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RELATIVELY BOUNDED EXTENSIONS
OF GENERATOR PERTURBATIONS

HORST R. THIEME AND JURGEN VOIGT

ABSTRACT. The Miyadera perturbation theorem provides
as a by-product that operators defined on a core for the
generator of a Cp-semigroup and satisfying the Miyadera
condition have a relatively bounded extension to the domain
of the generator. We show that a weakening of the Miyadera
condition characterizes relative boundedness with respect to
the generator. We also investigate extensions of these results
to Hille-Yosida operators. The various conditions we use in
the abstract part are illustrated by several examples.

1. Introduction. Additive perturbations of Cy-semigroups typi-
cally involve an operator B which is relatively bounded with respect
to the generator, A, of the semigroup, 7. In important applications
one has a good idea of how A operates, but difficulties in determining
the precise form of D(A). In these situations, often a dense subspace
D of D(A) can be identified which is invariant under T" and on which
the perturbation can be easily described. The perturbation theorem
presented in [11] adapts Miyadera’s perturbation theorem [7] to such
a scenario. In its proof, the extension of the perturbation from D to
D(A) is obtained as a by-product of the perturbation procedure. The
method presented in this paper decouples the extension of the pertur-
bation from the construction of the perturbed semigroup and yields a
characterization of A-boundedness by conditions which are similar to
but weaker than the Miyadera condition.

In Section 1 we show the characterization mentioned above (Corol-
lary 1.6). Furthermore, we establish the relation between various con-
stants appearing in different versions of relative boundedness (Proposi-
tion 1.8). We also present an extension result related to multiplicative
perturbations of Cyp-semigroups (Theorem 1.12).
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In Section 2, we treat the extension problem for the case that A is
a Hille-Yosida operator. In this case, the part A of the operator A
in X := D(A) is the generator of a Cy-semigroup, and the domain
D(B) = D(A) of the perturbation B is no longer a core for A.
Therefore, the question of (unique) extendability of B to D(A) is not
covered by the results of Section 1. We solve the extension problem in
two cases. In the first case, B is assumed to be infinitesimally A-small.
In turn, the extension of B is infinitesimally A-small. In the second
case, X is an ordered Banach space, A is resolvent positive, and B
is positive and takes values in an ordered Banach space with a fully
regular cone.

In Section 3 we treat examples illustrating several of the results of
the previous sections.

1. Perturbations of semigroup generators. In this section let
A be the generator of a Cp-semigroup T on a (real or complex) Banach
space X. There exist M > 0, w € R, such that ||T'(¢)|| < Me“" for all
t>0.

A subset D of X will be called almost invariant under T if, for all
x € D, the set {t € [0,00); T(t)z ¢ D} has Lebesgue measure zero.

1.1 Theorem. Let D C D(A) be a dense subspace of X which is
almost invariant under T. Let By: D — Y be a linear map from D to
a Banach space Y such that BoT(-)x € L1 10c ([0,00);Y) for all x € D.
Assume that there exist constants o,y > 0 such that

t
(1.1) ‘ / ByT(s)xds|| <~|z|| forallte[0,a], z€ D.
0

Then there exists a uniquely determined A-bounded operator B: D(A) —
Y such that, for every x € D, BT (-)x = ByT'(-)x almost everywhere
on [0,00). For all t > 0, the operator B satisfies

HB/OtT(s) ds —sup{H/OtBOT(s):vds

If By is closable, then B is an extension of By.

aeD, o <1},
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In general, it cannot be concluded that B is an extension of By. This
will be illustrated by Example 3.1. However, the set {z € D; Byxz =
Bz} will turn out to be a core for A, see Remarks 1.5. For z € D, the
function BT'(-)z is continuous; so the assertion shows that BoT'(-)x is
necessarily equivalent to a continuous function. Further, one obtains
that

esssup || Bz — BoT(s)z|| = 0 (¢t —0), forallze D.
0<s<t

This shows that B is an extension of By if and only if the preceding
statement holds with B replaced by By.

Assumption (1.1) is strictly weaker than the Miyadera condition
(1.2) / |BoT'(s)x| ds < v|z|| forall z € D;
0

cf. Example 3.5. Condition (1.2) is needed in the Miyadera perturbation
theorem, with Y = X and v < 1 (cf. [4, 7, 11]).

1.2 Remarks. (a) In condition (1.1) as well as in the Miyadera condi-
tion (1.2), the function ByT'(-)z only occurs in an integral. Therefore,
it seems natural to require that this function is integrable (rather than
continuous, as in Corollary 1.7) and is defined only almost everywhere,
i.e., D is almost invariant rather than invariant under 7T'.

(b) Supposing more strongly the invariance of D under T in Theo-
rem 1.1 does not lead to the conclusion that B is an extension of By.
This is illustrated in Example 3.1 (b).

(c) We note that in Example 3.1 also the Miyadera condition (1.2) is
satisfied (since BoT'(-)x = 0 almost everywhere and B = 0 on D(A)).
This means that in the Miyadera perturbation theorem as well, one
cannot release the continuity of ByT'(-)z for € D to the weaker
requirement that BoT'(-)z € L1((0,); X) if one wants B to be an
extension of By.

A function V:[0,00) — L(X,Y") (where Y is a Banach space) is called
a cumulative output for T if

(1.3) V()T (s) = V(t+s)— V(s)
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for all t,s > 0. Equation (1.3) is called the cumulative output identity
(cf. [3, 10]). Setting ¢ = s = 0 in (1.3) one concludes V(0) = 0.
In the following remarks we collect some elementary facts concerning
functions satisfying (1.3).

1.3 Remarks. (a) Let o > 0, and let V:[0,a] — L(X,Y) satisfy (1.3)
for all ¢,s > 0 such that ¢t + s < a. Then V extends uniquely to a
cumulative output.

In order to show this it is clearly sufficient to extend V' (uniquely)
to [0,2a]. Let t € (®,2a]. Then (1.3) implies that the definition
V(t) :=V(r)+V(t—7)T(r) does not depend on the choice of r € (0, @]
with ¢ — 7 € [0, e, and that V thus defined satisfies (1.3) on [0, 2¢].

(b) Let V:[0,00) — L(X,Y) be a cumulative output for T, and
assume that there exists a > 0 such that supy<,<,, ||V ()| < co. Then
V' is exponentially bounded, i.e., there exist constants M >0, weR
such that ||V (¢)]| < Me** for all ¢t > 0.

This statement is proved as in [3, Proposition 3.2] or [10, Lemma
4.14].

(c) Let V:[0,00) — L(X,Y) be a cumulative output for T', and as-
sume that s-lim; oV (¢) =0 (= V(0)). Then V is strongly continuous
on [0, 00).

Indeed, writing (1.3) as V(¢) — V(s) = V(t — s)T(s), for 0 < s < ¢,
we obtain V (t) — V(s) — 0 strongly for fixed s and ¢t — s as well as for
fixed t and s — ¢.

An operator family (F(A); A > 6) is called a resolvent output for A
(cf. [10]) if it satisfies the resolvent output identity

(14) (k= NFN)(u=A)" =FQ\) = F(p), (A p>max{f,w}).

The concept of a resolvent output and part (a) of the following lemma
also apply if A is a closed operator whose resolvent set contains (w, 00).

1.4 Lemma. (a) A family (F(\); X > 0) of bounded linear operators
18 a resolvent output for A if and only if there exists an A-bounded
operator B: D(A) — X such that F(A\) = B(A — A)~! for all A >
max{6,w}.
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(b) Let V:]0,00) — L(X,Y) be strongly continuous, and assume that

there exist constants M > 0, @ € R such that |[V(t)|| < Me*t for
all t > 0. Define F()\) = )‘fo e MV (t)dt for X > @. Then F is a
resolvent output for A zf and only if V is a cumulative output for T.
Moreover,

limsup ||F(A)|| < limsup ||V (t)]].
t—0+

A—00

(c) Let V:[0,00) — L(X,Y) be a strongly continuous cumulative
output for T. Then there exists a umquely determined A-bounded
operator B: D(A) =Y such that V(t) = B fo s)ds for all t > 0.

Proof. (a) If F(A\) = B(A — A)~1, for an A-bounded operator
B:D(A) — Y, then the resolvent output identity follows from the
resolvent equation. Conversely, let F' be a resolvent output for A.
The resolvent output identity (1.4) implies that F(A\)(u — A)~! =
F(u)(A — A)7! for all \,u > max{f,w}, and therefore the definition
B = F(A)(A — A) does not depend on the choice of A > max{f,w}.
The boundedness of F()) implies that B is A-bounded.

(b) follows by multiplying the relation (1.3) by e *e~#* (where
A, p > max {w,w}) and integrating over r and ¢ and from the unique-
ness properties of the Laplace transform. The inequality follows from
Fatou’s lemma.

(c) By parts (a) and (b), there exists an A-bounded operator B such
that

A/OOO e MV (t)dt = BA—A)~! = A/OOO e—”B</0t T(s) ds> dt.

The uniqueness properties of the Laplace transform imply that V(t) =
Bfo s)ds. Since B is A-bounded, one obtains Bz = lim; o4 (1/t)
V(t)x for z € D(A). This shows that B is uniquely determined by
V. o

Proof of Theorem 1.1. For t € [0,a], x € D, we define Vy(t)z =
fot ByT(s)xds. Then Vy(t) extends to a bounded linear operator
V(t):X — Y, and V:[0,a] — L(X,Y) is strongly continuous and
bounded.
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Let z € D, and let t € [0, ). Then
Vo(®)T(s)x = Vo(t + s)z — Vo(s)x

for all s € [0, — ¢] such that T'(s)z € D. The set of those s is a set
of full measure in [0, — t], and therefore the strong continuity of V'
implies
V)T(s)z=V(t+s)z—V(s)z

for all s € [0, — ¢]. This shows (1.3) for ¢, s > 0 such that ¢t + s < «a.

From Remarks 1.3 and Lemma 1.4 we obtain that there exists
a uniquely determined A-bounded operator B such that V(t) =
Bfot T(s)ds for t € [0,a]. For x € D one concludes fg BT (s)xds =
V(t)z = Vo(t)x = [} BoT(s)zds. So BT(t)z = ByT(t)z for almost
every t € [0,a]. Since D is almost invariant under 7', this holds for
almost every ¢ > 0. Also, fot T(s) ds is continuous as an operator from
X to D(A) (with the graph norm); therefore, B fot T(s)ds is a bounded
operator whose norm can be computed on the dense set D.

Assume now that By is closable. Let x € D. Then BT()z is
continuous. There exists a sequence (t,) in (0,00), t, — 0 (n = ),
such that ByT'(t,,)x = BT (t,,)x for alln € N. Then z,, := T (¢, )z — x,
Byz,, - Bz (n — o), and this implies Bz = Buz. o

1.5 Remarks. (a) Let D C D(A) be dense in X and almost invariant
under 7. Then D is a core for A.

Indeed, since D is almost invariant, D := U0 T'(t)D is contained in
the A-closure of D. Since D is invariant under T, one obtains that D
is a core for A (cf. [4, II, Proposition 1.7]).

(b) Let additionally By and B be as in Theorem 1.1, and define
Dy :={z € D; Byx = Bz}. Then Dy is a core for A.

Indeed, Dy C D(A) is dense in X and almost invariant under T, by
the assertion of Theorem 1.1. Therefore, part (a) above shows that Dy
is a core for A.

1.6 Corollary. Let D C D(A) be a dense subspace of X such that
T(t)D C D for allt > 0, and let By: D — Y be a linear map from D
to a Banach space Y such that BoT(-)z continuous for all x € D.
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Then By extends to an A-bounded operator B: D(A) — Y if and only
if there exist constants a,y > 0 such that (1.1) holds.

Proof. Assume that B: D(A) — Y is an A-bounded extension of By.
Let A € p(A). Then B(A — A)~! is a bounded operator and, for any
z € D(A),

/t BT(s)ads = B(A — A)~! /t()\ — A)T(s)z ds
(1.5) O 0

=B(\— A)! ()\ /01t T(s)zds — (T(t)x — x)).

This shows that for any a > 0 we can find v > 0 such that (1.1) holds.

Assume now that there exist , ¥ > 0 such that(1.1) holds. Then The-
orem 1.1 implies that there exists an A-bounded operator B: D(A) — Y
such that BT'(-)z = BoT'(-)z almost everywhere on [0, c0) for all z € D.
The continuity of both of these functions implies Bz = BT (0)z =
ByT(0)x = Byx. Therefore, B 2 By. O

1.7 Corollary. Let Dy be a dense subspace of X, T(t)Dog C Dy for
all t > 0. Assume that D := lin{fg T(s)zds;t > 0, © € Do} C Dy,
and let By: D — Y be a linear map from D to a Banach space Y .

Then By extends to a (unique) A-bounded operator B: D(A) — Y if
and only if there exist constants o,y > 0 such that

<Allz|| foralltec[0,a], x € Dy.

(1.6) HBO /OtT(s)xds

As illustrated in Example 3.2, the invariance of Dy under T' cannot
be dropped as an assumption.

Proof. The necessity follows from the A-boundedness of B.

For the sufficiency we apply Corollary 1.6. The set D is a subset of
D(A), is dense in X and invariant under 7. (This implies that D is
a core for A, and therefore the A-bounded extension B, if it exists, is
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unique.) It remains to show that BoT'(-)z is continuous for all z € D
and that (1.1) is valid (with «,~ as above).

Let r € (0,0]. For z € Dy, we define Vy(r)z := By [, T(u)z du and
notice that (1.6) implies that Vy(r) extends to an operator V(r) €
L(X,Y). Let # € Do, z, = [, T(u)zdu. Then ByT(t)z, =
BoT'(t) [, T(u)zdu = V(r)T'(t)z is continuous as a function of ¢. The
invariance of Dy under T implies D = lin{fot T(s)zds; 0<t<a, z €
Dy}, and therefore we obtain the continuity of ByT'(-)z for all € D.

In order to show (1.1) it is sufficient to show
t t
(1.7) / BoT(s)xds = Bo/ T(s)xds forallze D, te(0,al,
0 0

which in turn follows if we show (1.7) for all z, := [ T'(u)x du (x € Dy,
0 < r < ). The latter follows from the computation

Bo /0 "T(s)z. ds = Bo /0 ") /0 " (s) ds du

ByT(s)x, ds. u]

The A-boundedness of an operator B: D(A) — Y can be expressed
in different ways. In the following proposition we provide the relation
between various numbers connected with this notion. We recall that
the A-bound of B (or relative bound of B with respect to A) is defined
as the infimum of the numbers b > 0 for which there exists a > 0 such
that

(1.8) |Bz|| < al|z|| + b||Az| for all z € D(A).

We call B infinitesimally A-small if the A-bound of B equals 0.
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1.8 Proposition. Assume that B: D(A) — Y is A-bounded with
relative bound B. Then

t
B < hmsup |B(A — A)7Y| < limsup HB/ T(s)ds|| < (M +1)B.
A 0

t—0

In particular, B is infinitesimally A-small if and only if

B/OtT(s) ds

lim =0.
t—0

Proof. The first inequality follows from

(1.9) Bzl < AIBOA—A)"Hlllzll + |1B(A — A) ||| Az|
(z € D(A)).

Defining V() Bfo s) ds, = A[JTeMV(t)dt (= B(A
A)7Y), we obtaln the second 1nequahty from Lemma 1. 4 (b). For the
proof of the last inequality let b > 8, a > 0 be such that (1.8) holds.

Then
t t
HB/ T(s)ds
0

T(s) ds +bHA/OtT(s)ds

0

¢
< aM/ e ds+b||T(t) — I
0
t
< aM/ e* ds + b(Me™ + 1).
0

Since the right-hand side of the last estimate tends to b(M +1) ast — 0
we obtain the last estimate. |

1.9 Remark. In the notation of Corollary 1.6, B is infinitesimally
A-small if and only if

t
/ ByT(s)xzds
0

;e D, |w||§1}—>0 (t—0).

(1.10) sup{
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Condition (1.10) is satisfied if By is an infinitesimally small Miyadera
perturbation of A (cf. [6]), i.e., if for any v > 0 there exists some o > 0
such that

/0 IBoT (el dt < Allz| (z € D).

In partial analogy to semigroups, cumulative outputs are strongly
continuous if they satisfy an appropriate measurability and integrability
condition.

1.10 Proposition. Let V:[0,00) = L(X,Y) be a cumulative output
for T. Assume that there exist 0 < a < [ such that V(-)z €
Li((e, B);Y) forallz € X.

Then V s strongly continuous.

Proof. (Compare [8, Theorem 2.2].) Let # € X. First we note that
the equation
V(it+s)z=V(t)z+ V(s)T(t)x

implies that V (-)z is integrable over the interval (¢t +«,t+ ), for t > 0,
and therefore V(:)x € L 10c([®r, 0);Y). Integrating

Vit)e=V(t+s)z—V(s)T(t)x

over s from « to 8 we obtain

B B
(B—a)V(t)wz/ V(t—l-s)xds—/ V(s)T(t)z ds
t+p3 B

_ /Ha V(w)z du — / V()T (t)z ds.

(e}

Since the strong integral ff V(s)ds is a bounded linear operator (cf.
[5, Theorem 3.8.2]), it follows that V'(-)x is continuous on [0, co). O

1.11 Remark. Using Proposition 1.10 one could prove the result of
Theorem 1.1 under the following weakening of condition (1.1): Suppose
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that there exist @ > 0 and a locally integrable function v: (0,a] — R
such that

We conclude this section with another application of Proposition 1.10
which is related to multiplicative rather than additive perturbations of
the generator A (cf. [4, IIL.3(d)], [9]).

t
/ BoT(s)xds|| < (t)||z|| forallte|0,a], € D.
0

Theorem 1.12. Let D C D(A) be a dense subspace of X such that
T@t)D C D for allt > 0. Let C:D — Y be a linear map from D
to a Banach space Y such that CT(-)xz is Borel measurable for each
x € D. Assume that there exist a constant o > 0 and a function
v :(0,a] = Ry such that v € L1 10 (0, ] and
(1.11) IC(T(t)x — )| <~(t)||z|| forallte (0,a], € D.

Then there exists a uniquely determined A-bounded operator B: D(A) —
Y such that

t
B/ T(s)xds =C(T(t)x —x) forallz e D, t>0.
0
For all t > 0, the operator B satisfies

HB/OtT(s)ds

If C is closable (with closure C), then B = CA.

=sup {|C(T()z —z)||; = € D, |lzf| <1}.

Proof. We set Vy(t)x = C(T(t)z—z) fort > 0, x € D. Then, for every
z € D, Vy(-)z is Borel measurable and Vy(t+r)z = Vo(r)z+ Vo (¢)T (r)z
for all ¢, > 0. For ¢t € [0,a], Vo(t) can be extended to a bounded
linear operator V(¢) on X. Applying Remark 1.3, Proposition 1.10 and
Lemma 1.4 (c) we obtain a uniquely determined A-bounded operator

B such that fot BT (s)zds =V (t)z = C(T(t)r—=x) forallz € D, ¢t > 0.
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Let C be closable. The continuity of the operator B fot T'(s) ds shows

that then T'(t)z — x € D(C') and
(1.12) B /t T(s)ads = C(T(t)z — z)

forall z € X, ¢t > 0. Let € D(A). Then, dividing (1.12) by ¢ and
taking ¢ — 0 we conclude that Az € D(C) and Bz = C'Ax. u]

2. Perturbations of Hille-Yosida operators. Now let A be a
Hille-Yosida operator in the Banach space X (cf. [1, Section 3.5]). Then
the part A of A in X = D(A) is the generator of a Cy-semigroup T on
X. As before there exist M > 0, w € R such that ||T(t)|| < Me* for
all ¢t > 0.

2.1 Proposition. LetY be a Banach space, and let B: D(A) — Y be
an A-bounded operator. Then the following properties are equivalent.

(i) The operator B has an A-bounded extension B:D(A) — Y
satisfying

(2.1) BA—A)"' =0 strongly (A — o).

(ii) The limit

(2.2) Bz := lim BA(\— A) 'z

A—00
exists for all x € D(A).
(iii) The limit

(2.3) s-lim B(u — A)!A(A — A) 7!

A—00
exists for some (all) p € p(A).
If one (and then all) of these properties are satisfied, then the A-

bounded extension B of B satisfying (2.1) is given by (2.2), and there-
fore is uniquely determined.
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Proof. (i) = (ii). For z € D(A), the hypothesis implies

Bz = lim B(A— A)"'(A— A)z = lim B(A — A)~Az.
A—00 A—oo

(ii) = (i). The uniform boundedness theorem implies that the
operator B defined by (2.2) is A-bounded. Also, B O B. Choose
w € p(A). Then, for all z € D(A),

BOA—A) Y (p—A)z=@u-NB\N-A) e+ Bzr—0 (A= c0).
From (u — A)D(A) = X we obtain that B(A — A)~! — 0 strongly as
A — 00.

_ (ii) < (iii). This equivalence is immediate from the equation B(p —
A)TINA—A) "t = BAX\— A)"Y(u— A)~! together with the fact that,
for u € p(A), the mapping u — A: D(A) — X is bijective. O

2.1 Extensions of infinitesimally small perturbations. A
linear operator B: D(A) — Y is infinitesimally A-small if and only
if [B(A—A)" Y| = 0as A — oco. (Sufficiency follows from (1.9). For
necessity assume that M is such that ||[(A — A)~Y| < M/ for large A,
and let a, b be such that (1.8) holds. Then the inequality

_ M
1B = A) "zl < alz] + b(1+ M)e]| (2 € X)
shows limsup,_, . [[B(A — 4)7!|| < b(1+ M).)

2.2 Theorem. Let Y be a Banach space, and let B: D(A) — Y be
an infinitesimally A-small operator.

Then there exists an infinitesimally A-small extension B: D(A) =Y
Of Bo.

Proof. We set F(\) := B(A— A)~! (A > w). Then
(2.4) F\(a—=XN(a-A)"t=F\) - Fa) (a,A>w),

i.e., F' is a resolvent output for A (see Lemma 1.4), and by hypothesis,
IF(AN)|| = 0 as A — co. Next we show that, for A > w, the operator
norm limit
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lim F()\)a(a —A)!

a—r 00

exists. Let a, 8 > w. Then

F\)(a=X)(a=A) =FN)B-X)(B-4)"
=s-lim F(\)u(u— A)~*

p—00

x((@=N(@=A)7 = (B-NE-4)7")

= s—lim(p(ﬂ) — F(a))p(p— A)7Y,

by (2.4). This implies
I (@ = A)(a—A) = F)(B - X)(B - A7
< M||F(B) = F(a)]l,

.

where M := liminf, oo ||u(s — A)~Y[|. Using limg e [|F(a)[| = 0 we

obtain the existence of
F(A) = ILm F\a(a—A)™ = ILm F\)(a—N)(a—A)"1,

and ||[F(A)] < ]/\4\||F()\)|| — 0 as A — oco. Now the assertions follow
from Proposition 2.1 and B(A — A) 1 = F(\), A > w. O

2.2 Extensions in ordered Banach spaces. We assume addition-
ally that X is an ordered Banach space with a generating positive cone
X . Recall that the positive cone Y, of an ordered Banach space Y is
fully regular if any norm-bounded monotone increasing sequence in Y
is convergent.

2.3 Theorem. Assume that the Hille-Yosida operator A is resolvent
positive. Let Y be an ordered Banach space with fully reqular cone
Y,. Let B:D(A) — Y be a positive operator. Then there erists an
A-bounded extension B:D(A) — Y of B satisfying (2.1), and B is
positive.

Proof. We show that the limit (2.3) exists. We define
FN)=BOA -4 (A>w).
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As in the proof of Theorem 2.2, F satisfies the resolvent output identity
(2.4). Since A +— (A — A)~! is decreasing (by the resolvent equation)
we obtain that A — F()\) is decreasing. From the resolvent output
identity (2.4) we therefore obtain that, for all x4 > w, the function

(1,00) 3 A= (A = ) F(u)(A — A)~*
is increasing. The equation
F(u)h — A)7" = s lim F(u)a(a— A)7 (A~ 4)7!
=s-limF(u)(A— A)ra(a— A)~!

a—r 00

shows that
(1y00) 2 X — (A= ) F(n)(A = A)~*
is increasing as well. Since {(A — p)F'(u)(A — A) "} X\ > u} is bounded
and the cone Y is fully regular, the limit
F(p)z = lim (A= p)F(p)(A — A) "tz = lim \F(u)(A— A) 'z
A— o0 A—00

exists for all x € X;. Since X is generating, we obtain the existence
of the limit in (2.3). Now Proposition 2.1 shows the existence of B.

From equation (2.2) we obtain that B inherits positivity from B. o

2.4 Theorem. Assume that the norm on X is additive on Xy, and
that the Hille-Yosida operator A is resolvent positive and dissipative.
Let B: D(A) — X be a positive linear operator and B: D(A) — X the
extension of B whose existence was shown in Theorem 2.2, and assume
that limsup,_, . ||B(A — A)~1| < 1.

Then A + B is a resolvent positive Hille- Yosida operator.

Proof. Note that the additivity of the norm on X, implies that the
cone X is fully regular. For z € X, the dissipativity of A and (2.2)

imply

1B(s— 4) e = lim ABO - 4) - 4) e

lim [|B(p— A)7IA(\ = A) x|
A—00

IN

1B(p— A) | limsup A[|(A — A) 'z
A—00

< 1B(e = A) |-
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Hence limsup,, , ., [|B(x — A)~'|| < 1, and the statement follows from
[10, Theorem 1.4]. u]

3. Examples. In the first example we illustrate that, in Theorem 1.1
it cannot be concluded that B is an extension of By.

3.1 Example. (a) Let 1 < p < 00, X := L,(R), let T' be the Cy-
semigroup of right translations on L,(R), T(¢t)f = f(- — t), and let A
be the generator of T'. Let

D :={f € D(A); f Lipschitz-continuous,
f right and left differentiable at 0},

Then D C D(A) is dense in L,(R). We define By: D — K by
Bof = f'+(0) = f'-(0)

(where f'4(0), f'—(0) are the right and left derivatives of f at 0,
respectively). Let f € D. Then f is differentiable almost everywhere,
and therefore T'(t)f is differentiable at 0 for almost every ¢t > 0, i.e.,
T(t)f € D and ByT'(t)f = 0 for almost every ¢ > 0. (In particular, D
is almost invariant, but not invariant under T.) Therefore, B = 0 is
the A-bounded operator obtained in Theorem 1.1. However, By # 0,
and therefore B is not an extension of Bj.

(b) We keep the example from part (a), with the modification of
defining the smaller set

D :={f € D(A); f Lipschitz-continuous
and right and left differentiable}.

Then all the properties mentioned in part (a) are still valid, and
additionally D is invariant under 7T'.

A variant of the preceding example shows that the invariance of Dy
under the semigroup 7" cannot be dropped in Corollary 1.7. Recall that
a function f is called regulated if its right-hand and left-hand limits,
f+(s) and f_(s), exist for all s.
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3.2 Example. Let X = L,(R), T, and A be as in Example 3.1.
Choose Dy := {f € L,(R); f regulated on R, f continuous on [-2,1]},
D as in Corollary 1.7, Bof := f'+(0) — f'_(0) for f € D. Then

Bo / T(s)fds = £1(0)— F(0) — f1(—t)+ f_(~t)
(f € Dg, t > O)

This expression is 0 for f € Dy and 0 < ¢t < 1 (trivially implying
estimate (1.6) for @ = 1), while it is not 0 for f = 1;_4 3 € Do and
t=3.

However, By does not have an A-bounded extension to D(A): For
f € D (C Dy N D(A)) one obtains (1/t) fot T(s)fds — fast — 0,

with respect to the graph norm of A. This would imply Byf = 0 for
all f € D, contradicting By # 0.

The remaining examples will be constructed in the context presented
subsequently.

We start from the Cj semigroup of left translations on Y = Cy(R),
S(t)f(a) = f(a+1t). Let (S*(t))¢>0 be the dual semigroup on X = Y™*.
The dual space Y* can be identified with M(R), the space of signed
Borel measures of bounded variation, and S* is the semigroup of right
translations. The dual operator A of the generator of S (or equivalently,
the weak™ generator of S* [2, Corollary 1.4.5]) is given by Af = —f/,
with

D(A)={feX; f € X},

where f’ denotes the distributional derivative of f. The operator A
is a Hille-Yosida operator, and X = Y© (the S-sun dual of Y, i.e.,
the subspace of Y* consisting of those elements x for which S*(-)z is
strongly continuous) can be identified with L'(R). Let T = S© be the
restriction of S* to Y©, so

T(t)f =f(-—t) (f€L'(R)),
and Af = —f', with

D(A) = {f € L'(R); f absolutely continuous, f' € L*(R)},
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is the generator of T. We choose D := C¢°(R), the set of infinitely
often differentiable functions on R with compact support.

Let go € L. . (R) and define By: D — K by

loc

Bof = /R g0(a)f'(a) da = / go(@)Af(a)da (f € D).

R

Notice that By does not change if we add a constant to gg.

3.3 Example. If go € L*®(R), then the operator By defined
above has a unique extension to an A-bounded operator B. However,
By has uncountably many A-bounded extensions, corresponding to
bounded Borel measurable representatives of gg. Indeed, choosing a
fixed representative g of gg one obtains an extension B of By by

(3.1) Bf:=— /R 9(a) f'(da) (f € D(A))

(integral with respect to the measure ' € M(R)). Now, let g1, g2 be
different representatives of go, g1(b) # g2(b), g1(c) = ga(c) for some
b,c € R, b < c. Let By, By be the extensions of By corresponding to
g1,92. The function 1y, 4 belongs to D(A), and Alp = —lfb’c] =
d. — & (Dirac measure concentrated at c,b, respectively). Therefore,
Bjlpp = gj(c) — g;(b), j = 1,2, Bilp o # Balp,q-

In particular, we obtain that the operator By = 0 has uncountably
many nonzero A-bounded extensions.

3.4 Example. In order to check under what conditions for gy €
LL _(R) the estimates (1.1) and (1.10) are satisfied, we compute

/0 BoT(s)f ds = /R 90(a)T(t) /() da - /R 90(a)f(a) da
:/gg(a)f(a—t)da—/gg(a)f(a)da

(3.2)

- / (gola+1) — gola))f(a)da (f € D).

/t ByT(s)f ds
0

< esssrltlp\go(a-i- t) — go(a)| [ f1lx
ac
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then shows that (1.1) is satisfied for any go € L*°(R) (but also for
functions like go(t) = [¢|P with 0 < p < 1). Since D is dense in
X = LY(R), it follows from (3.2) that

sup { /Ot ByT(s)fds

. feD, Iflh s1}

= esssup|go(a +t) — go(a)|-
a€ER

So (1.10) is satisfied if and only if gy has a (not necessarily bounded)
uniformly continuous representative. Choosing this representative for
the extension of By to D(A) one obtains the unique extension whose
existence was shown in Theorem 2.2. Adding nonzero extensions of
the zero operator, see Example 3.3, one sees that By has many other
A-bounded extensions.

3.5 Example. In order to investigate conditions for the validity of
(1.2), we choose go € Li. .(R) having a Borel measure (denoted by g)
on R as distributional derivative. Let ¢ > 0. Then

/ BT (5) 7] ds = / t
_ /Ot
< [[ 1rta = o) dsvar (g a)

= [ [ e ) ds

= [ 1 lvar (65) (s, -+ ) ds
R

< sup var (90)((s,s + ) fllL  (f € D).

ds

[ @@ s)da

ds

JECEEFA

We are going to show that in fact

sup{ [ 1Bo)11ds5 £ € D, 5l < 1}
(3.3) 0

= sup var (gg)((s, s + t))
sER
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(including the statement that the left-hand side can only be finite if g
is a measure).

The inequality “<” has already been proved above. Assume now that
the left-hand side of (3.3) is finite, without loss of generality equal to
1. We show that then, for any interval (c,c +¢) C R of length ¢, one
obtains

(3.9 \ [ #@s(a) da

In order to prove (3.4) let (p) C C°(R) be a §-sequence. Then
[ ¢ ®nta -0 do
- ‘ [ 60ita ) dbgofa) da
< [t [ site - (e da
e

s/ct
-,

t
- / IBoT()pi(- — )] ds [0 < 116 0o-

S glle (¢ € CZ(e,c+ 1))

db

db |4l

/ pi(a — b)go(a) da

db ||l

[ Aila=s = cm(a)ds

Taking k — oo on the left-hand side of this inequality we obtain (3.4).
Inequality (3.4) implies that, on (c,c+ t), the distributional derivative
of go is a measure of total variation < 1. Since this holds for all c € R
we obtain sup.cg var (g)((c,c+t)) < 1.

This shows that (1.2) is satisfied if and only if sup,.g var (gq)((s,
s+ 1)) < oo and that By is infinitesimally Miyadera small, see
Remark 1.9, if and only if sup,cg var(¢')((s,s +t)) = 0 as t — 0.
The latter is satisfied, in particular, if gy has a representative g which
is continuously differentiable with bounded derivative.

Thus, choosing a function gy € C.(R) which is not of bounded
variation we obtain an example of an operator By which does not
satisfy the Miyadera condition (1.2), but (1.10) is satisfied, i.e., By
has an infinitesimally A-small extension, according to Example 3.4.
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3.6 Example. We explore conditions on gg € L*°(R) under which
one can obtain an extension B satisfying (2.1) (which is unique by
Proposition 2.1). Let g be a representative of gy, and let B be the
associated extension (3.1) of By. g can be identified with an element
in X* by setting (i, g) = [ 9(a)p(da) for p € M(R). Then

(=) gla) = [ T e Mg(at 1) de

0

and

B = A) " p=(AA = A) 7 9) = (1, M(A - 4) )9 - 9)
(8:3) = /R </0 e *gla+\"ts)ds — g(a))u(da).

So we see that By has an extension B with (2.1) if and only if

(oo}

g(a) = hlgggr ; e °go(a+ hs)ds

exists for all @ € R. The extension B is associated with this particular
g is uniquely determined by (2.1). This holds in particular if gy has a
right-continuous representative g.

If go is continuous, but not uniformly continuous, then (1.10) is not
satisfied, according to Example 3.4, but (2.1) holds.

It is not difficult to construct a measurable function go: R — {0,1},
go(a) =0 (a < 0), satisfying

liminf/ e *go(hs)ds =0, limsup/ e *go(hs)ds = 1.
h—0+ Jo h—o+ Jo

This function provides an example of an operator By satisfying (1.1)
but for which no extension satisfying (2.1) exists.

However, if g is such that (1.2) holds, then by Example 3.5, we
obtain a representative g of uniformly locally bounded variation, which
can be assumed to be right continuous. This implies that for the type
of example considered here one has that (1.2) implies that By has a
uniquely determined A-bounded extension B satisfying (2.1).
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3.7 Example. We modify our perturbations in order to illustrate
that (1.1) with v < 1 is not necessary for the perturbed operator to be
also a Hille-Yosida operator. We define

Cof = ( | w@ifa) da) 5o = (Bof)do (f € D),

with a function gy € L*°(R) possessing a monotone increasing repre-
sentative g. In the light of Example 3.6, we choose the representative
to be right continuous. For f € D(A), by (2.1) and (3.5),

Bf = lim BAA—-A)'A-A)f = Jim AB(A—A)'f

= lim A (/ e *gla+A"ts)ds — g(a))f(a) da.
A—ro0 R 0

This shows that B and the extension C' = B(-)dp of Cy are positive. A
positive perturbation A+C of a resolvent-positive Hille-Yosida operator
on an abstract L-space like M(R) is also a resolvent-positive Hille-
Yosida operator, if (cf. [10]) and only if (cf. [12]) there is some A > 0
such that the spectral radius of C'(A — A)~! is strictly less than 1.
The latter is the case, indeed, as ||[(C(A — A)~1)?|| < [|B(A — A)~16||
|B(A—A)" Y| = 0 as A — co. Choosing g = {1} o) With £ > 1, we
see that (1.1) and (1.2) are satisfied, but only with y =& > 1.
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