. Some further properties. In order to prove the main theorem,
we need some more lemmas.

Lemma 3.1. Given e and b, if for any d € D, 1, there exists a
positive integer y such that both y + 1 and y + d are e-power b-happy
numbers, then there exists a sequence {l,l + P,... ,l + Pm — P} of
e-power b-happy numbers of any length m.

Proof. Let D , = {l,dy1,da,...,dr}. We prove the lemma by
induction on the length m.

Suppose first that m = 2. There exists an r such S7 ,(P+1) € D, »;
thus, S (P +1) =1 or d; for some 1 <i < k. By .';Lssumption, there
exists y; such that both y; +1 and y; +d; are e-power b-happy numbers.
According to Lemma 2.4, there exist Y, S7 (Y + 1) =y; + S ,(1) =
yi+1, and S WY +P+1)= Yi + 5S¢ y(P+1)=y;+d; or y; +1. Let
I =Y +1. It follows from Lemma 2.1 that both [ and [ + P are happy.

Now we assume that the lemma holds for m = u — 1; that is, there
exists an I’ such that I',... ,I’+ (u—2)P are all happy. We consider two
cases. If I’ + (u— 1)P is happy, take [ = I’ and the proof is complete.
So suppose I’ + (u — 1) P is unhappy. Note that I’ + (v —1)P=10'=1
(mod P). Thus, there exists an 7 such that ST (I’ + (v — 1)P) = d;
for some 1 < j < k. According to the propertiés of D, p, there exists
a positive number v so that

SI(U 4+ (uw—1)P) =8I (' + (u—1)P) = d;.
Meanwhile, there exists an R such that S(f o(I' + (i —1)P) =1 for any
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1<i<wu-—1,sincel’,...,lI' + (u— 2)P are all happy. Let K = r
(mod v) satisfy K > R. By Lemma 2.4, there exists a positive integer
Y such that

SELY +U+ (i~ 1)P)=y; + SE,('+ (i~ D)P)=y; +1,
for1 <i<wu-—1,and

SE, (Y +1'+ (u—1)P) =y; + S (' + (u—1)P)
=y; + 50 (' + (u— 1)P) = y; + d;.

That is to say, Y +1' + (i — 1)P (1 < i < u) are all happy. Taking
=Y +1U,thenl,... ,l+ (u—1)P are all happy. This completes the
proof of Lemma 3.1. ]

In [5], Pan provided a method to find the number y, such that y + 1
and y + d are e-power b-happy numbers for any d € D, ;, when P = 1.
Now we modify his method and find such a number y for any P.

Lemma 3.2. Suppose that for any integer a = 1 (mod P), there
exists a happy number h such that h = a (mod (b — 1)¢). Then, for
any d =1 (mod P), there exists a positive integer | such that l+1 and
l+d are also happy.

Proof. Assume d = 1 + zP and choose a positive integer s such
that b* > zP. Let 2* = b* — 2P. Then z* = 1 (mod P). Since
Se, b(z*) = 1 (mod P), we have a happy number h such that h =
Se, b(z*) (mod (b—1)°). Suppose h > S p(z*) (if b < Se, p(x*) there
exists a t such that b* > S, ,(z*), and then we can replace h by hb’)
and write h = k(b—1)° + S., p(z*). Taking

k—1
I=a" =1+ (b—1)b*,
=0
we have

Se, s(l+1) =k(b—1)°+ S, o(z™) = h,

and
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S p(I+d) = S., p(b°TF) = 1.
Therefore, both [ + 1 and | + d are happy. o

Lemma 3.3. If, for any integer a =1 (mod P), there exists a happy
number h such that h = a (mod b—1), then we can find a happy number
R, B =a (mod (b—1)°).

Proof. Let s = p((b—1)¢). We have b* =1 (mod (b—1)¢). Choose h
happy such that A = a (mod b—1). Replacing h by hb™* for a suitable
m, we may suppose that both that h is happy and that h > (b — 1)°.
Then

h=a+k(b-1) (mod (b—1)%), 0<k< (b—1)°"'—1.

Taking
(b—1)°—k h
hl — Z bis+1 + Z b2js,
1=1 j=(b—1)e—k+1
then

h=((b-1)°-k)b+(h—-(b-1)°+k)=h—kb—1)=a
(mod (b —1)°),
and S, y(h’) = h, hence h' is happy. O

Lemma 3.4. If, for any integer a =1 (mod P), there exists a happy
number h such that

h=3Se (1) (modb-—1),

for some l = a (mod b — 1), then we can find a happy number h' such
that

Proof. We choose h > S (1), h = Se () (mod b—1) and s > 1
such that b° > [. Taking

h—>Se, »(l)

W= Y b4

j=1
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then
h'=h—Sc p(l)+1=a (modb-1),
and
Se, v(R') = h,
hence A’ is happy. This completes the proof of Lemma 3.4. ]

Now we give the proof of the main theorem.

4. Proof of the main theorem. Let b —1 = [[;_, p;" [1j_, q?j
be the standard factorization, where p; € A, 1 < i < s, and ¢; ¢ A,
1 < j < r. Noting that ¢; must be odd, we can find a primitive root g;

of qu for 1 <j < r. For any a =1 (mod P), taking L(a) such that

oy {2 57
" |1 (mod pf?)

and

0 g;+g; (mod )
1 (mod g¢;”)

ifa#1 (mod p),
ifa=1 (mod p{?), - 7

if a1 (mod g;7),
ifa=1 (mod ¢;°),

Let 7, = min{r | L"(a) = 1 (mod b — 1)}, where L" denotes the rth
iterate of L. Since a = 1 (mod P), we have a = 1 (mod p;). Noting
that p? { (p; — p¢) and e Z 1 (mod ¢; — 1), we have (g; — 95,q;) = L.
By the definition of L(a), r, exists.

From Lemmas 3.1-3.3, we only need to prove that for every a = 1
(mod P), there exists a happy number h satisfying h = a (mod b— 1).

If r, =0, then @ = 1 (mod b — 1); the above assertion holds. If
rqe = m, we assume the assertion holds for any integer a’ with r,» < m.
Since 71,) = 7q — 1, by inductive hypothesis, there exists a happy
number A’ such that

h' = L(a) (modb—1).
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Let g and n be positive integers such that

pi (mod p;?) ifa#1 (mod p;?),
= ( p‘) Z1( p.) l<i<s,
1 (mod py*) ifa=1 (mod p),
g; (modg;’) ifa#1 (modg;’),
9= l<j<n
1 (mod q?j) ifa=1 (mod q]’?j),
and
a—p; (modp*) ifa#1 (mod pf),
o (mod pg) # 1 (mod p;) 1< i<s,
0 (mod p;?) ifa=1 (mod p;),
a—g; (modg;’) ifa#1 (modg;’),
n= _ 1<5<r
0 (mod ¢;”) ifa=1 (mod q?j),
Taking
b—14n
I= ) b+g
i=1
Se, 5(l) =n+g°=L(a) =h' (mod b—1),
and

I=n+g=a (modb-—1),

from Lemma 3.4, we can find a happy number h, such that h = a
(mod b — 1). By induction, we are done.
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