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A NOTE ON ARONSSON’S EQUATION

DANIEL DRUCKER AND STEPHEN A. WILLIAMS

ABSTRACT. This note gives reasons why the equation in
the title is interesting, shows that constant multiples of solu-
tions of the eikonal equation are solutions, and proves that,
for other local solutions, curves on which the length of the
gradient remains constant propagate with a normal velocity
depending on curvature and “time.” Under reasonable as-
sumptions, this conforms to the setting used by Souganidis in
[10] to study propagating fronts.

1. Introduction. This note considers C? solutions f, in some open
set Q C R2, of the equation

(1) (fo)? o + 2fefyfoy + (fy)2 fyy = 0.

As shown in [8], equation (1) is the condition under which each curve
o(t) of steepest descent on the graph of f is asymptotic, i.e., its
acceleration vector ¢ (t) remains tangent to the graph of f at each
point on the curve o(t). Indeed, if o(t) = (z(t),y(t), f(z(t), y(t))),
then to say that o is a steepest descent curve means that its horizontal
velocity (z',y’) is a negative multiple of (f;, f,), the gradient of f.
Thus, the condition that o be asymptotic, namely,

(l',)zfzz + 2$,y’fzy + (y’)2fyy =0,

is equivalent to (1). Alternatively, (1) can be viewed as the requirement
that at each point P € (2 the second derivative of the values of f
along the line through P in the direction of Vf(P) is 0 at P, since the
condition
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d2
0= —S[F(P+ VAP

faz(P)  foy(P fz(P
- e (5 ) (50)
says that (1) holds at P.

Aronsson studied (1) in [2, 3] after discovering in [1] that, for a C?
function f on an open set Q C R?, (1) is necessary and sufficient for
f to have the property, for any bounded connected open set D with
D C Q, that its minimal Lipschitz constant on D is the same as its
minimal Lipschitz constant on 0D. Researchers who have continued in
this direction have defined the “infinity Laplacian” operator A., by

ANoof = > fififiss

i,j=1

where each subscript indicates a partial derivative with respect to
the appropriate variable (in R™), and then have studied the equation
Awf = 0. For n = 2, this is (1). Reference [6] is a recent paper in
this area that gives good new results and references to the literature.
Reference [4], a noteworthy survey paper on the topic, is even more
recent. Both [6] and [4] single out viscosity solutions as being the
ones of interest. (It is assumed here that the reader knows the basic
facts about viscosity solutions. For readers for whom this is not
true, [7] is an excellent reference, suitable for beginning, intermediate
or advanced users of viscosity solutions.) Research in this direction
characteristically deals with boundary value problems. The present
note deals instead with an initial-value problem.

It is clear that any linear function f is a solution of (1). One of
the many remarkable results in [2] is that linear functions are the only
C? solutions of (1) on all of R%. Since global solutions of (1) are well
understood, we shift our attention to local solutions.

It is a rather complicated matter to find nontrivial solutions of
Agu = 0. (See [3], for example.) This note shows that there are
two large families of local solutions of (1), both of them surprising:

(i) Any constant multiple of a solution u of the eikonal equation
(uz)? + (uy)? = 1 of geometric optics is a solution of (1).
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(ii) In a region in which (i) does not hold and in which f is not
constant, if f satisfies (1) and if we define h = /(fz)? + (fy)?,
then the level curves h = h, (for constants h, # 0) propagate with
a curvature-dependent (and “time”-dependent) normal velocity, and
from this family of level curves we can recover the associated solutions

f of (1).
It is natural to ask whether these results extend to the three-
dimensional case. Unfortunately, they do not.

2. Local solutions of equation (1). Let’s begin with some
elementary observations. First, with a = (f)?, b = f.f, and ¢ = (f,)?,
the calculation ac — b* = (f,)2(fy)? — (fzfy)? = 0 shows that (1) is
parabolic. (See [5, pages 163-164] for the definition of “parabolic”
used here.) Second, a simple calculation shows that radial solutions
of (1) are of the form f(z,y) = Av/2? +y% + B for constants A and
B; the solutions are smooth for (z,y) # (0,0). Lastly, separation of
variables gives the solutions f(z,y) = a[(z + b)*/® — (y + ¢)*/?] +d for
any constants a, b, ¢ and d; the solutions are smooth for x # —b and
y # —c. (See Example 3 in [8] for the details.)

Now let u be a solution of the eikonal equation (u;)? + (uy)? =
1. Differentiating with respect to x, respectively y, gives 2uzug, +
2uyuy, = 0, respectively 2ugugy + 2uyuyy = 0. Thus,

0 = g (UpUipe + UylUys) + Uy (UsUsy + Uylyy),

so that u (hence any constant multiple of u) satisfies (1). Note that the
linear functions and the radial solutions discussed above are constant
multiples of eikonal solutions (or are constant).

If f = Cu, where u is an eikonal solution and C' is constant, then
by defining h = /(fz)? + (fy)?, as we do in what follows, we obtain
h = |C], so that VA = 0. Since solutions of the eikonal equation
are well understood (for example, see [9, pages 40-43]), we focus our
attention on local solutions satisfying Vh # 0. The following theorem
also assumes that h is never 0. This was proved in Theorem 6 of [2] to
be true on any connected open set on which f is not constant.

Theorem 2.1. Let Q C R? be a connected open set. Let f be a C?
solution of (1) on Q. Let h = \/(fz)? + (fy)?. Assume that h and |Vh|
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are never 0 on §2. Then, for any level curve h = hy in ), where hy is
a constant, we have

(2) K= —s

at each point of that curve, where k is the signed curvature of the curve
at that point and where s =1 or s = —1, depending on the direction in
which the curve is traced.

Remark. Thus, if k > 0 for the curve as traced, then s = —1. If the
curve is traced in the reverse direction, then x < 0 and s = 1.

Proof. Using (1), it is easy to check that fyhz+ fyhy = 0 on Q. Thus,

(3) (fz7 fy) — 5 (_hyv hm)
h V(he)? + (hy)?

holds at all points of €, with either s = 1 or s = —1. Let (z,y) be
a point of the level curve h = hg. Then there is a steepest ascent
curve on the graph of f whose projection a(t) = (z(t),y(t)) onto
the zy-plane passes through (x,y). Since « is the projection of a
steepest ascent curve, we can assume without loss of generality that
de/dt = fy(x(t), y(t)) and dy/dt = f,(x(t), y(t)). Then all the points
of a lie on the level curve h = hg since h(z,y) = hy and

d dx dy

" = fzhg + fyhy = 0.

Thus, by using (3), we see that along h = hy we have

k(t) =

[(@2 + (9)2]3/2 B [(fw)Z + (fy)2]3/2
_ Jfa[hhy] — fy[hha]
= 3
_ fal=sfo/ (B + ()] — Fylsfy/(ha)” + ()]
h3
=—s (hd2+(hwzﬂﬁﬁiiiﬁﬁﬂ::_S_lﬁﬁiilﬁﬁf_ 0

h? h
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Suppose that the hypotheses of the preceding theorem are satisfied.
For some particular hy # 0, let h = hy be our starting curve at time
t =0. For any t > 0 with ¢ < hy, let h = hy — t be the new curve at
that time. Then the normal velocity V' of the propagating front (in the
unit normal direction n opposite to the direction of (hy, hy)) is V =
1/4/(hg)? + (hy)?. (To see this, pick any point P on the level curve of
h at time ¢, and let (z(s), y(s)) parametrize the normal line of the level
curve at P so that s is arclength, (z(0), y(0)) = P, and (z'(s), ¥'(s))
points opposite to the direction of (hg(P), hy(P)). Let As = s — 0
and Ah = h(z(s),y(s)) — h(P). Then, for small As, —At = Ah =
=51/ (ha(P))? + (hy(P))?, so As/At ~ 1/1/(ha(P))? + (hy(P))?, with
the approximation becoming better and better as At — 0.) From
(2) above, we see that V = —s/(hk) = —s/[(ho — t)k]. (A rigorous
derivation of the form of V' can be given, but the informal argument
given here is likely easier to understand.) Thus, V is a curvature- (and
time-)dependent normal velocity.

We are now ready to use the apparatus of [10] to investigate the time
evolution of these curves. From (3) we see that n = —Vh/|Vh| =
(—sfy/h, sfz/h) along the propagating curve. Let Dn be the 2 by 2
matrix whose first row is the gradient of —sf,/h and whose second row
is the gradient of sf,/h. A simple calculation shows that the trace of
Dn is —sk along the propagating curve. Thus, (1.1) of [10] holds with

v(Dn,n,x,t) = (=9)* = L
Y (b —t)trDn (hg —t)trDn’

Following the formulas of [10], we obtain, with

Ti1 T12 b1
X = = 0
<3312 l‘zz) P <P2> #

and
P1 PiP1 Pip2
® — — 5
pePp <p2>(p1 p2) (Pzpl p2P2>
that
F(X,p,x,t)

— —1
= Ip| (ho—t){ (1/IpI)(z;, +222)—(1/|PI®)[(P1) 2211 +2p1p2w12+(p2)?w22] | ©
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This function F is not acceptable. (For example, it is not defined when
X is the zero matrix.) To see how to modify F, let’s decide what to take
for the initial condition function wu, of [10]. To meet the requirements
there, ug must be uniformly continuous on R? and the starting curve
h = ho must be the 0-level set of ug, with up > 0 on one side (the side
with n as its exterior normal) and with uy < 0 on the other side. By
Lemmas 1 and 2 in [2], the starting curve is locally of the form y = v (z)
with ¢”(x) > 0 and with ¢ a C* function (after some rotation of the
axes). Make that rotation of the axes. (It is not hard to see that (1)
still holds—with a new f, x and y-if the axes are rotated.) Thus, we
can reasonably assume that our starting curve is of the form y = ¢(z),
where ¢ € C*°(R), with ¢ uniformly continuous and ¥ > 0. (By
first restricting its domain to a slightly smaller interval if necessary,
the locally defined 1 above can be extended so as to satisfy these
conditions.) Then the function ug defined by ug(z,y) = y — ¢¥(z) can
be shown to satisfy all of the requirements above. A simple calculation
shows that

|V—ZO|[(U0)M + (ug)yy]
— e L0020+ 2(u0)s () () + (00, )}

@)
I+ W@PPe

< 0.

Let K C R? be a compact set containing a set in which we want
our local solution to be defined. Let € > 0 be chosen so that
e < " (z)/{1 + [¢'()]*}*/? for all (z,y) in K. Define g. by g.(r) =
min{—e¢, r} for every r € R. Define G5 for any 0 < § < ho by
Gs(r) = max{d, r} for every r € R. Then define

Fé,s(Xa P, X, t)

_ —1
- |p| Gs(ho—t) g-((1/Ip])(z11+x22)—(1/|P[3)[(P1)2211+2p1p2z12+(p2) 2 222]) ©

Note that Fs. agrees with F' whenever the argument of g. is < —¢ and
0 <t < hg — 4. Note also that Fs. depends on all of the above: ug, 9,
K, e and §.
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Now let ¥ = <Zi; z;z> with X > Y, ie., with X — Y nonnegative

definite. Then we clearly have

D2
P2 —p1 T11 — Y11 T12 — Y12 pl >0
(1wl <$12 — Y12 T2 — y22> ( o)

SO
1 2 2
(4) y11 + Y22 — W[(pl) Y11 + 2p1p2yi2 + (p2) Yo2]
1
<yt @o2 — W[(m)%n + 2p1p2712 + (p2)23322]-

Dividing both sides of (4) by |p|, applying g. to both sides of the
resulting inequality (which preserves the direction of the inequality
since g. is nondecreasing), and using the fact that all the values of
g- are negative, it is easy to verify (1.8) in [10] for Fj; that is,

Fé,E(Xapaxat)ZFS,E(Kanat) if XZY

F; . also satisfies (1.7) of [10], once one corrects a misprint by inserting
Ap as the second of four arguments on the left-hand side. Explicitly,
(1.7) of [10] for Fj. should read

F(s,s()\X + /J'(p by p)a )\p,x, t) = AF&,E(Xapaxa t)
foral A>0 and peR.

When p = 0, define F5.(X,p,x,t) = 0. Then F;. is continuous
everywhere (the proof is left to the reader), so (1.10) of [10] is easily
seen to hold, i.e.,

F3(0,0,x,t) = (F5.)«(0,0,x,t) for (z,t) € R* x (0,00),

where (see, for example, (4.1) in [7]), for any function u, the expressions
u* and wu, denote its upper and lower semi-continuous envelopes,
respectively. (v = u* = w, when u is continuous, as it is here.)
Using Proposition 1.2 of [10], we obtain the unique viscosity solution
of the equation u; = Fs.(D?u, Du,x,t) subject to the initial condition
u(x,0) = up(x) for all x € R?. Then we throw away any portions of
the viscosity solution leading to arguments r of g. where the derivatives
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involved are not classical derivatives or where g.(r) = —e. (The
reader should be warned that no results are known to the authors
which guarantee that the viscosity solution has continuous second-order
derivatives, even locally.) The propagating front at time ¢t > 0 with
t < hg — ¢ is then {x : u(x,t) = 0}, i.e., the O-level set at that time.

Let us now consider the question of how to get our solutions f,
once we know what the h = constant curves are in some open set
Q. Since fyhy + fyhy = 0, Vf is tangent at any point of a level curve
h = hg of h. Since h = |Vf| = hp on this level curve, f is a linear
function of arclength along the curve. Consider a family of disjoint
curves orthogonal to the h = constant curves. Since Vf is everywhere
tangent to the level curves of h, clearly f is constant along curves of
the orthogonal family. With this in mind, we can now understand how
to get our solutions f to (1) from the family h = constant. Pick a
particular curve h = hg. Define a function g along this curve so that g
is a nonconstant linear function of arclength s along this curve. Then
extend these values of g off the curve h = hy by keeping its values
constant along curves of the orthogonal family. (If g is now defined at
more than one point of a new curve h = h;, we can extend it to be
defined on all of h = h; by making it a linear function of arclength
along h = h;. These new values of g can then be extended off h = h;
as before. This process can obviously be iterated.) Finally, f = Ag+ B
for some constants A # 0 and B. (To see this, note that since f and
g are both linear functions of arclength s on the level curve h = hg
and ¢ is nonconstant, there are constants A # 0 and B such that
f = Ag + B on this curve. Since the values of both f and g remain
constant along curves of the orthogonal family, f = Ag + B remains
true for the first extension off the curve h = hy. Simple considerations
show that f = Ag + B remains true for later extensions as well.) In
fact, for any constants C' # 0 and D, the function f = Cg+ D will also
satisfy (1), and the function h derived from f will have the same level
curves that h does.
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