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COMPACT ENDOMORPHISMS OF
INFINITELY DIFFERENTIABLE LIPSCHITZ ALGEBRAS

H. MAHYAR

ABSTRACT. Let X be a perfect compact plane set and
0 < a < 1. The Lipschitz algebra of order «, Lip (X, ) is the
algebra of all complex-valued functions f on X for which

17 (2) = f(w)]

|z — wl|e

:z,wEX,z;éw} < oo.

pa(f) = sup{

Denote by Lip (X, a) the algebra of functions f on X whose
derivatives of all orders exist and f(™) € Lip (X, a) for all n.
Let (Mp) be a sequence of positive numbers satisfying My = 1
and My 4m/Mn My > ("‘;m) for all nonnegative integers m,
n, and let

Lip (X, M,c)
2 F ),
—{retip=a =3 e <o,
k=0

where ||f|la = ||fllx + pa(f). In this paper we study the
endomorphisms of this kind of Lipschitz algebra. When
Lip (X, M, ) is a natural Banach function algebra, every
nonzero endomorphism 7T of Lip (X, M, o) has the form T'f =
f o ¢, for some self-map ¢ of X. First we give some sufficient
conditions for ¢ to induce an endomorphism of Lip (X, M, «).
Then we investigate necessary and sufficient conditions for
these endomorphisms to be compact. Finally, we determine
the spectra of compact endomorphisms of these algebras.

1. Introduction and preliminaries. In this note we investigate
endomorphisms of a class of Lipschitz algebras of infinitely differen-
tiable functions. Let X be a perfect compact plane set and 0 < o < 1.
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The Lipschitz algebra Lip (X, ), of order «, is the algebra of all
complex-valued functions f on X for which

() = f(w)]

|2 = wl|

pa(f):sup{ :z,weX,z;éw}<oo.
The algebra Lip (X, ) is a Banach function algebra on X, if equipped
with the norm [|f[la = [|fl|x + pa(f), where ||f|x = sup,cx [f(2)]. It
is interesting to note that Lip (X, 1) C Lip (X, «).

The complex-valued function f on X is called complex-differentiable
on X if at each point 2y € X the limit

f’(Zo) — lim f(Z) — f(ZO)
g IR

exists. The algebra of functions f on X whose derivatives of all orders
exist and f(") € Lip (X, ) for all n, is denoted by Lip *°(X, a).

We now introduce certain subalgebras of Lip (X, a). Let M =
(M,) be a sequence of positive numbers satisfying My = 1 and
M/ My My, > ("J;m), where m and n are nonnegative integers.
Let

o (k)
Lip (6, M, = { € Lip= () 7 = 3 e < oo},
k=0

With pointwise addition and multiplication, Lip (X, M, «a) is a com-
mutative normed algebra which is not necessarily complete. We call
such algebras infinitely differentiable Lipschitz algebras which were first
studied in [8, 11]. The algebras Lip (X, M, «) are similar to Dales-
Davie algebras D(X, M), the algebras of infinitely differentiable func-
tions f on X, such that ||f|| = Yoe I ®||x/ Mk < oo, [3].

Let D'(X) be the algebra of continuously differentiable functions
on X. Then D!(X) is a normed algebra under the norm ||f| =
|| fllx + || f'l|x which may not be complete in general.

We now introduce the type of compact sets which we shall consider.

Definition 1.1. Let X be a compact plane set which is connected
by rectifiable arcs, and let §(z,w) be the geodesic metric on X, the
infimum of the lengths of the arcs joining z and w.
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(i) X is called regular if for each zy € X there exists a constant C
such that for all z € X, §(z, 20) < Clz — 2]

(ii) X is called uniformly regular if there exists a constant C' such
that, for all z,w € X, §(z,w) < C|z — w|.

As it was proved in [11], if X is a finite union of regular sets, then
for each zp € X there exists a constant C' such that for every z € X
and f € D'(X),

£(2) = £(z0)] < Clz = 2ol (I fllx + [1/llx)-

This inequality is equivalent to the completeness of D'(X), and the
completeness of D!(X) implies that Lip (X, M, a) is a Banach function
algebra on X for every weight sequence M = (M,,) and any 0 < a < 1.

We remark that, for certain compact plane sets X and certain weight
sequences M = (M,,), the algebras Lip (X, M, «) are natural, i.e., their
maximal ideal spaces are X. Now we consider two important subal-
gebras. We denote by Lip p(X, M, «) and Lip g(X, M, «) the closed
subalgebras of Lip (X, M, ) generated respectively by the polynomi-
als in z, and by the rational functions with poles off X which belong
to Lip (X, M,«). When M = (M,) is a nonanalytic sequence, i.e.,
lim,, ;o0 (n!/M,)*/™ = 0, the algebra Lip (X, M, @) includes all the ra-
tional functions with poles off X. Thus, Lip g(X, M, «) is a natural
Banach function algebra on X, for nonanalytic sequences M = (M,,)
and every 0 < a < 1, when D'(X) is complete. For example, the al-
gebra Lip g(X, M, ) is natural when X is a circle, a closed annulus, a
closed disc, a compact interval, or certain star-shaped regions. More-
over, the maximal ideal space of Lip p(X, M, a) is X, the polynomial
convex hull of X, and Lip g(X, M, ) = Lip p(X, M, «) if and only if
X = X. In the case of the circle X = {z € C:]z—2| =R} or
the annulus X = {z € C : r < |z — 29| < R}, where 0 < r < R, the
rational functions are dense in Lip (X, M, a) for any weight sequence
M = (M,) and any 0 < « < 1, that is, Lip (X, M, a) = Lip g(X, M, a)
[8, Theorems 3 and 4]. By assuming r — 0, we can conclude that,
whenever X is a closed disc, polynomials are dense in Lip (X, M, «),
that is, Lip (X, M,«) = Lip p(X, M, a) [8, Corollary 1]. Also, when-
ever X is a regular star-shaped region for which there exists zgp € X
such that the segment [z, z) is contained in the interior of X for all
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z € X, then we have Lip (X, M, «) = Lip p(X, M, ) for any nonana-
lytic weight sequence M and 0 < a < 1 [8, Theorem 5]. Finally, as it
was proved in [12], when X is a compact interval, the polynomials are
dense in Lip (X, M, &) for nonanalytic weights M and 0 < a < 1. Thus,
for certain types of compact plane sets X, 0 < a < 1 and nonanalytic
weights M = (M,,), the algebras Lip (X, M, o) are natural.

In this note we study endomorphisms of Lip (X, M, a) and investigate
necessary and sufficient conditions for these endomorphisms to be
compact. The endomorphisms of the algebras D(X, M) have already
been studied by Feinstein and Kamowitz in [4, 5, 6, 10]. However,
some parts of the proofs presented here are similar to their works.

We sometimes require the following condition on X which is called
the (*)-condition.

(x) There exists a constant C' such that for every z,w € X and
f e DH(X),

£(2) = f(w)] < Clz = wl|(If[lx + '] x)-

For example, every uniformly regular set satisfies the (x)-condition.
The completeness of D!(X) is also concluded from the (*)-condition.

In general, if 7" is a unital endomorphism of a unital commutative
semi-simple Banach algebra B with the maximal ideal space M(B),
then there exists a continuous map ¢ : M(B) — M(B) such that
ﬂ = fow for all f € B. In fact, ¢ is equal to the adjoint 7™ restricted
to M(B). In this case we say ¢ induces T'. If a Banach function algebra
B on a compact Hausdorff space X is natural, then every nonzero
endomorphism 7" of B has the form T'f = f o ¢ for a self-map ¢ of
X. Hence, when the Banach function algebra Lip (X, M, «) is natural,
every nonzero endomorphism 7" of Lip (X, M, «) has the form T'f = fop
for some continuous self-map ¢ of X. This leads us to ask when a
map ¢ : X — X induces an endomorphism of Lip (X, M, a). In other
words, under what conditions ¢ satisfies foyp € Lip (X, M, o) whenever
f € Lip (X, M, «). Since Lip (X, M, ) contains the coordinate map z,
if ¢ induces an endomorphism then ¢ € Lip (X, M, «).

We now impose an additional condition on an infinitely differentiable
map :
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We call ¢ analytic if

(n) 1/n
sup <M> < 0.

n n!

Remark 1.2. The above condition on ¢ is equivalent to the analyticity
of ¢ in a neighborhood of X. Using Cauchy’s estimate, one can show
that every analytic function ¢ on a neighborhood of X satisfies the
following condition

(m))| \ /™
sup <M> < 00.

n n!

We say that ¢ is Lipschitz analytic if it satisfies this condition. In-
deed, Lipschitz analyticity and analyticity of ¢ are equivalent to the
analyticity of ¢ in a neighborhood of X. Moreover, by a direct com-
putation, one can also show that Lipschitz analyticity and analyticity
of ¢ are equivalent, when X satisfies the (x)-condition. Moreover, for
nonanalytic weights M = (M,,), every (Lipschitz) analytic map ¢ is in
Lip (X, M, a).

If Lip (X, M,a) is a natural Banach function algebra on X and
©(X) C int X, then by the functional calculus theorem, f o p €
Lip (X, M, «) for all f € Lip(X,M,«). So, in this case, p induces
an endomorphism of Lip (X, M, a), without any additional conditions.
In this paper we determine conditions for ¢ to induce an endomorphism
of Lip (X, M, «) in more general cases. We also investigate necessary
and sufficient conditions for the induced endomorphism to be com-
pact. We then determine the spectra of compact endomorphisms of
Lip (X, M, a).

2. Endomorphisms of Lip (X, M,«a). We will frequently use the
following equality for higher derivatives of composite functions which
is known as Fad di Bruno’s formula,

n

n! u k) (2) \**
(fop)™ = Z f(m)(<p(2))za1!a2!_'”a 1 H <<p kl( ))
@ " k=1 ’

m=0
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where, here and henceforth, the inner sum ) is taken over nonnegative
integers ay,as,... ,a, satisfying a; +as+---+a, = m and a; + 2as +
. + na, = n.

In the next theorem we give some sufficient conditions for ¢ to induce
an endomorphism of Lip (X, M, a). We need the following important
lemma which is easy to verify and will be used in the sequel frequently.

Lemma 2.1 [2, Lemma 1.5]. Let K, X be two compact plane sets
and K C int X. There exists a finite union of uniformly regular sets
in int X containing K, namely Y and a constant C' such that for
every analytic function f in int X and any z,w € K, |f(z) — f(w)| <
Clz —w|(Iflly + I1Flly)-

Theorem 2.2. Let X be a perfect compact plane set, 0 < a < 1,
and let M = (M,,) be a nonanalytic weight sequence. Then an analytic
self-map ¢ of X induces an endomorphism of Lip (X, M, ) if any one
of the following conditions is satisfied:

(i) X satisfies the (x)-condition and ||¢'||o < 1.
(ii) ¢ € Lip (X, 1) and ||¢']lo« < 1.
(iii) X has nonempty interior and ¢(X) C int X.

Proof. First we show that f o ¢ € Lip>®(X,a), for all f €
Lip (X, M, «). By the (*)-condition, every infinitely differentiable func-
tion is in Lip *°(X, «). If (ii) is satisfied, then for every f € Lip (X, a)
and for all z,w € X with ¢(z) # ¢(w), we have

«

[fop(z) = fopw)l _ [f(p(2) = fle(w))| ‘80(7-) —p(w)
2 = wl| |p(2) = p(w)[* z-w
)

< pa(f)(P1(p))*

)

whence f o ¢ € Lip(X,a). Thus, f(™ o ¢ € Lip(X,a) for every
f € Lip*>(X, ) and for all m. Using Fad di Bruno’s formula, one can
show that (f o)™ is in Lip (X, a), for every f € Lip*°(X, ) and for
all n, that is, f o p € Lip (X, a).

By condition (iii), using Lemma 2.1, we obtain a finite union of
uniformly regular sets Y in int X containing ¢(X) and a constant
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C such that for every f € Lip®°(X,a) and for all z,w € X with
o(2) # p(w), we have
[fop(z) = fop)] _ [f(p(2) = Fle())l|¢(z) — p(w)|
|z — w| o(2) — o(w)] |z — w|*
< C(Iflly + 1y )pale).

Again, using Fad di Bruno’s formula, one can show that f o €
Lip (X, a) for every f € Lip (X, ).

Now we show that fop € Lip (X, M, «) for all f € Lip (X, M,«a). By
using Fad di Bruno’s formula we show that the series

Yo o)™ lla/My
n=0

converges.

M,
n=0
© 1 & n! = (o™ e\
1 (m) B

S Z M, Hf 0<P||az arlaz!---ay,! H < k!

n=0 m=0 a k=1

o > 1 n! 1 e™ e\
_ (m) = =
P ¢|ZmMZ.,,kf_Il< W)

As mentioned in Remark 1.2, the analytic self-map ¢ is Lipschitz
analytic. Put p = limsup,, (||¢™||o/n!)'/™ < oo, and define

h()) = - ||S0(k)||a>\k—1 A 1
=S W eyt <
k=1 )

The function h is analytic in |A| < 1/p and h(e) =3 "re, ([l ||o/ck!)e"
< oo for every £, 0 < e < 1/p.

Since lim,, o (n!/M,)'/™ = 0, for every 0 < & < 1/p there is a
constant B > 0 such that (M,,/m!)(n!/M,) < ((n —m)!/My_n) <
Be™™™_ for n > m.
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Therefore, it follows from inequality (2.1) that

i (£ 0 0)™la
n=0 Mn

X m ! M,, n! - (k)
<31 dopllamns y M 1L z H(”S”k, I )

n=m k=1
£t °<P||a n—m 1 (o™l **
<BZ m'ZE Zal'@ a"'kl:[1< Kl >
117 0 plla 0<P||a S T (el
Z 'nzm n! Z al'ag cap! kl;[l ( ek! >

By applying formula B3, [1, page 823], we have

ZH o ) ||°‘<BZHf )°<P|a<z|<ﬂ "o k)

n=0
(m) o
— B Z ”f A w““(h(s))m.
m=0

m

(2.2)

By either of the conditions (i) or (ii) we have h(0) = ||¢||o < 1, so
we can choose 0 < € < 1/p such that h(e) < 1. Hence,

(o) ™o £ o plla o~ 1™l
Wjew) Mo o gy~ W "2%lla o pp N~ I_lla
N N

where By = max{l,C*(||l¢llx + ||¢'l|x)*} if (i) is satisfied (C is
obtained from the (*)-condition), and B; = max{1, (p1(¢))*} whenever
condition (ii) is satisfied.

With assumption (iii), using Lemma 2.1, we obtain a compact set ¥’
with ¢(X) CY C int X and a constant C' such that for all z,w € X
with ¢(z) # ¢(w), we have

fT (p(2) — f™ ()] _ 17 (0(2)) — f™ (p(w))l](2) — p(w)]
|2 = wl| |p(2) = p(w)] |2 = wl|
< Cpal@)(IF ™y + 17V ly).
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Whence,

pa(F™ 0. 9) < Cpa(@) (11" [ly + IF " y).

Let T be a finite number of closed paths (polygons) in int X \ Y with
length ! that surrounds Y, and let § = dist (Y,I') = inf{|z — (| :
z €Y,¢ €T}. Since every f € Lip (X, M, @) is analytic in int X, it fol-
lows from Cauchy’s estimate that ||f™ ||y < (1/2m)I(m!/6™ V)| ]| x-
Therefore,

157 0 @lla = 11 0 pllx +palfT™ o )
< ™ ly + Crale)IF ™y + 177V ly)
< (14 Cpa(@))(IF ™ Ny + 1£ P ly)
! 1)!
< Ballx (s + s ).
where By = (1/2m)I(1 4+ Cpa(p)).

Now from inequality (2.2) we obtain

ad o))
(23) Z”(f ]\ii Ha

< BBy|flx Z < m! N (m+1)!> (h(e))™

6m+1 5m+2 Mm

n=0

m=0

= m! (h(E)™ (1 m+1
SBB2||f||xZM—( (521) <5+ = ><oo,

m=0

since lim,, o0 (m!/M,,)*/™ = 0. Therefore, the theorem follows. O

We note that if X satisfies the (x)-condition, Lip (X, M, a) is com-
plete. However, under conditions (ii) and (iii), these algebras are not
necessarily complete.

The following example which is similar to an example in [5] shows
that if p(X) ¢ intX and |¢'||y > 1, then ¢ need not induce an
endomorphism of Lip (X, M, 1).
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Example 2.3. Let M = (M,) be a weight sequence such that
n?M,, /My 1 — 0o as n — co. Then the map ¢(z) = 1/2(1+27) on the
closed unit disc D does not induce an endomorphism of Lip (D, M, 1).

Proof. Let B > 0. Choose an integer N > 1 such that n*M,,_,/M,, >
B, for all n > N. Choose A > 1 such that >0 A"/M, <
(1/2)(AN/MN) Then we have Y - A"/M,, > (1/2) ano A"/ M,,.

We now consider the function f4(z) = exp(A(z —1)). Then || fall1 =
| fallx +p1(fa) < 2A and, for each n > 0, we have fin)(z) = A"fa(2).
Hence, ||£4" |1 = A" || falls and

(2.4) 1fallLip ®,02,1) = [Ifallx Z— <2AZ—

Using Fad di Bruno’s formula, we get

(faop)™ (2 Z DY )

al!a2!2“2

k n! ’ n—2
_Zf(n e D= 2zr @ "

l

n— n! n—
=P L A

where ! =n/2if niseven, and ! = (n—1)/2if n is odd. Using the mean
value theorem, we obtain an increasing sequence {t,, } with t,, > m for
each m, such that

pi((faop)™™Y)
> (faowp) ")( —i>

l n! 1 n—2k
=i () B e (o w)

for each n > 1 and for all m. Letting m — oo, we get
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l

pr((fao @)™ ™D) > falp(1) Y AnF
k=0
! nlAn—k
Z (n — 2k)!k!12F

n!
(n — 2k)k!12%

n!A” ! S (n—1)2
2(n — 2)! 2

AVl p > 1

\%

Therefore,

> A0 ")1 1((faop)™
ZH(f @)™ Zp (faop)™)

||fAOS0||Lip(B7M71) M,

E

=0 n

3

2An:_ZnMn1An1

A\
N |
M8

=N M Mn 1
A oo An—1
52 > BAZM

[a—y

_B||fAHL1p D,M ,1)°

[0}

In the last inequality, we have used inequality (2.4).

Since B > 0 was arbitrary this shows that ¢ cannot induce a
bounded endomorphism of Lip (D, M, 1) and so ¢ does not induce an
endomorphism. o

By imposing an extra condition on the sequence M = (M,,), a slightly
modified argument of Theorem 2.2 (i) and (ii) shows that ||¢'||, <1 is
sufficient for ¢ to induce an endomorphism of Lip (X, M, ).

Theorem 2.4. Let X be a perfect compact plane set, 0 < «
<1, and let M = (M,,) be a nonanalytic weight sequence satisfying
sup,,(n*M,,_1)/M,, < co. Let ¢ be a nonconstant analytic self-map of
X with |¢'|l« < 1. Then ¢ induces an endomorphism of Lip (X, M, «)
if either (i) X satisfies the (x)-condition, or (ii) ¢ € Lip (X, 1).
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Proof. As mentioned in the proof of Theorem 2.2, fop € Lip (X, a),
for all f € Lip (X, M,a). Let K = sup,,(n?M,,_1)/M,, < co. Then
(M,,/m!)(n!/M,) < (K/m)"~™ for m < n.

By Remark 1.2, the analytic self-map ¢ is Lipschitz analytic. Hence,

there exists B > 0 such that ||o*)||,/k! < B for all k. Since inequality
(2.1) in the proof of Theorem 2.2 still holds, we have

o) ™lla _ S pm)
ZT<ZIU © olla
n=0 m=0
S 7 (le™la )™
— =%+
where
[BK] n
m o™l
Bi= 31 ol Z P a0
and
S L n! T (le™la ™
_ (m) 1 o
= Y I ele Y 55 et 1T (Y
m=[BK]+1 n=m a k=1

(The symbol [z] denotes the greatest integer less than or equal to ).

First we estimate 1.

o (g™ e
= 3 1™ ol Z Zal,@ — H( )
BK]

Z 17 0 olla Z Z a11a2 “ap! l_IBIm’c

BK]

m B"
= I ol Z - 9 D peermt

since Y p_, kar, = n.

The inner sum ), 1/(a1las!---ay,!) is taken over the nonnegative
integers ap, as, - .. ,a, satisfying a; +as+---+a, = m and a; + 2a2 +
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-+ na, = n. So the number of terms of this inner sum does not
exceed (m +1)" so that >, 1/(ailaz! - a,!) < (m+1)". Hence,

[BK] 'S '

m n. n n

1< 3 1™ o plla D 15 B (4 1)
m=0 n=m n

The inner sum is finite, since lim,, o ((n!/M,)B™(m+1)")*/™ = 0. So
Y1 is finite.

We next show that X5 is finite. The argument is similar to that of
Theorem 3.1 in [5].

0 =~ 1 n!
_ (m) - S S
Yo = Z £ 0 @lla Z M Zalg@g...a !
melBK}1 nem " "
H <|<P | >
o0 . > M,, n!
= Y el Y Al
m=[BK]+1 n=m T

sal (k)||
. Z al'a2 U < : >
3] (m) o N e ~

m

m=[BK]+1 n=m
X Z al'a2 li[ <||90(k)|| >
oo (m)
_ mz[BZK]H If M::PHam!szm
X Z a1|a2 - kli <||<P(;)T|r|LkK1k 1) |

since as +2a3 + -+ (n — 1)a, = n—m.
Again from formula B3 [1, page 823], we get

™o ella ocplla o™ [l B
X2 < Z Z Elmk—1

m=[BK]+1
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S A wlla( / B’“K’“ '

< ) ¢/l +Z

m=[BK|+1

>0 CORNAIN 1 B:K \™

Z MH‘P'H?(LF#—)
m=[BK]+1 M, €[l m — BK
.S IIf(m)osOIa(H BK )’"
it M Ul -BE))

since ||¢'|la¢ < 1. Let By be an upper bound of
(1+ (B*K/||¢'||o(m — BEK)))™

in m. We also have [[f™ o ¢|la < Bi|f™|a, where B, =
max{1, C*(|l¢|lx + [|¢'||x)*} if condition (i) is satisfied (C' is obtained
from the (¥)-condition), and B; = max{1l, (p1(p))*} whenever (ii) is

satisfied. Therefore,

< < 0.
= p
Y2 < B1Bs E YA By Bsl| f|Lip (x,M,0) <
m=[BK]+1 m

So ¢ induces an endomorphism of Lip (X, M, «). O

We may state Theorems 2.2 and 2.4 for homomorphisms between two
infinitely differentiable Lipschtiz algebras induced by ¢ : X — Y. For
example, we state the following theorem which is similar to Theorem
2.2 (i) and will be used in the sequel.

Theorem 2.5. Let X and Y be perfect compact plane sets satisfying
the (x)-condition, 0 < o < 1, and let M = (M,) be a nonanalytic
weight sequence. Then, any analytic function ¢ : X — Y induces a
homomorphism Lip (Y, M, a) — Lip (X, M, @) if ||¢|le < 1.

3. Compactness of endomorphism when X = [0,1]. We recall
that Lip ([0, 1], M, &) is a Banach function algebra for all weights M and
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0 < @ <1, and it is natural if the weight sequence M is nonanalytic
and 0 < a < 1.

In this section, first we show that for any 0 < a <1,0<b<1—aq,
the operator T' : f(z) — f(az + b) is a compact endomorphism of
Lip ([0, 1], M, &) for all weights M = (M,,), and 0 < o < 1. Then we
show that the condition ||¢’||o < 1 is sufficient for the analytic self-map
¢ to induce a compact endomorphism of Lip ([0, 1], M, &).

Theorem 3.1. Let M = (M,,) be a weight sequence and 0 < o < 1.
Then (Tf)(z) = f(ax +b), x € [0,1], is a compact endomorphism of
Lip ([0,1], M, @) for any 0 <a <1 and 0 <b<1—a.

Proof. Let I = [0,1]. For every k > 0, we have (T'f)*)(z)
@ ¥az + 1. So [(THBN; < @l and pa((TS)D)
a*a%po (f*)) < aFpo (), since a < 1. Hence,

— NTHPa _ ’“IIf =

k=0

IA I

So T'f € Lip (I, M, a), whence T is an endomorphism of Lip (I, M, a).
(It also follows from Theorem 2.2 that T is an endomorphism of
Lip (I, M, o) induced by ¢(z) = ax + b, since ||¢'||o = a < 1.)

For the compactness of T, let {f,} be a bounded sequence in
Llp(I M Oé) with ||fn||L1p (I,M,a) — Zzo:()(vag,k)Ha/Mk) <1 Thus,
Hf(k Ir < My and pu (k)) < My, for every k = 0,1,2,... and any
positive integer n. In particular, ||f||1 < My and po(fn) < My for
all n. So, {f.} is a bounded and equicontinuous sequence in C(I).
Hence by the Arzela-Ascoli theorem, there exists a subsequence { fo.,}
of {f,} and a function g € C(I) with ||fo., — gllr = 0 as n — oo.

We also have || fokn”a < My, for every k,n. Similarly, by using the
Arzela-Ascoli theorem for {fg .}, we can find a subsequence {fin}
of {fon} and g1 € C(I) with [|f], —gillr — 0 as n — oco. We

also have ||fin —gllr = 0 as n — oo and ||f1kn)||a < M;, for any
k and n, since {f1,,} is a subsequence of {fo,}. So g is differen-
tiable and ¢’ = g1. We then have p,(fi,, —g) — 0 as n — oo, since

pa(fin—9) < |Ifi,,—9'll1. Therefore, || f1,n—glla = 0, [ fi,—¢'ll1 = 0
< M.




208 H. MAHYAR

By following an inductive argument, we conclude that g € C*(I),
and, moreover, we obtain a nested sequence {fx,} of subsequences of
{fn} with the properties Hf,glzl —gDe = 0asn — oo, |90 =
lim || ) |l < M;, for each i = 0,1,... ,k — 1 and [|f*) — g®||; =0

as n — oQ.

Since the sequence {f;;} has the following properties:
(i) ||f” la = ||f“ IFé +pa(f(k)) < Mj, for each k,
(ii) ||fm- — g™, — 0 as i — oo for each k.

It follows that [|g(¥)||, < Mj for each k. Clearly, g € Lip>(I,a)
but it may not be in Lip (I, M,«a). Let F(z) = g(az + b). For the
compactness of T, we show that F' € Lip (I, M, «) and that T'f; ; — F
in Lip (I, M, a) as i — 0o. Since, for every a € (0,1),

I1F ¥l ||a S kllg( o
S 1 ¢ Sl S L
we conclude that F eLip(I, M, ). Furthermore, we have 32 vy a*
< /4 for arbitrary £ > 0 and some N. Also, there exists a J such
that ||fi(”§) — 9™, < (eMy)/(2(N + 1)) for every i > J and for each
k=0,1,2,...,N. Therefore,
a*1£5 — 9P|

H szz F(k)H > 1,7 [e
> <y e

0
k
3 M
k=0 M,
= i - 9™
+ 2 i
k=N+1
N 0o
<y c 42 Y db<e
= Z42(N +1)
k=0 k=N+1

Hence, T'f; ; — F in Lip (I, M, a). mi

Theorem 3.2. Let M = (M,,) be a nonanalytic weight sequence and
0 < a <1, and let ¢ be an analytic self-map of I = [0,1] such that
¢ l|la < 1. Then ¢ induces a compact endomorphism of Lip (I, M, ).
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Proof. Let T be the endomorphism induced by ¢. If we set ||¢||o = ¢,
then ¢ < 1. We also have b = ||¢||1 < 1. We consider two cases
b= llellr <1and b= gl =1.

First, if b = ||¢||1 < 1, choose ¢ such that ¢ < ¢’ < min{1, (¢/b)}, and
let o1 = ('/c)p. Then ¢ is a self-map of [0,1] and ||¢}|l = ¢ < 1.
So by Theorem 2.2 (i), ¢; induces an endomorphism of Lip (I, M, «),
say T;. Define ¢(z) = (¢/c')z. By the previous theorem, v induces a
compact endomorphism S of Lip (I, M, «). Therefore, T is compact,
since T =T;0S.

Now assume that b = ||¢||r = 1. Since ¢ is continuous on the compact
set [0,1], there exists z; € [0,1] such that p(z1) = b = ||¢|lr = 1. If
there exists z3 € [0,1] such that ¢(xz2) = 0, then by the mean value
theorem there exists ¢ € [0, 1] such that ¢'(t) = 1/(z1 — z2). Hence,

1
! > / > ! t S 1‘
10 2 'l 2 160 = 2 2
This is in contradiction with ||¢’||o < 1. So if we set pa(z) =1 — ¢(z),
then ||¢2l|r < 1 and ||@h]la = ||¢']l« = ¢ < 1. Hence, by the previous
case, @9 induces a compact endomorphism of Lip (I, M, a), say Ts.

By considering the operator (Sf)(z) = f(1 — z), we can directly
show that Sf € Lip (I, M,«), for all f € Lip(I,M,a), so that S is
an endomorphism of Lip (I, M, «). We can also see that T = Ty o S.
Hence, T is compact, by the compactness of T5. a

4. Compactness of endomorphism for general plane sets
X. In this section we investigate the compact endomorphisms of
Lip (X, M, «) for more general plane sets X. With the same com-
putation as in the proof of Theorem 3.1, one can show the following
proposition.

Proposition 4.1. Let Y be a perfect compact plane set satisfying
the (x)-condition, 0 < a < 1, and let M = (M,,) be a weight sequence.
Then the map ¢ : (1/0)Y = Y by ¢(z) = cz with |¢| < 1 induces a
compact homomorphism: Lip (Y, M,a) — Lip ((1/¢)Y, M, «).

We now show that the result of Theorem 3.2 holds for more general
compact plane sets X.
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Theorem 4.2. Let X and Y be perfect compact plane sets satisfying
the (x)-condition, 0 < a < 1, and let M = (M,) be a nonanalytic
weight sequence. Then, any analytic function ¢ : X — Y induces a
compact homomorphism Lip (Y, M, a) — Lip (X, M, a), if |¢'||o < 1.

Proof. Choose ¢ with ||¢|la < ¢ < 1, and define ¢; : X — (1/¢)Y
by ¢1(z) = (1/c)e(z). Then [pyfla = (1/¢)[|¢'la < L. So, by
Theorem 2.5, ¢ induces the homomorphism 77 : Lip ((1/¢)Y, M, o) —
Lip (X, M, a).

Now define s : (1/¢)Y — Y by ¢2(z) = cz. Then, by Proposi-
tion 4.1, the homomorphism T5 : Lip (Y, M,«) — Lip ((1/¢)Y, M, «),
(Txf)(2) = f(cz), induced by o, is compact. The composite map
T = T1T3 is the homomorphism induced by ¢, which is therefore com-
pact. O

Note that the circle, the annulus and the closed unit disc are certainly
uniformly regular, whence they satisfy the (*)-condition. So for these
compact plane sets we have

Corollary 4.3. Let X be one of the above compact plane sets,
0 < o £1, and let M be a nonanalytic weight sequence. Then
any analytic self-map ¢ of X induces a compact endomorphism of
Lip (X, M, a), if |¢']|a < 1.

We now investigate compact endomorphisms when the underlying set
X has nonempty interior.

Theorem 4.4. Let M = (M,) be a nonanalytic weight sequence,
0 < a < 1. Let X be a perfect compact plane set with nonempty
interior such that Lip (X, M,a) is a Banach algebra. Suppose that ¢
is an analytic self-map of X. If p is either constant or p(X) C int X,
then ¢ induces a compact endomorphism of Lip (X, M, ).

Proof. When ¢ is constant, it is clear. If ¢(X) C int X, then by
Theorem 2.2 (iii), ¢ induces an endomorphism of Lip (X, M, «).
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For the compactness of T, assume that {f,} is a bounded sequence
in Lip (X, M, a) with || fu||Lip (x,0,6) < 1. We have || ful|x + pa(fn) =
Ifalla < S32o(1fla/My) < 1. Thus, {fs} is a bounded and
equicontinuous sequence in C'(X). By the Arzela-Ascoli theorem, {f,}
has a subsequence {f,,} which is uniformly convergent on X. So it
is uniformly Cauchy on X, that is, ||fn; — fu,l[x — 0 as j,l — oo.
We show that {T'f,;} converges in Lip (X, M, a). By completeness of
Lip (X, M, ), it is enough to show that {I'f,,} is a Cauchy sequence
in Lip (X, M, o).

Using the same technique and the same notation as in the proof of
Theorem 2.2 (iii), we obtain the following, which is similar to inequality
(2.3).

||TfnJ 7Tfnl||Lip )

_H( fm)O‘P”Llp (X,M,0)

|| (fa; — fni) ©9)™la
= Z i

2 om! (b)) (1 m+1
SBBQanJ-_meX M—( EWV)L) <g+ 62 >

m=0

=C1|fn; — fullx =0 as 4,1 = oo,

where

' he)™ (1 +1
el :BBZZ o 2 <g+m2 ><oo,
since lim((m!/M,,)(h(e)™ /(5’”)((1/6) + ((m+1)/6%)))/™ = 0. This
completes the proof of theorem.

The following are two immediate consequences of Theorem 4.4.

Corollary 4.5. Let M = (M,) be a nonanalytic weight sequence,
0 < a < 1. Suppose a self-map ¢ is analytic on the closed unit disc
D. If ¢ is either constant or ||¢|lp < 1, then ¢ induces a compact
endomorphism of Lip (D, M, ).

Corollary 4.6. Let X = {z € C:r < |z—2¢| < R} for some zp € C
where 0 < r < R, and let M = (M,,) be a nonanalytic weight sequence,
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0 < a < 1. Suppose a self-map ¢ is analytic on X. If ¢ is either
constant or r < ||¢||lx < R, then ¢ induces a compact endomorphism
of Lip (X, M, a).

5. Converse problem. In this section, we give a necessary
condition that ¢ induces a compact endomorphism of Lip (X, M, «)
when X is the closed unit disc D or the unit circle I'. For this, we need
the following lemma.

Lemma 5.1. Let X be a connected compact plane set, 0 < o < 1,
M = (M,) a nonanalytic weight sequence and the Banach function
algebra Lip (X, M, ) natural. Suppose that T is a compact endomor-
phism of Lip (X, M, a) induced by the self-map ¢ of X. If zy is the
fized point of ¢, then |¢'(20)| < 1.

Proof. For the function f(z) = z, by Theorem 1.2 in [7], we have

IT" f = f(20)UlLip (x,M,0) — 0,

from which we obtain ||, — 201||Lip (x,01,0) — 0, Where ¢, is the nth
iterate of ¢. On the other hand,

lenllx  l@n(z0)l ¢ (20)"
lon — 201||Lip (x,M,0) > ]\’/}1 > 711\41 - TP

which implies |¢’(20)] < 1. o

We recall that the algebras Lip (D, M, a) and Lip (T, M, a) are Ba-
nach function algebras for all weights M and 0 < o < 1. They are also
natural if M is nonanalytic and 0 < o < 1.

Theorem 5.2. Let M = (M,,) be a nonanalytic weight sequence and
0 < a < 1. If ¢ induces a compact endomorphism of Lip (D, M, a),
then either (D) C D or |¢'(2)] <1 for all z such that |p(z)| = 1.

Proof. Let p(a) = b € 0D for some a € dD. We show that
|¢'(a)] < 1. If we define 9(z) = ¢((a/b)z), then ¢ is a self-map of D and
1%™)]|o = [|¢™||a for all nonnegative integers n. By Fas di Bruno’s
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formula, we have [(f o V)", Baray = 1(F © @)™ llLip ©,01,0
for every f € Lip(D,M,a). Therefore, ¢ also induces a compact
endomorphism of Lip (D, M, ). Since 4(b) = ¢(a) = b, by Lemma 5.1,
[¢'(b)] < 1. On the other hand, ¢'(b) = (a/b)¢'(a). Therefore,
¥ (@)l = [¥'(b)| <1. o

Theorem 5.3. Let M = (M,,) be a nonanalytic weight sequence and
0 < a < 1. If ¢ induces a compact endomorphism of Lip (I', M, &),
then ||¢'||r < 1.

Proof. Using the same argument as in the proof of Theorem 5.2, one
can conclude that for all z € T, |¢'(2)] < 1. o

Now by giving two examples we show that the converses of Theorems
4.2 and 4.4 are not necessarily true. First we show that there exists
a nonconstant selfmap ¢ of D with (D) ¢ D, |¢|lp = 1, so that ¢
induces a compact endomorphism of Lip (D, M, ).

Example. Let M = (M,) be a nonanalytic weight sequence,
0 < a <1. Let a,b be complex numbers with |a] < 1 and |b] =1 — |al.
Consider the map ¢(z) = az + b for |z| < 1. Then g is a self-map of
D and there exists z € D such that |p(z)| = 1. Either using the same
argument as in the proof of Theorem 3.1 or by Corollary 4.3, one can
conclude that ¢ induces a compact endomorphism T'(f)(z) = f(az+b)
of Lip (D, M, a).

We now give another example in which [|¢'||o > ||¢’||x > 1, and still
¢ induces a compact endomorphism.

Example. Let 1/2 < r < 1, and consider the map ¢(z) = rz? on D.
Then ||¢|jp =7 < 1, so ¢(D) C D. Hence, by Corollary 4.5, ¢ induces
a compact endomorphism of Lip (D, M, «) for every nonanalytic weight
sequence M = (M,) and any 0 < o« < 1, while ||¢'|lo > ll¢'[lp =

2r > 1.

6. Spectra of compact endomorphisms. In this section we deter-
mine the spectrum of a compact endomorphism of the Banach function
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algebras Lip (X, M, ). We denote the spectrum of an operator T' by
o(T). Kamowitz in [9] proved that if T is a nonzero compact endo-
morphism of a commutative semi-simple Banach algebra B induced
by ¢ : M(B) — M(B), then Ny,(M(B)) is finite, where ¢, is the
nth iterate of ¢. Moreover, if M(B) is connected and B is unital,
N, (M(B)) is a singleton. In this case, if Ny, (M (B)) = {z¢}, then
xo is the fixed point for ¢. In [2, Theorem 4.1] we have proved the
following result:

Let B be a natural Banach function algebra on a compact plane set
X containing the coordinate function z whose elements are analytic
on int X. Let T be a compact endomorphism of B induced by ¢. If
©(X) C int X and zp is a fixed point of ¢, then o(T) = {¢'(20)" :
n e N}U{0,1}.

Observing the proof of this theorem, we can assume (z9) = 2z¢ €
int X instead of ¢(X) C int X. So we have the following corollary.

Corollary 6.1. Let X be a perfect compact plane set with nonempty
interior such that the Banach function algebra Lip (X, M, «) is natural.
Let T be a compact endomorphism of Lip (X, M, a) induced by a self-
map . If ¢ has an interior fized point zg, then o(T) = {¢'(20)" :
n € N} U{0,1}.

In the above results we need the underlying set X to have a nonempty
interior. In the following we determine the spectrum of a compact
endomorphism of Lip (X, M, «) for uniformly regular sets X without
assuming a nonempty interior for X. In general, we have

Theorem 6.2. Let B be a natural Banach function algebra on a
perfect compact plane set X containing the coordinate function z and
B C DY(X). If a self-map ¢ induces a compact endomorphism T of B
and zy is a fized point of ¢, then {¢'(z0)™ : m € N}U{0,1} C o(T).

Proof. 1t is clear that 0,1 € o(T"). We first show that ¢'(29) € o(T).
We may assume that ¢'(z9) # 0. If ¢'(z0) ¢ o(T'), then there exists
g € B such that go ¢ — ¢'(29)g = z — 2¢. By differentiation at zy we
get a contradiction. Hence, ¢'(20) € o(T). So f(e(2)) = ¢'(20)f(2)
for some nonzero f € B. Therefore, for each positive integer n,
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f(p(2)) = (¢'(20))"f"(z), whence (¢'(z0))™ € o(T) for all positive
integers n. o

Theorem 6.3. Let X be a uniformly regular set, 0 < a < 1,
M = (M,) a nonanalytic weight sequence and Lip (X, M,a) natu-
ral. Suppose a self-map ¢ induces a compact endomorphism T of
Lip (X, M,«a) and zy is the fixed point of ¢. If either ¢ is analytic
or there exists a neighborhood U of zg such that U N X is convex, then
a(T) ={¢'(20)" : n e N} U{0,1}.

Proof. By Theorem 6.2, {(¢'(z0))" : n € N} U{0,1} C o(T). Let
A € o(T)\{0,1}. By the compactness of T" there exists a nonzero
function f € Lip (X, M, ) such that Tf = fop = Af. Then f(z9) =0,
since A # 1. It suffices to show that f(")(zo) # 0 for some integer n. To
see this, let n be the smallest integer such that £(™)(z) # 0. By n times
differentiation of f o ¢ = Af, we have ¢'(29)"f (p(20)) = Af(™(20)
and so A = ¢'(z9)™. Therefore, o(T)\{0,1} C {¢'(20)™ : n € N}.

We now show that f(™)(zq) # 0 for some integer n. When ¢ is analytic
we can extend ¢ to an analytic function on a neighborhood 2 of X. By
Theorem 5.1, |¢'(29)] < 1, so we can choose a with |¢'(z)| < a < 1.
Hence, there exists an € > 0 such that |¢'(z)| < a if z € B(z9,¢). We
can choose ¢ small enough such that B(zp,e) C € in the case that ¢
is analytic, and in the other case, B(zp,£) C U. By Theorem 1.2 (ii)
in [7], there exists a positive integer N such that ¢, (X) C B(zg,¢) for
all n > N. Hence for n > N and for all z € X, we have

N

[on(2) — 20| < alpn—1(z) — 20] < a™ Non(2) — 20| < ea™”

Since a < 1, we may choose m with a™ < |A|. Fix this number m for
the remainder of this proof. If f(")(zy) = 0 for all n, then

Cm
|f(2)] < m|z — 2o|™ | F™ || x

for some C' > 0 [3, Lemma 1.5(iii)]. Since f o ¢ = Af, we have
flon(2)) = A" f(2) for all n € N and z € X. Thus,
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£ (pn(2))] c (m)
— < _ m m
(O I ("
“\aV /) (m-1I\|N/
If n — oo we obtain f(z) = 0, which is a contradiction. u]

We remark that when X is the closed unit disc or the closed unit
interval, the map ¢ is not required to be analytic. However, when X is
an annulus or the unit circle we do not yet know whether this condition
for ¢ is redundant. So we have the following.

Corollary 6.4. Let X be either the closed unit disc or the closed
unit interval. Let M = (M,) be a nonanalytic weight sequence and
0<a<l. IfT is a compact endomorphism of Lip (X, M, a) induced
by the self-map ¢ and zy is the fized point of p, then o(T) = {¢'(20)™ :
n € N} U{0,1}.

Corollary 6.5. Let X be either the annulus or the unit circle. Let
M = (M,) be a nonanalytic weight sequence and 0 < a < 1. If T
is a compact endomorphism of Lip (X, M, a) induced by the analytic
self-map ¢ and zo is the fized point of ¢, then o(T) = {¢'(20)" :
n € N} U{0,1}.

Note that, when X is an annulus and the fixed point of ¢ is an interior
point of X, by Corollary 6.1, the analycity of ¢ is not required.
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