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COMPOSITIONS OF PROJECTIONS
IN BANACH SPACES AND RELATIONS
BETWEEN APPROXIMATION PROPERTIES

M.I. OSTROVSKII

ABSTRACT. A necessary and sufficient condition for exis-
tence of a Banach space with a finite dimensional decomposi-
tion but without the m-property in terms of norms of compo-
sitions of projections is found.

The problem of existence of Banach spaces with the m-property
but without a finite dimensional decomposition is one of the well-
known open problems in Banach space theory. It was first studied
by Johnson [3]. Casazza and Kalton [2] found important connections
of this problem with other problems of Banach space theory. See in
this connection the survey [1].

Recall the definitions. A separable Banach space X has the m-property
if there is a sequence T, : X — X of finite-dimensional projections such
that, for all x € X,

lim ||z — Thz|| = 0.
n—o0

If in addition the projections satisfy, for all n,m € N,
T, = min(m,n)»
then X has a finite-dimensional decomposition.

Problem 1. Does every separable Banach space with the m-property
have a finite-dimensional decomposition?

The purpose of this paper is to find an equivalent reformulation of
Problem 1 in terms of norms of compositions of projections. In the
second part of the paper we discuss related problems on compositions
of projections.
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The relative projection constant of a finite-dimensional subspace Y in
a normed space X is defined by

AY,X) =inf{||P||: P:X — X is a projection onto Y}.

In the case when X = L, (1), the constant A(Y, X) is also denoted
A(Y) (it is well known that A(Y, Loo(1)) depends on Y only, and not
on the way in which Y is embedded into Lo, (x)).

Theorem 1. A separable Banach space X is a space with the m-pro-
perty but without a finite-dimensional decomposition if and only if there
exists an increasing sequence {X;}2, of finite-dimensional subspaces
of X satisfying the conditions:

( ) sup; (AQ,)()'< o0,
(b) cl (Uz IX) X7

(c) For every subsequence {X;,}o2, C {X;}52, and every sequence
{Pn}32, of projections, P, : X;_ ., — X;,_, the following is true:

n+1
(1) sup ||PyPry1---Pi_1P|| = o0
k,lEN
k<l

Proof. The “only if” part of the theorem is a slight modification of
Theorem 3 from Johnson [3]. We sketch its proof for convenience of
the reader. Let X be a separable Banach space with the w-property
but without a finite-dimensional decomposition. Using the standard
perturbation argument (see, for example, [4]) we get that there exists
an increasing sequence {X;}3°; of finite-dimensional subspaces of X
satisfying the conditions (a) and (b). Suppose that {X;}$2; does not
satisfy (c). Then there exists a subsequence {X; }2°, C {X;}$°, and
a sequence {P,} of projections; P, : X; ., — X, such that

Tl
(2) sup ||PxPry1---P-1P|| < oo.
ElEN
k<l

Let us define operators 1} : X;, — X;, by Ij'x = PoPyy1--- P
for K > n, k,n € N. Then the sequence {T’x}32, ,, is eventually
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constant for every z € U2 ,X; . The inequality (2) implies that
the sequence {1}'}7° 41 is uniformly bounded. Hence, it is strongly
convergent. We denote its strong limit by 7;,. It is easy to see that T,
is a continuous projection onto X; . Therefore, T;T; = T; for i > j.
Now let ¢ < j. We have

T‘Z'T'J'LEZS— lim (PlPm_l)(TJCL'):PZPJ_l(T]w) :T’ZI

m—r 00

Hence, X has a finite-dimensional decomposition, contrary to the
assumption.

We turn to the “if” part of the theorem. We assume that X contains
an increasing sequence {X;}°, of finite dimensional subspaces satis-
fying the conditions (a)—(c). It is clear that X has the m-property. In
order to show that X does not have a finite-dimensional decomposition,
assume the contrary. Then X contains an increasing sequence {Z;}$2,
of finite-dimensional subspaces, such that

oo
d(U&):K
i=1

and there exist pairwise commuting projections T; : X — Z; with
imT; = Z;, for which sup; ||T;|| < co.

We need the following analogue of [5, Proposition 1.a.9 (i)] for finite-
dimensional decompositions (it can be proved using the same argu-
ment), see [5, Section 1.g] for terminology related to finite-dimensional
decompositions.

Proposition 1. Let {W;}32, be a finite-dimensional decomposition
of X with the decomposition constant K. Let FE; : W; — X be linear
operators satisfying ||E;w —w|| < g;]|wl|| for each w € W;, wheree; >0
are such that Y>> e; < 1/(2K). Then the spaces {E;(W;)}52, also
form a finite-dimensional decomposition of X .

Let U; = (T; — T;—1)X (we let Ty = 0). Proposition 1 implies that
we may assume without loss of generality that each U; is contained in
some X,,,. Our next purpose is to show there exist a finite-dimensional

decomposition {U;}3°, and a subsequence {X;} C {X;}, such that for
Z; =U; @ --- & U; the condition

(3) Z; CX; C Ziyy forallieN
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is satisfied. Our proof of this fact uses induction and the following
lemma.

Lemma 1. Let {V;}2, be a finite-dimensional decomposition of a
Banach space X, let H be a finite-dimensional subspace of X satisfying
Vi ¢ H fori = 1,...,k, and let € > 0. Then there exists a
blocking {Y;}32, of the decomposition {V;}2,, such that Y; = V;
for i = 1,...k, Yip; = Vipg; for some m > k and all j > 2,
and Yiy1 = V41 ® Vito @ --- @ Viut1; and there exists an operator
A Y1 — X satisfying the following three conditions:

(1) 14y — gl < ellyl] for all y € Yiss,
(5) A(Yk+1) C lin ((Vl @@quLl)UH) )
(6) HCcVioVad: - @ Vi ® A(Yit1).

Proof of Lemma 1. Let S; : X — Vi & --- ® V; be the natural
projections corresponding to the decomposition. Let m € N be such
that m > k and

(7) [|Smi1z — z|| < 0]|z|| for all z € H,

where 0 > 0 is to be selected later. Let U = S,,+1H. Observe that
Sm+1|vi@--@V, is the identity operator, and hence V1 & -V, C U.
Using the standard perturbation argument, see [6, Proposition 5.3], we
can estimate the projection constant of U in terms of § and A(H, X)
(when ¢ is small). Hence, V1®---@®V,,41 = UBC for some subspace C,
where the norms of projections onto U and C are estimated in terms of
0 and A(H, X). This fact and the estimate (7) allow us to claim that the
operator A : Vi®- @ V41 — X defined by A(u+c) = S, % (u)+c for
u € U, ¢ € C satisfies (4) if § > 0 is selected to be small enough. The
condition (5) follows immediately from the definition of A. To finish
the proof it remains to observe that Ax =z forx € V1@ - ® V4. |

Now we use Lemma 1 to find {X;} and {U;}. In each step we shall
also find a new finite-dimensional decomposition {U}}3°;. Let &; > 0,
i=2,3..., besuch that .2, &; < 1/(2K).
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In the first step we let (71 = Uy, )~(1 be any X,, satisfying the
condition Uy C X,,,, and {U}}2, = {U;};.

In the second step we use Lemma 1 with H = )}1, k=1,e=ey, and
{Viyee, = {U}}22,. We let

{U2 =1 " {Ull’A(Y2)7UT1n+27UT%1+37"‘}'

By Proposition 1, {U 21%  is also a finite-dimensional decomposition.
We let Uy = A(Ys), Xz be any X, such that ny > ny and Uy C X,,,.
Such an ng exists by condition (5).

In the third step we use Lemma 1 with H = )~(2, k=2, =c¢3, and
{Vi}ee, = {U?}$°,. Re-using the notation A,Y;,m of Lemma 1 for
different objects than in the previous step, we let

{U3 =1 — {U127U227A(YE’>)7UT2n+27U2+37 }

By Proposition 1 {U2}%°; is also a finite dimensional decomposition.
Here a bit more explanation is needed. Observe that {U2}°, is
obtained from {U;}$2, by making two blocks and perturbing them, one
of them is perturbed no more than for 5 (in the sense of inequality
(4)), the other for no more than €3, therefore we are in a position to
apply Proposition 1.

We let Uz = A(Y3), X5 be any X,, satisfying ng > ny and Us C Xns-
Such an ng exists by condition (5).

We continue in an obvious way. The fact that condition (3) is satisfied
is clear from the construction (see condition (6) in Lemma 1). It
remains to check that {ﬁ,};’il form a finite-dimensional decomposition
of X. To see this observe that [71 are ¢;-perturbations of a blocking of
{Ui}2,. Recalling the choice of ¢; and using Proposition 1, we get the
desired statement.

Let Q. : X — X, be some _projections with sup,, [|@Qn]| < oo and
im@, = X,. Let R, : X — Z, be projections corresponding to the
decomposition {U} ©,. We introduce new projections P, : X — X,
with im P, = X,, as:

Pn = Rn + (I - Rn)Qn(RnJrl - Rn)

Let us show that P,, are projections onto )~(n and P, P11 = P,.
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If z € )?n, then z = R,t1z = R,z + (Rpy1 — Rn)z. Since
(Rn+1 - Rn)x € Xna then Qn(Rn+1 - Rn)x = (Rn-l-l - Rn)x Hencea

z=Ryxz+ (I — R,)Qn(Rnt1 — Ry)z.

Let us show that im P, C X,,. Condition (3) implies that im R,, C
X,,. Therefore, (I — R,)X,, C X,,, and P, is a projection onto X,,.

Let us show that P, P, = P,. In fact,

PnPn+1 = (Rn + (I - Rn)Qn(Rn—i-l - Rn))
X (Rut1+ (I = Rny1)@Qni1(Rnt2 — Ruy1))
=R,+ ([ —R,)Qn(Rpni1 — R,) = P,.

It follows that {P,} is a uniformly bounded commuting sequence of
projections onto { X, }. We get a contradiction with condition (1). O

Theorem 1 shows that one of the natural approaches to Problem 1 is
to start with the following problem on composition of projections. A
projection of a Banach space X onto its subspace Y is called minimal,
if its norm is equal to A(Y, X), and close-to-minimal, if its norm is close
to MY, X).

Consider a triple (X7, X2, X3) of Banach spaces satisfying X; C X5 C
X3. Assume that X; and X5 are finite dimensional.

Problem 2. Is it possible to find a close-to-minimal projection
P : X3 — Xy which can be factored as P = Py P;, where Py : X3 — X5
is a close-to-minimal projection onto X2 and Py : Xo — X1 is P|x, ?

Some related observations.

Proposition 2. Fach projection P : X3 — X1 has a factorization
of the form P = PP, where Py : X3 — X2 and P; : Xo — X3 are
projections.

In fact, let ker P; = ker PN X5. Let ker P, be a complement of ker P;
in ker P (such a complement exists because ker P; is finite dimensional).
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Proposition 3. There exist triples (X1, Xa, X3) and minimal pro-
jections P : X3 — X1 which cannot be factored as P, P, where Ps is a
minimal projection onto Xs.

In the proof of this result and in further discussion it is convenient to
use the notion of a sufficient enlargement. We denote the unit ball of a
Banach space X by Bx; in the case when X = [}, we use the notation
B™.

P

Definition 1. A bounded, closed, convex, 0-symmetric set A in a
finite-dimensional normed space X is called a sufficient enlargement
for X (or of Byx) if for an arbitrary isometric embedding X C Y
(Y is a Banach space) there exists a projection P : ¥ — X such
that P(By) C A. A minimal sufficient enlargement is defined to
be a sufficient enlargement no proper subset of which is a sufficient
enlargement.

It is easy to see that if X is a subspace of Lo () and P : Lo (1) — X
is a projection, then cl (P(Bg_(4))) is a sufficient enlargement of Bx.
See [7, 8, 9] for results on sufficient enlargements.

Proof of Proposition 3. Consider a triple of the form [§ C I} C Lo (u).
The set A(l3)Bj is a minimal sufficient enlargement of I3, see [8,
Section 3]. Therefore, if Py : Loo(p) — 1% is a minimal projection,
then cl (P2(By,(u)) = A(13)By. Hence, for an arbitrary Py : Ij — I5,
we have cl(PiP2(BL_ () = cl(Pi(A(15)By)) D A(5)B§, where we
have an equality instead of an inclusion if P; is orthogonal.

Of course, if k is much less than n, then A(1§) is much less than A(1}),
and the projection P; P, is far from being minimal. a

On the other hand, there exist P, : I} — 15 and Py : Loo(p) — 13,
such that P, P, is a minimal projection and P is a close-to-minimal
projection. To show this we need the following observation about
sufficient enlargements.

Lemma 2. Let X and Y be two finite-dimensional normed spaces
and X ®Y be their direct sum.
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Suppose that X @Y is endowed with a norm || - || satisfying the
conditions
(1) 2l < [l(z,»)ll, forall (z,y) e X DY
and
(2) lyll < l[(z,9)ll, for all (z,y) € X DY.

Let Ax be a sufficient enlargement of Bx and Ay a sufficient en-
largement of By. Then the Minkowski sum Ax + Ay is a sufficient
enlargement for (X @Y, ||-1])-

Proof. Let X®Y C Z be an isometric embedding. We show that there
exists a projection Px : Z — X such that Px(Bz) C Ax and Px(Y) =
{0}. Let py : Z — Z/Y be a quotient mapping with ker oy =Y. By
condition (1) the restriction ¢y |x is an isometry. Hence, there is a
projection Qx : Z/Y — py(X) such that Qx(Bzy) C ¢y(4Ax).
Therefore, we may identify X with oy X and Ax with py(Ax). We
let Px = Qxpy. It is clear that all of the conditions are satisfied.

In the same way, condition (2) implies that there exists a projection
Py : Z — Y such that Py(Bz) C Ay and Py(X) =0.

Let P: Z — X ®Y be defined by Pz = (Pxz, Pyz).
It is easy to check that P is a projection onto X @& Y. In fact,

P(:E,y) = (PX(xay)’PY(may)) = (Iay)

Also P(Bz)Cpx(Bz)+Py(Bz)CAx+Ay. O

Now we are ready to construct projections P; and P, whose existence
was claimed before Lemma 2. By Lemma 2 the set

A=A3)Bs + A3 *)By "

is a sufficient enlargement for 1§ = I5 @ 157, Let Py : Loo(p) — 1%
be a projection corresponding to this sufficient enlargement, that is,

satisfying P(Br_,,,) C A. It is easy to see that the norm of this
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2)1/2, Hence, it is not much more

)
5N <V2A().

projection is < ((A(15))2 + (A(157%)
than A(13). In fact, (A(1%))% + (\(

Remark. By [8, Theorem 5] the sufficient enlargement A = \(I5) B +
)\(l;‘_k)Bg_k is minimal. Hence, cl(P2(BL )) = A and ||P|| =

(A5 + (A ~F)2)12,

oo ()

Is it always like this? More precisely,

Problem 3. Does there exist a universal constant C' € [1,00) such
that for each triple X1 C X9 C X3 of Banach spaces, with X1 and X2
finite dimensional, there exist projections Py : Xo — X1 and Py : X3 —
Xg, such that HPQH S C)\(Xg,Xg) and HPl.PQH = )\(Xl,Xg)Q

Another version of this problem (which will be particularly interesting
if Problem 3 has a negative answer):

Problem 4. Do there exist universal constants Cy,Cy € [1,00) such
that for each triple X1 C X9 C X3 of Banach spaces, with X1 and Xo
finite dimensional, there exist projections Py : Xo — X1 and P : X3 —
Xg, such that HPQH S Cl)\(XQ, Xg) and HP1P2|| = CQ)\(Xl,Xg) 2
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