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GLOBAL DYNAMICS IN
A TB MODEL INCORPORATING
CASE DETECTION AND TWO TREATMENT STAGES

LUJU LIU, YICANG ZHOU AND JIANHONG WU

ABSTRACT. Case detection of an infectious individual and
differentiation of infectiveness of a treated patient during
two different stages of treatment are recognized as among
key factors for the successful control and management of
tuberculosis (TB) transmission. In this paper, a dynamic
compartmental model is developed that incorporates these
factors, and proofs are provided to show that the model’s
global dynamics are completely characterized by the control
reproduction number, and in particular the disease eradication
condition in terms of the case detection fraction is obtained,
along with some numerical simulations.

1. Introduction. Tuberculosis (TB) caused by infection with
the bacterium M. tuberculosis is an ancient and chronic infectious
disease. It is estimated that one-third of the world’s population has
been infected with M. tuberculosis, resulting in nearly 3 million deaths
each year [2, 3, 18]. Furthermore, there are more than 6.5 million new
cases of tuberculosis each year [20].

Many mathematical models have been proposed and analyzed to ex-
amine TB transmission dynamics, and to suggest and evaluate control
strategies [4, 5, 6, 8, 12]. In particular, issues such as vaccination,
drug-resistance, the reinfection and relapse of cured individuals have
been addressed in different models [7, 10, 17]. Of particular concern in
this paper is the impact of case detection on an effective treatment pro-
gram. This is motivated by the observation that, in China, a fraction of
case detection of smear-positive pulmonary tuberculosis was only 41.4
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percent in 2000 [16]. Since smear-positive pulmonary tuberculosis can
survive for a long period, improving the low fraction of case detection
is obviously important, but which level of case detection fraction is
needed for disease control remains to be a challenging task.

Treatment strategies for the M. tuberculosis infection depend upon
disease status, and treatment of an active disease usually follows a
six-month course (directly observed treatment, short-course) [1, 9]. A
treatment is usually divided into two stages: the first two months and
subsequent four months. If treatment compliance is maintained and the
Mycobacterium strain is drug-sensitive, 85 percent of patients convert
from sputum positive to sputum negative, becoming noninfectious,
within the first two months [1]. Nearly 95 percent of patients convert
to sputum negative by completion of a treatment [1, 12].

Motivated by the above considerations and inspired by studies such
as [1, 7, 12, 16], we here formulate a TB model incorporating case
detection and two treatment stages (Section 2). We then, in Section 3
provide a detailed proof based on the construction of nontrivial Lya-
punov functions and the use of LaSalle’s invariance principle to show
that the global dynamics of such a model can be fully characterized by
the control reproduction number Ry. Such a number can be calculated
using the next generation matrix method [19], Ry < 1 implies dis-
ease eradication and Ry > 1 leads to the global asymptotic stability of
an endemic equilibrium. The dependence of this endemic equilibrium
and the control reproduction number on the case detection fraction are
determined, both numerically (Section 4) and analytically (Sections 2
and 3). Annual new cases of infectious TB and annual new infections of
TB in the short time are also given by simulation under the condition
of different case detection rates of infectious cases (Section 4).

2. The TB model with two treatment stages and the
undetected case. To formulate our TB transmission model focusing
on case detection and staged treatment, we divide the host population
into seven classes, based on their epidemiological status. In particular,
the treatment period of an infected individual, if treated, consists of
two stages: the first two months since the treatment is initiated when
the individual is infectious, and the subsequent four months when the
individual is no longer infectious. The compartments are susceptible
(S), early latent (E;) (early latent class with high risk of developing
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FIGURE 1. The schematic diagram of TB transmission with two treatment stages
and undetected cases.

infectious TB), later latent (E3) (later latent class with low risk of
developing infectious TB), infectious and treated (I;) (those who are
treated and infectious) and treated but not infectious (I2) (those who
are treated but are no longer infectious), infectious and untreated (I,,)
(those who are infectious, but are not detected and thus not treated),

and effectively treated (T').

The transmission diagram is given in

Figure 1, and the model is a system of ordinary differential equations.
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In the model, A is the recruitment rate, u is the per-capita natural
death rate, d is the disease induced death rate in classes I; and I5, and
0 is the disease induced death rate (per capita) of class I,,. Because
individuals in the I,, class are not treated, § > d.

The fast and slow progressions are incorporated into the model via
introduction of the fraction p: infected individuals initially enter class
E; and then can have either fast progression to infectious TB (at a
rate pk;) or slow progression to class Fy (at a rate (1 — p)k), with
1/k; denoting the mean length that an individual stays in the E; class.
During the later long-term latency, individuals have a relatively lower
risk of reactivation to infectious TB, at a rate kz. (3 and o are the
transmission coefficients from class Iy and class I, to the S class,
respectively. The bilinear transmission rate is used here. r; and ro
denote the transfer rates from class I; to Iy, and from class I to T,
respectively. The treated individuals may relapse and move into class
I; at the rate n. Also, we assume untreated individuals may recover
and move back to class Fy at the constant rate . A fraction f of
infectious individuals is detected and the remaining fraction 1 — f is
not detected. Detected individuals are treated, while undetected cases
are not treated—they will either die (naturally or from the disease) or
recover.

The TB transmission model becomes more complicated than those
considered in the literature, due to the introduction of the undetected
class.

Let N(t) denote the size of the total population at time ¢. That is,
N(t) = S(t) + E1(t) + E2(t) + I1(t) + I, (t) + I2(t) + T(¢).
By adding the equations in model (1), we get

(2) %}ft) =A—puN(t) —d(I1(t) + I2(t)) — 6L, (¢).

Since d/dtN(t) < 0 if N(t) > A/p, we can easily show that the set
Q= {(Sa ElaEZaIla-[n;IQaT)ER;— | SSN S A//j,}

is positively invariant and attracts all nonnegative solutions of model
(1). Therefore, without loss of generality, we will only consider solutions
of model (1) with initial values in .
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To simplify the presentation, we let

k
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Clearly, there always exists a disease-free equilibrium Py = (A/g, 0,0,
0,0,0,0). Using the next generation matrix method [19], we can
calculate the control reproduction number for model (1) as

O AfkAL A (- kA

Ry = 8= - .
O TP A Ay T T Ay (46 +)

The control reproduction number R, gives the average number of
secondary cases generated by one infectious case in the population with
the treatment program in place as described above.

3. Equilibria, stabilities and global dynamics. Model (1) has
the disease-free equilibrium P, for all possible values of the parameters.
Simple algebraic calculation also shows that if Ry > 1, model (1)
has exactly one endemic equilibrium P* = (S* Ef, E3, I, 1}, I5,T*),
where

A ARy —1 1-p)k
S§* = ) EI: ( > )7 E;:( p) lEfa
(4) [IJRO ARy [L-sz
* fklAl * * (1 - f)klAl * * T1 *
1 A3 1» n M+5+’Y 1» 2 M+d+7"2 1»
* 172 *

it tdtr) L

Theorem 3.1. If Ry < 1, the disease-free equilibrium Py of model
(1) is globally asymptotically stable and, if Ry > 1, the disease-free
equilibrium Py of model (1) is unstable.
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Proof. Define the nonnegative function in the invariant domain 2 as
(5) % (t) =F (t) + B1E, (t) + BoI; (t) + B3I, (t) + Byls (t) + BsT(t),

where

(6)

fka (1— fkeo Az A (11— kA
B :B +B ,B = ]_— —_——,
! 2M+k2 ° JT ) ? fki1Aq U#AZ(H‘HH”'Y)
Bs — o(A/p) + 7 B, — Tir2 By,
ptd+y (w+m)(p+d+rs)
n
Bs = —Bs.
5= gl
The fact that Ry < 1 implies that
A (1- kA
-k

Th A+ +7)

and By, Bs, B3, By and Bs > 0. Differentiating V;(t) with respect to
time ¢ along the solutions of model (1) yields

dvi(t) dEq(t) dEs(t) dl(t)
it |y~ dt TR TP
AL (1) . dhL(t) . dT()
B B B
+ D3 i + Dy at + Ds at

= E1[—(p+ k1) + B1(1 — p)k1 + Bafpki + Bs(1 — f)pki]
+ E2[—Bi(p + k2) + Bafke + Bs(1 — f)k2]
+ I[BS — Ba(p + d + 71) + Bari]
+In[oS +v = Bs(p+ 6 + )] + T[Ban — Bs(u + )]
+ I[—By(pu+ d + r3) + Bsra).
In the positive invariant domain 2, S<A/u, and we have
dVi(t)

7 S Ey[—(p+ k1) + By(1 — p)ky + Bafpks + Bs(1 — f)pki]

(1)
+ Eo[~Bi(p + k2) + Bafka + B3 (1 — f)k2]

A
+1 [5; = By(p+d+r)+ B47“1]

A
+ 1, {0; +7 - Bs(u+ 5+7)] + T[Ban — Bs(p+ )]

+ I[—Ba(pu + d + 72) + Bsra).
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Using equation (6), direct algebraic calculation yields

dVi (t) A2A3
<I -1
dt (1) =1 fklAl (RO ),

with equality only at Py. For Ry<1, this shows (dVy(t))/dt|;) < 0 with
equality only if I; = 0. By LaSalle’s invariance principle [14], the limit
set of each solution of model (1) is contained in the largest invariant
set I; = 0, which is the singleton {Pp}. This completes the proof of
the first part of Theorem 3.1.

The instability of Py when Ry > 1 is immediately derived from
Theorem 2 of [19]. O

We now establish the stability of the endemic equilibrium.

Theorem 3.2. When Ry > 1, the unique endemic equilibrium P* is
globally asymptotically stable.

Proof. When Ry > 1, the unique endemic equilibrium P* is given
in (4). The endemic components S*, Ef, Ej, Iy, I, I;, T* and
parameters satisfy the following equations:

S*If S*Ix I
A= *IT IV St pu+ k= 1 Ty
BS*IT + oS*I; + uS*, +k=p - +o : + ik,

E* Ex E; T*
(1) pthe=1-phgl, pt+dtr=fohot+ fhard 0,
2 1 1 1
ptoty=0-fiphi 2+ (10— =2, p+dtr=nt,
Ix Ix I3
ptn=raz=.

T*
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We now construct a Lyapunov function and use the method in [13,
15] to prove the stability of the endemic equilibrium. Let

0 = (50 -5~ 5 50) ¢ (0 - 51 -y 240)

S* E:
E I
ra <E2(t) — By — B3ln Z(t)> +Cy <11 (t) = I} = I{in 1(t)>
E3 Iy
+C <In (t) - If — I*In Ir}_(t)> LC (12(,5) 5 ow® (*t)>
n 2
T
+Cs <T(t) Tt T T(t)>
where
C - 5 =, — C ,
(8) R R e
fko (1= fk2 nT*
' 2“+k2+ s b 1ol

Differentiating V2(t) along the trajectories of model (1) gives

dVa(t)
dt
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B 5

*

E
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Substituting expressions of (7) into the above equation leads to
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R ST
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and

h(xvyv 2, U, v, W, q)

98S*I*  20S*I*  ~I*
_ 26570 | 20 "+7"+01(1—p)k1+02fpk1

T*
+0277E +C2fk2 +03(l— f)pk1
1 1
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[ E; E;
_ 1— 2 1— 2
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(oS I} ~I E3
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The fact that (u + k1)Ef = BS*I] + 0S*I} + vI is applied in the
coefficient of y of the above equation.

Using expressions in (4) and (8), we know that the coefficients of
Y,2,u,v,w and ¢ reduce to zero. Applying equations (3), (4) and (8),
it is easy to see that
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Applying equations (8) and (10), equation (9) can be rewritten as
follows:

h(x7 y’ Z’ u7 ’U, w’ q)
_ <455*fk1(1 — )k 2(1 — [)k1yp
Az(p+ k2) pto+y
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+3
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By the inequality of the arithmetic mean-geometric mean, we have

BS* fki(1 — p)ka (1— f)kiyp

Wy, 2 u, 0,0, q) < (4

Az(p+ k2) pto+y
(1= f)ky(1 = p)k2 T BS* fkip
+3C +32= 208
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(1= f)kiy(1 = p)ka T* BS* fkip
-3 -3¢ e A
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_ 30’5*(1 — f)klp _ 40'5*(1 — f)k?l(l —p)k?g
p6 4y (140 +7) (1 + ko)
:0,

with equality if and only if c =landy=z=u=v=w=gq.

Combining those inequalities, we have that (dV>(t))/dt|;y < 0 with
equality only if S = S*, By = Ef, By = B3, [, = It, I, = I*, I, = I}
and T = T*. Therefore, an application of the LaSalle’s invariance
principle [14] yields that the endemic equilibrium {P*} is globally
asymptotically stable in 2. a

From Theorems 3.1 and 3.2, we see that the global dynamics of model
(1) are fully determined by the threshold parameter Ry: if Ry < 1, the
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FIGURE 2. The global asymptotic stability of the endemic equilibrium P*, with
f = 0.414 [16], and hence Ry = 3.4743.

FIGURE 3. The relationship between Rp and f, when other parameter values are
set as described in the text. Note that f needs to be larger than 0.828 to ensure
Ro < 1.
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FIGURE 4. The relationship between the components of the endemic equilibrium
P* and f. Note the sharp decrease after f > 0.828.

disease-free equilibrium is globally asymptotically stable, and thus the
disease always dies out; if Ry > 1, the unique endemic equilibrium is
globally asymptotically stable and the disease persists at the unique
endemic equilibrium.

4. Numerical simulation results. We now carry out some
numerical simulations, where we assume the average life expectancy
of uninfected individuals is 70 years and hence u = 1/70 [5] (Figures
2, 3 and 4). We also assume A = 170,460 (Figures 2-4) so that the
population size is 11,932,200 in the absence of TB. We also follow the
work [5] and assume that p = 0.05 for the probability of progressing to
active TB by fast progression; ko = 0.00256 so that 5 percent develop
the TB disease over 20 years during the long-term latent stage; d = 0.06
and § = 0.15. Furthermore, in the work [7], the relapse rate of cured
individuals (per year) n is 0.001 and the corresponding 7 is 0.2. One
infectious individual infects seven susceptible individuals each year [5],
so f = 1/1704600 (Figures 2—4). Since the class I,, is not treated, it
will infect more individuals in their infectious period, yielding o > .
We will assume each untreated and infectious individual infects 10
susceptible persons, so that o = 1/(7 x 170460) (Figures 2-4). We set
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ky = 1.5 [21]. Moreover, r; = 3.6 corresponds to the assumption that
60 percent of class I; converts from sputum positive to sputum negative
within the first two months of treatment, and 7o = 2.4 corresponds to
the assumption that 80 percent of class Iy transfers to class T within
the subsequent four months of treatment.

Figure 2 demonstrates the global asymptotic stability of the unique
endemic equilibrium P* when Ry > 1; here only the curves of E;, Es,
I, and I,, as functions of t are plotted. From the simulation results,
we see that Ey, E5, I; and I,, all converge to respective values at the
endemic equilibrium, despite the fact that they start from different
initial values.

Figures 3 and 4 illustrate the impact of f on Ry and the components
of the endemic equilibrium P*. It is evident that much improvement of
case detection from the reported f = 0.414 [16] is required to control
TB transmission. More specifically, doubling the current case detection
rate will be needed to ensure R falls below 1 when we see a sharp
decrease of the endemic equilibrium value.

Figures 5, 6 and 7 give trends of the annual new infections and cases
of infectious TB, which are two important indices used to evaluate and
control TB. We first need to give two definitions. Here we define annual
new infections as the number of individuals infected by all infectious
cases in one year. We calculate it by using the formula

(11) P(t) = BSA)L1(t) + oSt) I (2).

Annual new cases of infectious TB are defined as the number of new
infectious cases detected in one year. We use the formula

(12) O(t) := fokiEr(t) + fhaBa(t) + 1T (2).

From recent data, we know that the birthrate of the population was
0.01403 in China in 2000 [11], and the total number of population
was 1,214,980,875 in China in 2000 [16]. Thus, A is 17,046,201, and
@ is 0.01403. We suppose that one detected infectious individual
infects seven persons and one undetected infectious individual infects
ten persons in one year. So, 3 is 7/1214980875 and o is 10/1214980875.
Other parameters except for f have the same values as those in Figures
2, 3 and 4. In [16], 44.5 percent of the population has been infected
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by M. tuberculosis, and there are 4.51 million active cases and 1.5
million infectious cases. The case detection rate of infectious cases is
0.414. So, S(0) = 674, 314, 386, I;(0) = 621,000, I,,(0) = 879,000 and
I,(0) = 3,010,000, when we let 2000 be the initial time. We assume
that 92 percent of infections is latent TB. Infections will stay in the
latent class for an average of 20 years and cost 1 year to develop fast
infectious TB. Thus, E;(0) = 39, 793,054, E2(0) = 457,620,116 and
T(0) = 38,743, 319.

From Figure 5, we know that annual new infections of TB will
decrease if case detection rate of infectious cases increases. The more
detected infectious cases, the more treated infectious cases and fewer
infectious cases infect others. The increase of P(t) will last for several
years, and then it will decrease slowly if f has no big increase.

Figure 6 indicates that C(t) has some change in the first several years
and no big difference in subsequent years. The larger f is, the more the
infectious cases will be detected, and the larger C'(¢) from the viewpoint
of short duration. If 44.5 percent of the population is infected by the
infectious cases, some latent persons will develop infectious cases every
year even though the case detection rate of infectious cases is very large
in upcoming decades.

Figure 7 illustrates the long-term behavior of C(t) over time. The
larger the fraction of the case detection rate of infectious cases, the
less the annual new infections (Figure 5), and then there will be fewer
detected infectious cases of TB (Figure 7). Because the latency of TB
is a long time, the decline of the number of annual new infections of
TB cannot immediately indicate the decrease of annual new cases of
infectious TB, which has a time delay between them. It is greatly
effective to increase the fraction of the case detection rate of infectious
cases to control and eradicate TB from the viewpoint of long periods
of time.

5. Conclusion. We have developed a compartmental model to
describe TB transmission by incorporating fast and slow progression,
case detection and different stages of treatment. In our model, the
class of treated individuals is divided into two compartments depending
on whether they are still infectious or not: treated patients can infect
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FIGURE 5. Annual new infections of TB with ongoing time.
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FIGURE 6. The rate of annual new cases of infectious TB under the condition of

different case detection rates of the infectious cases.
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FIGURE 7. Long-term behavior of the rate of annual new cases of infectious TB.
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others in the first two months of their treatment, but if they become
sputum negative (normally after the first two months of treatment) they
enter into the next compartment I, when they are no longer infectious.

These additional biological realities make our model more compli-
cated than those previously proposed and investigated in the litera-
ture. Nevertheless, we are able to calculate the control reproduction
number R, using the next generation matrix method, and to show that
this number is the threshold for the global dynamics of the model: the
global stabilities of the disease-free equilibrium (when Ry < 1) and the
endemic equilibrium (if Ry > 1) are obtained based on the construc-
tion of Lyapunov functions and using LaSalle’s invariance principle.
Our simulations also show that the fraction of case detection is crit-
ical for effective TB control-doubling the current case detection rate
reported from China which is required for a possible TB eradication.
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