ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 39, Number 3, 2009

COMPARISON OF CUSP FORMS ON GL(3,Z)

NAMJONG MOH

ABSTRACT. We give an estimate for the number of Fourier
coefficients needed to determine uniquely a cusp form on
GL(3,Z)\PGL(3,R)/O(3). This leads to an estimate on the
multiplicity of the space of eigenfunctions with fixed infinity
type. More precisely we show the multiplicity of the space of
eigenfunctions with fixed infinity type, M()\) = O(\%) where
A is the eigenvalue of the Laplacian.

1. Introduction. Since the early work of Jacobi on 6 functions to
study the representation of integers as sums of squares, automorphic
forms in various guises have played an important role in number theory.
Notable among these is Ramanujan’s discriminant function whose re-
ciprocal is intimately connected with the study of the partition function
in number theory. The automorphic properties of this function, which
include periodicity with period one, give rise to a Fourier expansion
whose study has been a central theme in number theory for a century.
The estimate of the size of the Fourier coefficients is a key element in
these applications. Hecke formalized the concept of automorphic forms
in the 1920’s. He assumes an analytic function on the upper half plane
that has only polynomial growth at infinity, and with respect to some
discrete subgroup I' of SL(2,R), the group of symmetries of the upper
half plane satisfies

f(2) = (cz+d)" f (2)

where v, an element of I', equals (Z Z). In particular, we have that f

is periodic with respect to x, so we have a Fourier expansion.

In the 1940’s, Maass generalized this notion by considering func-
tions that are not holomorphic but are eigenfunctions of the Laplace-
Beltrami operators. These functions, in particular when I" is SL(2,Z),
have been of tremendous usefulness in the study of the Riemann zeta
function, and in various aspects of the study of Kloosterman sums.
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An interesting question we have is how many Fourier coefficients are
needed to determine a cusp form. We study this question for SL(3,Z).

The structure of the argument we use here is a mild variation of the
Siegel-Maass method. This method for SL(2,Z) cusp forms can be
found in Terras [20]. The basic idea of the method is that for a cusp
form ¢, one derives an inequality of

¢ < ko,

where k is a constant, and shows that k is less than one. This
contradiction forces ¢ to be identically zero.

The use of this method is possible because of the Fourier expansion
of a cusp form with Whittaker functions as kernels, which can be found
in Bump [1]. Whittaker functions can be expressed as an integral of
two K-Bessel functions, which is due to Vinogradov and Takhtadzhyan.
When the variable of a K-Bessel function is larger than the order of
the parameter, we can use Olver’s error estimate of K-Bessel functions
as a numerical tool for our purpose. That is, we overestimate K-
Bessel functions by e kO +2) where k is a positive constant, A is
the eigenvalue of the Laplacian, and x > 0. We also use an asymptotic
expansion of Whittaker functions obtained by Bump and Huntley to
underestimate the Whittaker functions at a certain value, [2]. For the
rest of the paper, k denotes various constants suitable for our purpose.

2. Statement of theorem.

Theorem 1. If Fourier coefficients an, n, of a cusp form ¢ on
X =GL(3,Z)\PGL(3,R)/O(3)

are zero when max(nl,n;/s) = O(A\Y2), then ¢ is identically zero.

Corollary 2. Let ¢ and ¢ be cusp forms on X, and let a,, n, and
b, ., be their Fourier coefficients respectively. If an, n, = bn,y,n, when

ny,n

max(nl,né/?’) = O(A\Y?), then ¢ = 1.

Notice that Theorem 1 implies that the multiplicity of an eigenvalue
A is O(A\?), which is an implication of Theorem 1.1 of [4] which says:
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Let X = SL(3,Z)\SL(3,R)/SO(3,R), and N(\) denote the dimension
of the space of cusp forms on X with Laplace eigenvalue less than .
Then

N(A) = CX2 +0(\?)
with

Vol (X)

(4m) /21 (7/2)"
However, the theorem in [4] doesn’t show which Fourier coefficients of
the cusp form are nonzero, and Theorem 1 doesn’t imply the actual
existence of cusp forms for a certain interval of .

C:

3. Proof of theorem. We first describe the theorem in [1, page 65]
and the action of I'? on y; and y, and introduce parameters we will use
in the paper. Let I', be the group of 3 x 3 upper triangular unipotent
matrices with integer coefficients. Also let

a b 0
2= c d 0 a,b,c,de€Z, ad —bc==+1 ,,
0 01
and
2 =T?Nr,.

Denote the subgroup of index 2 in T'? as I'?, which is the group of those
elements of determinant one. The parameters vy, o and v are defined
as follows

)\:3(1/12"‘1/11/2"‘1/2271/171/2)

31/1 + 3V2 —2
v ———.
2

Notice that the order of v is kA'/2 for a constant k. We define the type
of cusp forms to be the pair (v, vs).

The theorem in [1] says: Let ¢ be a cusp form of type (v1,v2). There
exist coefficients an, n, for positive integers ni and ng such that:

(3.1) o(r) = Z Z anlnglam,nz

ger2 \I'’Z n1=1ns=1

><W1(7"11’V2) 0 ny 0| gr
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Y1Y2 Y12 T3
Here 7 = 0 y1 =1 |,

0o o0 1
Now
ning 0 0| [a b O |ny2 miz2 T3
0 ny 0 c d 0 0 Y1 1
0 0 1 0 0 1 0 0 1
T T A (cxo +d)w™?! —cyow ! 0
=] 0 v @) cyaw™! (cza+d)w™ 0
0 0 1 0 0 1

where w = |¢(z2 +1iy2) +d|. For our purpose we may ignore z; because
they do not contribute to the magnitude of the Whittaker function.
Solving equations for ¥} and yh, we find the action of I'? on y; and ys.
That is, ¥} = njwy; and yh = nays/w?.

Since ¢ is a cusp form, there exists 7° such that |¢(7°)| is the
maximum. By

Wl(,yll’VZ) (rywy) = Wo, v (1, y2)62m(z1+z2) (1, (3.46)],

we have

< Y DY D

g€l \

n2ys
~1 -1 o 2
Ny Ny Qnyng WV17V2 <n1wy1 P2 > ‘

where y{ and y5 are corresponding y; and y2 to 7°.

1,1 pl 1 & &
o= [ [ [ol]0 1 &l
x e2mi—m&i—n282) e, qe, dey (1, (4.9)],

whose absolute value is less than |¢(7°)|, and by putting (diag (nins,
ni1, 1)) 717 instead of 7, we have

|¢(To)| Z ¢n1,n2 0 ny 0 T
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1
¢n17n2 (T) = Qny,ny ‘n1n2|

ning 0 0
x Wi 0 m O|7] [1,(412)]
0 0 1
implies
1p(7°)] > |@ny ns |n1n2|71
ning 0 0 -t ning 0 0
X Wy ,ve 0 ny 0 0 ng 0|7
0 0 1 0 0 1
So we have .
9(7°)]

1 -1

a n,n < — 71
ma S G )

for any fixed nonzero y; and ys. We will show W,,, ., (y1,y2) does not

decay faster than
o 1/4klv]
)

when |vq] or |va| — oo, where k is a constant. Since ap, , is a Fourier
coefficient and |¢(7°)| is the maximum, the above inequality holds for
any y; and yo. Thus, we may choose them as an after fact. That
is, we first choose v; and ve with sufficiently large absolute values,
and then we choose a pair of numbers for y; and y, that makes
Wy, vs(y1,y2)| large enough. A pair of numbers which serves our
purpose is y; = y2 = 1. We will show

Lemma 1.
(W s (1, 1) > A2

where A = 3(v2 +vive + 12 —v1 —1s) is the eigenvalue of the Laplacian.

Using Lemma 1 to overestimate ny 'ny 'an, n, in (3.1) by |¢(7°)|/
Wy, v, (1,1)], we have

oo oo

32) B < Y3 ZA3|¢(T°)|Wul,u2<n1wyi’,njzg>‘.

g€eT2 \I'2 n1=1n2=1
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Assume @y, n, = 0 for all n; and ny such that max(nl,né/s) < kly|,
where v = (3v; + 3v2 — 2)/2 and k is a fixed but large enough
constant. Here the number of coefficients a,, ,, which equal zero is
k*|v||v]®* = O(A?). With this assumption, we will show

o0 o0 n o
YO Y 2w, (nwyw_y>

g€eET2 \I'2 n1=1ny=1

is less than some positive power of =¥, which is a contradiction unless
¢ is identically zero. This proves Theorem 1 and Corollary 2. Notice
that A3 factor is immaterial, and we will omit it.

. . 1/3
For nonzero coefficients, we have the following three cases: n; > n2/

or n;/s > n; and ny/w? < kv, or né/g > n; and ny/w? > k|v|. In

the second case, we may assume n;/?’ > k|v|, and since ny < k|v|w?,
we have w > k|v|. In the third case, w < (na/k[v|)'/2. We thus have

oo oo n o
DD D SILPR )

gEZA\I? ni=1ny=1

Yy Sy

g€eTr2 \I'2 ny >k|v| n2=1

]
n2Ys
]
WV17V2 (nlwyla

o
n2Ys
o
WV1,V2 (nlwyla 2
w>k|v| n1=1 ny=(k|v|)3
nl/®

YooY Y

w<(n2/klv])1/2 ni=Lny=(k|v|)?

[e]
n2Ys
[e]
WV17V2 (nlwyla w2 .

We will show the following lemmas.

Lemma 2. If max(nl,n;/s) > klv| and ny > n;/?’ where k is a
sufficiently large constant and v = (3v1 + 3vy — 2)/2, then

o
naYs —1/4 ° —1/4k
o nw v
‘Wul,l,z (nlwyl, 2 < e V/Amuwyy < o=1/4k|y]



COMPARISON OF CUSP FORMS ON GL(3,Z) 885

Lemma 3. If max(nl,n;/?’) > klv|, n;/g' > ny and ny/w? < k|y|,
then N
n o
‘Wmﬂ/z (nIWyfv 232]2 > < e*l/4n1wy1 < 671/4kly‘-
Lemma 4. If max(ni,ny?) > klv|, ny/® > ny and ny/w? > klv|,

then

n ° _ o 2 _
Wy (nlwyj’, Z?)‘ < e~ 1/2(n2y3/w?)  —1/4k|v]

Given these lemmas, we have

oo oo n o
533 W (e, 2 )|

g€er2 \I'2 n1=1ns=1

n i 3 ‘e—l/mlwy;’

vl ma=1 ny=(k[v|)?
. -
+ >

w< (na/klv))1/2 =1 na=(k|v|)3

€
I\
=

671/2<n2y§/w2>‘ .

ab0
Here we are using the fact that g is a matrix, | ¢ d 0 | with determinant

001
one, a, b, ¢ and d are integers, (c,d) = 1 and only one pair of
representatives of a and b for each pair of c and d needs to be considered.
The first two summations on the right side are multiplied by four to
account for the cases with negative ¢ or d. But for our purpose, a
big O estimate, a factor of any finite constant is irrelevant. These are
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quadruple geometric series. By changing the order of summations if
necessary, we overestimate the right side of the above inequality by
(e=*1)%, and we have |¢(7°)| < |#(7°)|(e"*I*)¢ where the actual size
of ¢ is immaterial as long as it is a positive constant. Thus, we only
need to prove the above four lemmas.

Proof of Lemma 1. We have

thl,l/z (yla y2)

_7r72y1+(ul 112)/2 1+(112 v1)/2

- 1
X / K, (3/1\/1-1-—23) K, (?h\/?) p(B1—3va—4)/4 ..
0

We also have

K, (2) = L)@)V/loo e P (t—1)" 2t +1) 2 ar

I'(v+1/2
for Re(z) > 0 and Re (v) > —1/2 [15, (5.10.24)]. We thus have
y%V1+V2 yV1+2V2

WI/ 1% )
e W) = S T+ (172)7
/ / —ty 1+z _1)1/—1/2 (t+l)u71/2dt
[ et t— 1) Y2 +1) Y2t

1
(1 + CU)(BV1+3V2_2)/2

£(3v2—1)/2 d.

Then
)\31/1 +3v2

4 (0 (v + (1/2))?
/ / e WVIFE (4 _ )= (1/2) (4 4 )r=(1/2) gy

e_t)“/(I-H /z (t— 1)V—(1/2) (t + 1)'/—(1/2) dt

(1 + x)(3l/1+3l/272)/2
rBr2—1)/2

WVlyV2 ()‘7 )‘) =

1

dr.
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Since there is no complex value involved in

et()\fl)\/1+w and et()\fl)\/(zukl)/w,

(A—1) <\/1+—m+\/‘vmﬁ> >2V2(A-1),

and

we also have

e2V2(A-1)
Woro (L D] 2 | 050
(APF3v2) [ (md (F( 1/2 )y
< J e VI (= 1)) (4 10 g
X
x [ et e (¢ ) ) ) D) gy
X((1 + ) @aF3em2/2) (o (32 =1)/2) gy
e2V2(A-1
> T |WV17V2()‘7)‘)| .

Theorem 1 in [2] says:

3T >
TWVth (y17y2) ~ Z Wul,ug (yla y2)
n=0

where for certain constants c(j,v1,ve), we have

n

Z c(j,v1,v2) y§2j)/3y2_(2j)/3

—n

( 2/3+ 2/3) (6n+1)/4 e—(yf/3+y§/3)3/2

1/3 1/3
Wul 1223 (y17 y2) 1/ y2/

This asymptotic expansion is valid when y1 — oo and y; “ya is kept
equal to a positive constant, or when yo — 0o and y1y5 * is kept equal
to a positive constant, for any —1/2 < a < co. In particular, it is valid
if y1 and yo both are large.

Furthermore, they computed ¢(j, v, v5) by a recursive method which
is described in the last part of the article. In particular, c¢(j,v1,v5) =1
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for n = 0. We also know that the highest power of A in ¢(j, vy, v2)
is increased by 1 as n increases for each term in the asymptotic
expansion of a Whittaker function, and the exponents of (y; 2/3 +y 2/ 3)
are decreased by 3/2. This implies that the asymptotic expansmn of
a Whittaker function can be overestimated by a convergent geometric

/3+y2/3)3/2

series times e~ (1 when |y;| and |yz| are larger than A. This

asymptotic expansion can be used to underestimate the absolute value
of a Whittaker function by a constant factor times the zeroth term

because the sum of the rest of terms can be overestimated by a
. L (/3 4,2/3)3/2
convergent geometric series times e (" 4w 7)™

By asymptotic expansion of [2], we have

2 A2 —2v/2)
WVI,V2 ()\,)\) =k 3 me .

We thus have
2v2(A—1) 2 \l/2 1
Wy wa(1,1)] = & by = 2V > o
’ A3 3 21/4 A3

Proof of Lemma 2. In this case, we have ny > n;/?’ since max(ny,n2)>

klv|, n1 > k|v|. Thus, nywy] > k|lv|. By breaking the interval of
integration, we have

Wos s (nlw:y‘l’, nj}?)

=17 (nywyy) T/ <n2y°>1+(”2_”1)/2

/°° Ky (niwys V1 + z) <”2y2 \/ﬁ) (801 -302-4)/4 g,

0

= 1% (nywyf) ) (nzy ) (v2—v1)/2

X </0w K,,<n1wy1 1+:c> ( \/7> (B -3v2—4)/4 g,
+/°° K, (mwyivi+a) K ( F) (G304 gy

<

X
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where

2,02
o n3Ys

z° = .
4 2,,02
W™ — N3y,

The polynomial part of the outside of the parenthesis is immaterial in
terms of the magnitude of W, ., (n1wys, (n2y3)/w?).

Notice that z° is where (nsy5/w?)y/(z+1)/z = 1. Thus, when

0<zx<z°,
o
1
TR
w x

and when z > x°,

5 1
rels S <
w T
then
5 1
‘/ nlwyl 1+£U)K (thgz wi— >m(3u1—3u2—4)/4 de

<./1 |fﬂ/(n1wyfvﬁfiiiﬂ\3;(1n‘xﬂhﬁ—&a—4V4‘dx
0

because of the following.

We know —1/2 < Re(v) < 1/2. By [15, (5.10.24)], for Re(z) > 0
and Re (v) > —1/2,

Ao VT 2\ T ey ) v (1/2)
K,,()—F(V+(1/2))<2>/1 (t—1) (t+1) dt

_ VT <1>”zv /OO o~ (=12t
T'(v+(1/2))\2 1
x et (t— 1) (¢ 4 1) 2 gt

By inspecting this, we know |K,(z)| < |K,(1)| when z > 1.
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Furthermore,

— ﬁ l )
K, (1) = m@)

x/ et (t—1)" WD (g4 1)1 gy
1

: %@V

2
X ( / e t(t—1)" W2 (¢4 1) /2 dt‘
1

/ et (t— 1)~ WD (¢4 1)r=/2 dtD.
2

Since Re (v — (1/2)) < 0, we have
50 < s (5)

_l_

X < /12 et (t—1) Vg + /:o etdtD
et (3) [ ([ e evmalve)

IN

I'(v -\Fﬁ(_rl/?)) G)V

L e—tv+(1/2) 1 et t(1/2) p L
xe ' |——xc]| +| ] Z—c—dt|+e ).
‘ < v+(1/2) |, / v+ (1/2) ‘ ’ )
Since Re (v + (1/2)) > 0 and so [t*T(1/2)| < 1, and

N
Kol < r(u+<1/2)><5>

o [ el

_°
v+ (1/2)
e (Y (o o)
T'(v+(1/2))\2 v+ (1/2)
But [['(v + (1/2))] ~ e ™+1/2)1/2 by Stirling’s formula. So
K, (1) =0 (e7r|1/+(1/2)|/2> ‘

1

+
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By Olver [17, page 269], we have

where
- 1
| < el (#-/2)z '((‘1)) for Re (2) > 0.

Thus when z is a real number as in our case,

o\ /2
<
KE|(5)
_ _ -1 1 1\ _
e z<1+e|(u (1/2)(w+(1/2))2 |<<,/__> <,,+_>Z 1>>‘
2 2

If z > 4x|v + (1/2)], then
: <1 L+ l=1/2) (,, _ l))
>

2\ /2
< -
Gl (5) e
as |v| is large enough.

Then, by letting ny > 4x|v + (1/2)| and overestimating the first K-
Bessel function, we obtain

5 1
‘/ Tllwyl 1+$)K (n:fg2 \/g)w(3u1—3u2—4)/4 dz

o

- /I 6_3/4n1wyi’\/1+m ‘Ku (1)| $(3u1—3u2—4)/4 dz.
0

In the above inequalities, 47 is not fundamental. Any large enough
constant serves for our purpose. We have already shown |K,(1)| =
O(e™/?Iv+(/2)1) which can be absorbed by e~3/4mwyivite g

> 1
‘ / n1wy1 1+ a:) K, (nfg? @) 2 Bv1i—3r2—4)/4 Jo

< e—3/4n1wyf 1+z‘
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For

oo ° 1
/ K, (nlwyi’\/l + x) K, <n532/2 T+ >x(31/131/24)/4 dz,

o x

we use Lebedev [15, (5.7.1)]

—~

S e
L z)_;r‘(n—i—l)l“(n—i-u—i-l)’

and [15, (5.7.2)]
ml_,(z) =1, (2)
K, (s) = =2 v 8
(2) 2 sinvz
where |z| < 0o, v #0,£1,£2,... and arg(z) < m. Notice that when z
is within the limits of the integral,

noy, |z +1
2

< 00.

w T

So we can use these equalities for the second K-Bessel function.
Then

> 1
‘ / nlwyl 1+ a:) K, (n::gQ @) 2 Bvi—3r2—4)/4 4o
/ *3/4n1wy1 T+z

o | (nay /207 /T F ]z
X{;O< F(n+1)r(n—u21) ‘

(neys /20w + /)
_‘ F'n+1)I'(n+v+1)

™

2sinvm

—v+2n

v+2n

‘ }x(3I/13I/24)/4 d.’L‘.

Here, |sinvn| is not small. In fact, sinvr = (e %™ — e™)/2i and
the imaginary part of v has a large absolute value, so one of the
exponential expressions is large. The absolute values of I functions
in the denominators are also sufficiently large. That is,

IT(n+v+1)| > (n+Re (v))le” "W
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which will be shown shortly. Since ((n2y5/2w?)\/(z +1)/z)? < 1/4,
when z is within the limits of integration we have

> 1
‘ / n1wy1 1 =+ l') K (njg2 @) l.(3l/1*3l/274)/4 dx

< [T emmeanivizz fip g )
—v o0 2n
nay; [r+1 noys [z +1
X < 2w? x ) T; < 2w? x

0

1 (n2ys [z+1\"
~Tw+1)!
Ty (1)

noy; [zl (3v1—3v2—4) /4
# 3 () Yot
< /oo e~ (3/Hn1wyy VIt jxlv+1|
’ 2 v o 2n
2w T Z nays |x+1
nayy \ T +1 oy 2w? T
v 2n
nays |jx+1 neys [z+1 (3 —3va—4) /4
B d
< 2w? r > nz:% < 2w? T v &z

< /Oo o= (3/9)m10y} VITE v 1
z° 1 — ((n2y3/2w?)/(z +1)/z)?

{ ( 2uw? T >V
X
noys; \ T +1
2y [+l L(Bri—3va—4)/4 g
2w? x

Thus we can conclude, if we show that the I" functions in the denomi-
nators are sufficiently large,

X

< e~ (1/2)niwyy

no °
‘Wuhw <n1wy17 > ‘ <e —(m/2)n1wyy

when n; > nl/a.
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By abuse of notation, we can write I'(n £ v 4+ 1) = (n & v)!I'(Lv).
Then we only need to show |['(£v)| > e~™¥I. Stirling’s formula [15,
(1.4.23)] says

I (z) = e(z=(1/2)) In2—24(1/2) In 27 [1 L0 <‘Z|—1>} ‘
Let v = z+iy. Then we know —1/2 <z <1/2, and y — +o0o. Thus
1>z+1/2>0. Ify >0,
I'(—v) =T (-z —iy)
::e(—z—iy—@/%)hm—z—nn+w+4y+u/2nn2w[14.()(L_x__iyyfj}
— o~ (@+(1/2) ~iy)(In(|—2—iy|)+i(— (r/2)+2Tm))+o+iy+(1/2) In 27

rro(e )]

e~ (@+(1/2)) In(|—z—iy|) —iy In(| -z —iy|) —i(z+(1/2))

% e{—(m/2)+20m)+y(—(n/2)+2m)+a+iy+(1/2) In 27

x [1+0(|—z—il™)],

and
T (—v)| > e~ et -u(m/2) > g=mlvl
Ify <o,
I'(-v) =T (-z —iy)
— e~ (e+(1/2)) In(|—z—iy|) —iy In(|—z—iy[) —i(z+(1/2))

% e(—(7r/2)+2J7r)+y((7r/2)+2J7r)+z+iy+(1/2) In 27
x[1+0(j—e -yl )],

and

IT (—v)| > e~ In@ty)+u(m/2) > o—mlv|
Likewise, when y — +o0,

I'(v)= e(@=(1/2)+iy) (n(|z+iy|)+i(£(n/2)+2J 7)) —w—iy+(1/2) In 27
x [1 +0 (|—:U — iy|71>}
— o(@—(1/2) In(|z-+iy|)+iy In(|lz+iy))+i(e—(1/2)) (£ (r/2)+2J 7)

« Fy((n/2)+2Jm)—z—iy+(1/2) In 27 [1 +0 <‘_w _ Z.y|71>]
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Since -1 <z —1/2 <0,

|F (1/)‘ 2 e In(z+y)Fy(w/2) 2 e—ﬂ"lll' o

Proof of Lemma 3. In this case, we have w > k|v| because ny > (k|v|)3
and w? > ny/k|v|. Then njwy;v/1+ = > k|v| as in Lemma 1. By the
same argument in the proof of Lemma 1, we have

5 1
‘/ TL1wy1 1+ x) K, (n::g2 @) x(3t/173u274)/4 dz

< e—(3/4)n1wyf 1+z
)

5 1

< o= (1/2)mwys

Thus, we conclude

7L2 o
o —(1/2)n1w
‘Wulm(mwyl,—,z)‘ < e~/ Bmwyy

when
[m]

n
n;/32n1 and —3§k|ll|.
w

Proof of Lemma 4. In this case, we have ny/w? > k|v|. Thus,

we overestimate the second K Bessel function in a similar way to
overestimating the first K Bessel function in the proof of Lemma 1.

w X

The first K Bessel function here does not cause any trouble because
unlike the variable in the second K Bessel function, the variable in the

That is,
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first K Bessel function, nijwyi+/1 + = is never too small. Better yet,
when z > (k|v|)?, we have

K, (nawoyt VI 7)| < e O/ 0munivIFe,
Thus,
o N2Yge
‘lel,llz (nlwy17 wy22 >‘

]
2\ (nywy?)Hav2)/2 (”292

<7

1—‘,—(1/2—1/1)/2
w? )

></ ‘KV (nlwyf\/l—i—xﬂ
0

y K,,(ng [z + 1) ‘x(3u17311274)/4‘ da
w x

o\ l+(r2a—v1)/2
(mawy) 27422 (—nwy)

<72

x / K, (nawyy/TFz)| e Cr/0ment VIFE |
0

< e WDmani/?) g

31/1—31/2—4)/4‘ da
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