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APPLYING THE CONLEY INDEX
TO FAST-SLOW SYSTEMS
WITH ONE SLOW VARIABLE AND AN ATTRACTOR

WILLIAM M. KINNEY

ABSTRACT. Chay and Keizer [3] created a five-dimensional
model of bursting activity in pancreatic (-cells which was
subsequently reduced to a three-dimensional model by Chay
[2]. Kinney has used the Conley index to show that the
three-dimensional model has a nonempty attractor [11, pages
451-472]. This paper is intended to provide an introduction
to the Conley index by showing how it can be applied to ex-
tend these results to prove the existence of a periodic orbit
for the three-dimensional model, the existence of a nonempty
attractor for the five-dimensional model and the existence of
a periodic orbit for the five-dimensional model.

1. Introduction. Conley index theory consists of topological and
algebraic tools for understanding the global dynamics of flows and
maps on compact invariant sets. It is useful for proving the existence
of various objects and properties, such as equilibria, periodic orbits
[15], connecting orbits [7, 8, 13, 16, 18, 23, 24, 26, 30, 34],
traveling waves [7, 16, 18, 23, 30, 34] and chaotic dynamics [19, 20].
Some fundamental references for the theory include [6], which traces
its early development in the context of smooth flows on manifolds,
Conley’s classic monograph [4], Salamon’s paper [31] for clarity of
proof, Rybakowski and Smoller’s books [30, 34] for applications to
partial differential equations, and Mischaikow and Mrozek’s surveys
[17, 21]. Also recommended is an article by Moeckel [25] for an
intuitive introduction to the index and to the related topic of connection
matrices. The purpose of this paper is to introduce the reader to the
Conley index by showing how even basic aspects of the theory can
be used to prove nontrivial results in the context of certain kinds of
fast-slow singular perturbation problems. More general references for
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applying the Conley index to singular perturbation problems are [5, 9,
12, 22]. Also see [1] for a related perspective.

In [11], the Conley index is used to prove the existence of a nonempty
attractor for a fast-slow system with one slow variable arising as a model
of bursting behavior in excitable membranes. This model consists of a
system of three first-order ordinary differential equations, the third of
which contains a small parameter. The system is degenerate (but easy
to understand because of the assumptions made) when the parameter
is set to zero, giving a singular perturbation problem with a fast-slow
nature. This system was first developed by Chay and Keizer [3] as
a five-dimensional Hodgkin-Huxley type model of electrical activity
in pancreatic (3-cells. The model was subsequently reduced to three
dimensions by Chay [2] and described as a qualitative model by Terman
[36]. It is this qualitative model that is analyzed using the Conley index
in [11].

The three-dimensional system actually contains two important pa-
rameters, the small parameter mentioned previously and another pa-
rameter which is related to glucose concentration. The other parameter
is the “control” parameter. As it increases, the solutions to the system
undergo transitions from near steady-state behavior (experimentally
for low glucose levels ~ 7 mM and below), to quasiperiodic and chaotic

bursting behavior, to periodic behavior (experimentally for high glucose
levels ~ 20 mM and above) [32].

Though the control parameter is very important in the model, see
[37], it will not play a role in our analysis. We will assume that its value
is in a range where the bursting behavior occurs. Our main concern
is with the small parameter. The effect of the small parameter is that
it gives the bursting solutions a fast-slow character typical of many
singular perturbation problems. In the model we analyze, the slow
variable is related to calcium concentration, although in subsequent
experimental studies it has been found that this variable is not quite
slow enough to be the true slow variable [32, 33].

In this paper we will review the results of [11] and then expand on
them. We will illustrate how to use Conley index results of McCord,
Mischaikow and Mrozek [15] to prove the existence of a periodic orbit
for the three-dimensional model in [2, 11, 36] (Terman [36] already
proved the periodic orbit exists using a Poincaré map), then we will
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FIGURE 1. The trapping region R for (1) and the graph C of y = F(z).

use the Conley index to prove the existence of a nonempty attractor
and a periodic orbit for the original five-dimensional model of Chay
and Keizer [2]. Along the way we will simplify some of the ideas in
[11, 12] by taking a less general approach. We begin by using the
Van der Pol equations to give an intuitive idea of the relevant issues
and by reviewing the relevant parts of Conley index theory, with a
focus on theorems which allow us to prove the existence of attractors
and periodic orbits. We then move on to applying the index to the
three- and five-dimensional models. Finally, we provide an appendix
with more details on the models and some remarks about applying the
Conley index to singular perturbation problems.

2. An illustrative example. In this section we provide an intuitive
description of some of the relevant issues for applying Conley index
theory to singular perturbation problems in the context of the unforced
(and transformed) Van der Pol equations. Let F(z) = 2*/3 — z, and
consider the system

z=y— F(x)

Y= —cx

(1)
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FIGURE 2. The compact set N obtained from ¢° and the graph C of y = F(z).

Let ¢° be the flow of (1) at the parameter value ¢ > 0. For a
sufficiently small € > 0, we can easily construct a trapping region R as
shown in Figure 1 (where C' is the graph of y = F(x)) and then use the
Poincaré-Bendixson theorem to prove the existence of a periodic orbit
inside R. We can then also show that this periodic orbit is attracting
and unique, see [10].

While this approach works well in this example, in higher-dimensional
problems the construction of a trapping region can be much more
difficult. Also, when qualitative assumptions about higher-dimensional
problems are made, such as in [11, 36], it is more natural to construct a
region analogous to the compact set N = N UNrUNyUNgUNLUN
shown in Figure 2. Although IV is no longer a trapping region, it clearly
contains the attracting periodic orbit for sufficiently small € > 0. The
best way to view the construction of this set in order to facilitate a
natural extension to higher-dimensional problems is to first construct
the tubes Ny, and Ng, then construct the boxes Ny and N, and finally
construct the tubes N/, and N by using the singular flow ¢° to “push
forward” the right boundary of Nt until it is inside Ngr and the left
boundary of Ng until it is inside INp,.
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The Conley index can now be used to prove the existence of a
nonempty attractor inside NV for small ¢ > 0. The basic idea is as
follows. For a fixed small € > 0, use smooth bump functions to deform
the flow ¢° on small neighborhoods of the four points in the set CNON
so that it matches ¢° on even smaller neighborhoods of these points.
Call this deformation 1°. Though the vector field for ¥® is not pointing
transversely inwards along much of N, the set N is a trapping region
of ¢° in the sense that all points in N will eventually move into
the interior of N as t increases and, more crucially for Conley index
theory, all points in AN will eventually move into the exterior of N
as t decreases. Because of this last fact, the maximal invariant set for
1® inside N must be in the interior of N. This means that N is an
isolating neighborhood for ¢¢. Next, the Conley index of the maximal
invariant set for ¢ inside IV can be easily computed in this situation
because no points leave N as t increases. This index can be shown
to be nontrivial and, as a result, the maximal invariant set inside IV
can be shown to be nonempty. In addition, the fact that all boundary
points of N eventually move into the exterior of NV as t decreases means
that this nonempty maximal invariant set inside N is also an attractor.
The final step is to relate the facts just proved about 9 to ¢°. This is
done by deforming ¢ to ¢° and using the continuation property of the
Conley index. Basically, the continuation property says that, if a set N
remains an isolating neighborhood as a flow is continuously deformed,
then the Conley index stays constant throughout the deformation. In
addition to all this, by constructing a Poincaré section, we can use the
Conley index theory from [15] to prove the existence of a periodic orbit
for ¢ inside N.

Another important point to make here is that, in order to prove
that N remains an isolating neighborhood as we deform ¢ into ¢,
it is necessary to prove that N is a singular isolating neighborhood for
the family of flows {¢°}e>o. This means that N is not an isolating
neighborhood for ¢° but it is an isolating neighborhood for (¢ for all
sufficiently small £ > 0. In order to do this, it is necessary to examine
the points in N which prevent N from being an isolating neighborhood
for ©° and show that these points do not prevent N from being an
isolating neighborhood for ¢° for small € > 0. The points in question
are those points of N which are in the maximal invariant set for ¢"
inside N. In this case, that includes the two points of C' N ON on the
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top and bottom outer boundaries of N and all the points on the line
segments which form the top and bottom inner boundaries of N. In
this paper we will see that such points satisfy the condition of being
fast-slow-1 simple C-slow entrance points. This condition is sufficient
to guarantee that N is a singular isolating neighborhood for the family
{¢®}e>0, see Theorem 3.12.

While all this is more than what is needed for this example, we shall
illustrate that it pays dividends for higher-dimensional problems in
Section 4. Indeed, the application of Conley index theory to the five-
dimensional model of Chay and Keizer [3] in subsections 4.3, 4.4 and
4.5 is one of the main driving forces for this paper.

3. The Conley index.

3.1. Isolated invariant sets, attractors, the index, and
continuation. In all that follows, [4, 17] are used freely as references.
A newer reference of interest is [21]. We assume the reader is familiar
with basic dynamical systems and algebraic topology, [10, 29, 35].

Let X be a locally compact metric space, and let ¢ : X x R — X
be a continuous flow on X. We will often suppress X and ¢ in our
notation, and we will often refer to the second variable in ¢ as “time.”
Given N C X, let Inv (N) := {z | p(z,t) € N for all t € R}. Clearly
Inv (N) is the maximal invariant subset of N.

An isolating neighborhood is a compact set N such that Inv (N) C
int (N), the interior of N in X. Equivalently, N is an isolating
neighborhood if every point in the boundary set 9N eventually leaves
N in either forward or backward time. An isolated invariant set is a
compact set S for which there exists an isolating neighborhood IV such
that S = Inv (N).

Let S C X be an isolated invariant set. We will define a subset
A C S to be an attractor in S if there exists a neighborhood U of A,
in X, such that w4 NS) = A. If A is an attractor in .S, then A is
an isolated invariant set. The following theorem of Conley guarantees
that a compact set will contain an attractor in its interior if it maps
into its interior under the flow for some positive time.
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Theorem 3.1. Suppose U C S and, for some ty > 0, ¢(cl(U),ty) C
int (U). Then w(U) is an attractor contained in int (U).

Some compact sets are trapping regions in the sense that they map
into their interiors for all positive times. An isolating neighborhood
N is called an attractor block if ¢(N,t) C int (N) for all ¢ > 0.
The following theorem of Conley guarantees the existence of attractor
blocks.

Theorem 3.2. Let S be a compact invariant set, and let A C S
be an attractor in S. Choose a neighborhood U C S of A such that
w(U) = A. Then there exists a neighborhood W of A in S such that
W Cint (U) and ¢(cl(W),t) C int (W) for all t > 0. Hence, cl(W) is
an attractor block.

Remark 3.1. Sometimes a restriction is put on the definition of an
attractor block for smooth flows on manifolds by requiring N and 0N
to be smooth submanifolds and by requiring the vector field for ¢ to be
transverse to ON. The existence of such attractor blocks in the interior
of U is also guaranteed in that context, see [6].

Another theorem about attractors is used to prove the main results
of [11].

Theorem 3.3. Suppose that N is a compact subset of S with the
property that each point of ON is carried out of N ast decreases. Then
Inv (N) is an attractor. (However, Inv (N) could be empty).

In our applications we may use these theorems for a flow defined by a
system of ordinary differential equations by rescaling time as necessary,
to obtain a full flow, and by considering the flow as defined on the
one-point compactification of R™ via a stereographic projection onto a
sphere with the point at infinity considered as an unstable equilibrium.

The Conley index is an index for isolated invariant sets (and also
for isolating neighborhoods). To define the index, we need a few more
preliminary definitions. A set L C N is called positively invariant in
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Nifz e L, t >0, and ¢(z,[0,t]) C N imply that ¢(z,[0,t]) C L. A
set L C N is called an ezit set for N if x € N,t; > 0, and ¢(z,t;) ¢ N
imply that there exists a to € [0,¢1] such that ¢(z,[0,%]) C N and
o(z,t0) € L.

Let S be an isolated invariant set. A compact pair (N, L) is called
an indez pair for S if the following conditions hold:

(a) S=Inv(cl(N\L)) and N\ L is a neighborhood of S,
(b) L is positively invariant in N, and
(c) L is an exit set for N.

For example, let S be the origin, considered as the saddle point for
the system & = —z, y = y. Let N be the unit square, and let L be the
union of the top and bottom boundaries of N; then (IV, L) is an index
pair for S. In the case that the system is ¢ = —z, §y = —y, then (N, @)
serves as an index pair for S.

It can be proven that index pairs of isolated invariant sets always exist
and can always be chosen as subsets of a given isolating neighborhood.
Furthermore, it can be proven that for any two index pairs of a given
isolated invariant set, the pointed spaces formed by collapsing the
second member of the pair to a point are homotopy equivalent. This
leads us to the foundational definition of Conley index theory.

Definition 3.1. Let S be an isolated invariant set, and let (IV, L)
be an index pair for S.

The homotopy Conley indez of S, denoted by h(S), is the homotopy
type [N/L] of the pointed space (N/L,[L]), where [L] denotes the
equivalence class of L in the quotient space N/L.

The cohomology Conley index of S, denoted by CH*(S), is defined

by the equation
CH*(S):= H*(N/L,[L)),

where H* denotes Alexander-Spanier cohomology with integer coeffi-
cients.

For example, if S is a hyperbolic equilibrium with a k-dimensional
unstable manifold, then by choosing appropriate coordinates it is easy
to see that h(S) = X¥, the homotopy type of a pointed k-sphere,
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and CH*(S) =~ (0,0,...,0,Z,0,...), where the nontrivial cohomology
occurs at level k.

Once the Conley index has been defined, the most basic and impor-
tant result is the following.

Theorem 3.4. If S is an isolated invariant set and if h(S) is
nontrivial (so h(S) is not the homotopy type of a pointed one-point
space), or if CH*(S) is nontrivial, then S is nonempty.

Another basic theorem tells how to compute the Conley index in a
special situation which is of interest in this paper.

Theorem 3.5. Let N be an attractor block for an isolated invariant
set S. Then (N,Q) is an index pair for N and thus h(S) = [N/2].
(Note that (N/@,[2]) is a disconnected space and thus h(S) is nontriv-
ial in this situation since N # &.)

The continuation property we now discuss gives the Conley index
its power. Let A be a compact, locally contractible, connected metric
space (A is often a compact interval). Given a family of continuous
flows {¢*}rea on X, we can define a flow ® on X x A by the equation

®((x,\),t) == (pM(z, 1), \).

® is called the parameterized flow associated with the family {©*}xca,
and this family is said to be continuously parameterized (or a continuous
family of flows) if ® is continuous.

The following theorem on the stability of isolating neighborhoods
under perturbation is an easy consequence of the definition of an
isolating neighborhood.

Theorem 3.6. Let N be an isolating neighborhood for the flow 0

for some Ao € A. Then there is an € > 0 such that N is an isolating
neighborhood for o> if d(\, \o) < &.

Index pairs do not behave so nicely under perturbation however.
Because of this, the two theorems that follow are nontrivial.
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Theorem 3.7. Let N be an isolating neighborhood for ¢*°. Choose
e > 0 such that if d(\, \g) < €, then N is an isolating neighborhood for
@*. Then h(Inv (N, ) = h(Inv (N, ) if d(A, X) < €.

To extend the preceding perturbation theorem to a global continua-
tion theorem, we must use the parameterized flow. First, we give some
notation. Given N C X x A and X € A, define the slice N* by

N*:= NN (X x {\}).

Definition 3.2. Let S* and S* be isolated invariant sets for
@M and p*, respectively. S*° and SM are said to be related by
continuation if there exists an isolating neighborhood N C X x A
for the parameterized flow ® such that Inv(N*0 p*) = S* and
Inv (N1, M) = §h1,

The main continuation result is the following.

Theorem 3.8. If S* and S™ are related by continuation, then
h(8%,p*) = h(S*,pM).

We will illustrate the use of the continuation property in subsection
4.4, although we could do what we need to do without it in the
particular application of that section, see Remark 4.2. However, the
continuation property does form the foundation for that application
because it is used in [11] to prove Theorem 3.13, which ultimately
leads to the application.

3.2. The Conley index and periodic orbits. Here we state
results which can be used to prove the existence of periodic orbits and
which will be applied in subsections 4.2 and 4.5. We will not go into
any of the background material required for the proofs of these results.
The interested reader can consult [15, 21]. We remark that we are
stating these results in less generality than those found in [15].

First we need a theorem which tells us how to compute the index for
hyperbolic periodic orbits with orientable unstable manifolds.
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Theorem 3.9. Let Y C R™ be open and f : U — R"™ smooth. Let
~ be a hyperbolic periodic orbit of the differential equation & = f(z).
Suppose that vy has p Floquet exponents with positive real part. Suppose
further that the unstable manifold of v is orientable. Then

Z ifk=pork=p+1,
0 otherwise.

crt() ~ {

The key for going from index information about an isolated invariant
set to information about periodic behavior is to define a Poincaré
section for an isolating neighborhood.

Definition 3.3. A set & C X is a Poincaré section for an isolating
neighborhood N under ¢ if = is a local section, Ex := Z N N is closed,
and for every x € N, there exists a t; > 0 such that ¢(z,t,) € E.

Remark 3.2. =2 need not be a subset of N. Indeed, = will not be a
subset of IV in most cases of interest and = cannot be a subset of NV
if N has an exit set. It turns out that = is not a subset of NV in our
applications to the bursting models.

We are ready to state the main results found in [15].

Theorem 3.10. If N is an isolating neighborhood for ¢ which admits
a Poincaré section E and for all n € Z, either

rank C H?" (Inv (N)) = rank CH*t! (Inv (N))

or
rank CH?"(Inv (N)) = rank CH*" ! (Inv (N))

where not all the above ranks are zero, then ¢ has a periodic orbit in

Inv (N).

Theorems 3.9 and 3.10 lead to the following corollary, which we will
make use of in subsections 4.2 and 4.5.
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Corollary 3.1. If N is an isolating neighborhood for ¢ which admits
a Poincaré section and if Inv (N) has the Conley index of a hyperbolic
periodic orbit, then Inv (N) contains a periodic orbit.

3.3. The Conley index and certain fast-slow systems. To
relate the Conley index to fast-slow systems, we consider the special
case of a flow defined by the singularly perturbed system of ordinary
differential equations with one slow variable

z=g(z, )

2) A = ¢eh(z, \),

where g and h are smooth (say C!), ¢ > 0, z € R", and A € R. Let ¢°
denote the flow generated by (2) at the parameter value €.

In [5, 9, 22|, a more general theory for using the Conley index to
analyze systems similar to (2) is developed. Here, however, we simplify
some ideas and results from these references and from [11] related to
this system. First, we need an important definition.

Definition 3.4. A compact set N C R™ x R is said to be a singular
isolating neighborhood for the family of flows {¢®}.>¢ of (2) if N is not
an isolating neighborhood for (°, but there is an & > 0 such that N is

an isolating neighborhood for ¢° for all £ € (0, £]

Given a compact set N C R® x R, let S = Inv (I, ") and let
Ss =SNON. Also, for a given Ay € R, let £),(z,)) = X — X.

The following definitions of certain special “slow entrance” and “slow
exit” points are simplifications of definitions in [5, 11, 12, 22]. As
such, they facilitate a simpler route to applying the Conley index while
at the same time being applicable to a wide variety of examples. We
will state and prove Theorem 3.11 with a focus on exit points, since that
is the way most of the literature is framed. However, since our main
concern here is with attractors, we will ultimately be more interested
in entrance points and therefore our first definition will focus on these.

Definition 3.5. A point (z,)\g) € Ss is called a fast-slow-1 (fsl)
simple C-slow entrance point of (2) if there exists a compact set
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Kz xy) C Sp which is invariant under ¢” such that the following
conditions are satisfied

(a) a((z,X0), ¥°) C K(z,2)
(b) There is a neighborhood U, »,) of K(; ,) such that either
(i) h‘CI(U(z,)\O)) < 0 and €>‘0|c1(U(I,AO))ﬁN < 0 or (i) h|c1( ) >0

and £y, |, (Utz,ng) )N 2 0.

Ua,20)

We now define the dual exit point concept.

Definition 3.6. A point (z,)g) € Sp is called a fast-slow-1 (fsl)
simple C-slow exit point of (2) if it is an fsl simple C-slow entrance
point for the time-reversed flow. Equivalently, the above definition
holds with « replaced by w and with h‘Cl(U(:c,)\O)) < 0 replaced by

h|cl(U($,A0)) > 0in (b) (i) and vice versa in (b) (ii).

Remark 3.3. The “1” in “fast-slow-1" refers to the fact that there is
a one-dimensional slow variable in (2). The “C” is because the original
ideas came from Conley [5].

Remark 3.4. In [11], definitions are given of simple C-slow exit
and entrance points (without the “fs1”). Those definitions need to
be modified to make things work out there. This modification is given
in the appendix of the present paper and is proven in [12] to make
everything work in [11].

Remark 3.5. In [22], definitions of slow exit and slow entrance points
and of C-slow exit and C-slow entrance points are given.

Remark 3.6. Note that V{y, (z,\) - (g(z, A),eh(z, \))T = eh(z, \) so
that, for e > 0, £, will increase along solutions if h(z,A) > 0 and
decrease along solutions if h(z, A) < 0.

Basically, we can think of the various kinds of slow exit points defined
in the literature as being points which, although they might not exit
the set IV immediately for small ¢ > 0, they will eventually do so
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as t increases. The various kinds of slow “entrance” points defined in
the literature might not enter the set IV as ¢ increases, but they will

eventually leave N as t decreases. This is the content of Theorem 3.11
and similar theorems for other kinds of slow exit and slow entrance

points [5, 11, 12, 22].

Remark 3.7. In the Van der Pol system of Section 2, we have
g(z,\) = A= F(z) and h(z,\) = —z. All points on the top and bottom
inner boundaries of N and the two points in N N C on the top and
bottom outer boundaries of N are fsl simple C-slow entrance points.
For example, for any point (z,A¢) on the bottom inner boundary
of N we can take U, \,) to be a small disk centered at the point
(zo, Ao) € ON NC and Kz x,) = {(z0, o)}

Let S5 and Sg denote the sets of fsl simple C-slow exit and entrance
points, respectively. The following two theorems and their proofs
are analogs of theorems and proofs in [5, 12, 17]. Besides making
application in many examples much clearer, the definitions of fs1 simple
C-slow exit and entrance points make the proof of Theorem 3.11 much
simpler than the corresponding proofs of the analogous theorems for
other kinds of slow exit and slow entrance points.

Theorem 3.11. If (z,)\) € Sy ((z,Xo) € S7), then there ezists an
& > 0 and a neighborhood Q4 5, of (x, Ao) such that if € € (0,&] and
yE Q(a:,)\o)a then Sas(ya [07 OO)) ¢ N (906(:% (_0070]) ¢ N)

Proof. Since (z,)) € S, there exists a compact set K, »,) C Sa
and a neighborhood U, y,) of K, »,) which satisfy the conditions of
Definition 3.6.

Assume that condition (b) (i) holds, for Definition 3.6, so that
h|cl(U(m,>\0)) > 0, and EAO\CI(U(E,AO))QN < 0. Since {¢p°}.>0 is a con-
tinuous family of flows and since K, ),) is invariant under @Y, it fol-
lows from Remark 3.6 that there is an € > 0 and a neighborhood
Via,xo) Of K(5,,) such that, for all e € (0,&] we have ¢* (Vi ), T'(€)) C
Ulz,no) \ N for some T'(e) > 0.
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Since w((z, o), ¥°) C K(z,xy)s by choosing & > 0 smaller if necessary,
we can guarantee that there exists a neighborhood €, »,) of (z,Ao)
such that if ¢ € (0,2] and y € Q(,»,), then p°(y,t(e,y)) € V(z,»,) for
some t(g,y) > 0. But this means that, if y € Q(; x,) and € € (0,£],
then ¢*(y,t(e,y) + T'(e)) ¢ N. In other words, ¢°(y, [0,00)) ¢ N.

The proof is basically the same if condition (b) (ii) holds. O

Theorem 3.12. If @ # Sy C SgUS(;, then N is a singular isolating
neighborhood.

Proof. By definition, we must find an £ > 0 such that if ¢ € (0, £] and
(x,A0) € ON, then ¢°((z, Xo),R) ¢ N.

For each (z,A9) € Ss C Sj US,, Theorem 3.11 implies there
is an £(5,5,) > 0, such that for each ¢ € (0,6 ,)], there is an
open neighborhood Q(; »,) of (z,Ag) such that ¢°(y,R) ¢ N for all
Y € Qz,0)-

Since Sp is compact, there exists a finite cover {Q(z, 20)> Q(ws,20)> - -
Qzn,20) ) Of Sp. Let €1 := min; g5, 5,y and let Wy := UiQ s, 2)-

For each (z,\g) € ON \ Wi C N\ Sy, we know that ©°((z,\o),R) ¢
N. Thus, there exists an £, ,) > 0 and an open neighborhood O, )
of (x, o) such that ¢*(y,R) ¢ N for all ¢ € (0,£(;,,)] and for all
Y € Oz,n)-

Since ON\W, is compact, there exists a finite cover {© (5, 19> ©(z2,70)>

s @(zm7>\0)} of 8N\W1 Let €5 := min; €(zi,M0) and Wy := Ui®($i7/\0)'

Let € := min{ey,e2} > 0, let (z,\o) € ON, and let € € (0,¢].
Since Wy U W5 is a neighborhood of 0N, it follows from the preceding
paragraphs that ¢°((z, Ag),R) ¢ N, and we are done. o

)

An important class of fsl simple C-slow entrance points are those
that enter immediately. It is usually clear which points will satisfy this
definition in an application, see [11].

Definition 3.7. An fsl simple C-slow entrance point x is called a
strict fs1 simple C-slow entrance point if there exists a neighborhood
©, of z and an € > 0 such that if y € ©, N N and € € (0,&]. Then
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there exists ¢,(¢) > 0 for which

(Pg(ya [O,ty(g)]) C N.

The next theorem is a modification of the main theorem proved
in [11] and facilitates the proof, also in [11], of the existence of a
nonempty attractor for the three-dimensional model of bursting in
excitable membranes. The proof of this theorem uses Theorems 3.3,
3.11 and 3.12.

Before stating the theorem, we need to recall the definition of the
chain recurrent set. Given e, T > 0 and z,y € X, an (¢, T)-chain from
x to y is a finite sequence {(z;,t;)} C X x [0,00), i =1,...,n such
that © = zq,t; > T, and d(¢(x;,t;),zi41) <eforeachi=1,... ,n—1
and d(¢(zn, tn),y) < . If there exists an (g, T)-chain from z to y, then
we write £ = 1) y. If x = ) y for all &, T" > 0, then we write z = y.

The chain recurrent set of a compact invariant set S under the flow
is defined by R(S) = R(S, ) := {zx € S | = 2} We note that R(S) is
also a compact invariant set and if ¢ € S, then w(z) C R(S). The chain
recurrent set of S can also be characterized as the intersection, over all
possible attractor-repeller pair decompositions of S, of the union of
the corresponding pairs (where a repeller is the dual concept of an
attractor).

Theorem 3.13. Let SE,L be the set of fs1 simple C-slow entrance
points in N and suppose that

(a) Sp = S3.

(b) No points in ON leave N in forward time under ¢°.
Then Inv (N) is an attractor for sufficiently small € > 0.

Furthermore, if

(c) UIeS;’R(Kz) consists of strict £s1 simple C-slow entrance points,

then h(Inv (N)) = [N/@] for sufficiently small € > 0.

Remark 3.8. The proof of this Theorem given in [11] uses Theorems
3.11 and 3.12 in a “formal” way. That is, it is only the properties of fsl
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FIGURE 3. The singular isolating neighborhood N for (3) constructed in [11].

simple C-slow entrance points as represented by the form of Theorems
3.11 and 3.12 that are used. The actual details of the definition of fsl
simple C-slow entrance points are not used. In fact, the theorem is also
true if we assume that Sg consists of simple C-slow entrance points and
Uge ng(Kw) consists of strict simple C'-slow entrance points as defined
in the appendix. It is also true if these sets consist, respectively, of C-
slow entrance and strict C-slow entrance as defined in [22].

Remark 3.9. This theorem can be considered to be a simplification,
in the case of an attractor, of the main theorem in [22]. It is useful
because it is more directly applicable in some situations, such as in
[11]. The main theorem in [22] uses the concept of a singular index
pasr, which is a pair (N, L) that gives the correct cohomology index of
an isolated invariant set of (2) for small € > 0 but is not necessarily an
index pair.
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4. Applications.

4.1. The three-dimensional model. The three-dimensional
model of bursting in excitable membranes formulated in [2] and de-
scribed qualitatively in [11, 36, 37] can be written as

0= fl(va w,y)
(3) W = fa(v,w,y)
y=eg(v,w,y, k).

In this model, v is the electric potential across the membrane of a
pancreatic S-cell and is the “bursting” variable of interest, ¢ > 0 is
the small parameter, y is related to calcium concentration and is the
slow variable, k is the control parameter (which, as mentioned in the
introduction, we take as fixed), and w is a so-called “channel-state”
variable. The functions f;, f2, and g are C*° smooth in a neighborhood
of the solutions of interest. More details about these variables and
functions will be given in subsection 4.3 and the appendix.

By letting X = (v,w,y)T and f(X,&') = (fl(vaway)afZ(vaway)a
eg(v,w,y, k)T, we can write (3) as

(4) x = f(x,¢).

Let ®° be the flow for (4) at the parameter value €. Figure 3 shows
a compact set N = Ny UNp U N; U N3 U N}, which is constructed
in [11] using qualitative assumptions about ®° that are given in [11,
36]. The number § > 0 is small and the numbers X, h and p (with
A+6 < h—9) are bifurcation values of the fast-subsystem of (3), where
y is treated as a parameter when ¢ = 0. The set N1 contains a curve
of asymptotically stable equilibria for the fast-subsystem and the set
Np contains a surface of asymptotically stable periodic orbits for the
fast-subsystem. In Figure 4 we see the flow of the fast-subsystem of
(3) as it would look in N}, and Ny, for values of y near y = h, where a
homoclinic bifurcation occurs. The point [ is the equilibrium in N, and
the points m and u are equilibria in N},. A saddle-node bifurcation to
create m and u occurs in N3 at y = X and a saddle-node bifurcation to
destroy m and [ occurs in N,’, at y = p. The set M is the zero set of
the function g from system (3) which, for qualitative purposes, we may
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FIGURE 4. The flow for the fast-subsystem of (3) for values of y close to y = h.

assume takes the form M = {(v,w,y) | v = ¢} for some constant c¢ as
illustrated and also has the property that M N N is a local section of
®°. We also assume that g(v,w,y) > 0 when v < ¢ and g(v,w,y) < 0
when v > ¢ and that the various pieces of N are oriented as illustrated
with respect to M. Finally, we can take § > 0 sufficiently small so that
the interval [A — 24, p + 28] does not contain the value y = —1 (see the
equations in subsection 4.3 for the reason this is done).

Given a set A C R?® and y € R, we will let AY denote the set
AN (R% x {y}). We now describe the relevant properties of ®° on
N that will give insight into why N contains a nonempty attractor of
®° for small € > 0 (Theorem 4.2) and that will allow us to prove that
N contains a periodic orbit of ®¢ for small € > 0 (Theorem 4.3).

1. For each y € [A—4, p—4], all points in d(N}) immediately enter the
interior of N} as ¢ increases (where the boundary and interior are with
respect to R% x {y}). We may take each curve d(NY) to be smooth and
constructed so that the vector field for ®° is transverse to each curve.

2. All points in N, either stay in N, for all ¢ > 0 or go into Np for
some t > 0. The upper part of N ; is constructed by “pushing forward”
the top of the “box” indicated in the lower part of N ;, until it is inside
Np (this can be done in a finite amount of time). As a result, points
on the boundary of the upper part of NV K') stay on the boundary as they
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move upwards toward Np. This is a natural construction to make,
although it means that N is not a trapping region for small ¢ > 0.
However, one of the main points of [11] is that this is irrelevant (also
recall the discussion in Section 2). In addition, all points in N ,’, with
y-coordinate greater than p go into Np for some t > 0.

3. For each y € [h+0, p+4], all points in (N} ) immediately enter the
interior of N} as ¢ increases (where the boundary and interior are with
respect to R% x {y}). We may take each curve (N}%) to be smooth and
constructed so that the vector field for ®° is transverse to each curve.

4. All points in N}, or N} either stay in N}, or N}, respectively,
for all ¢ > 0 or go into Ny, for some t > 0. (Here ®° is used to “push
forward” certain pieces of the upper parts of N}, and N} to construct
the lower parts of N}, and N}, respectively.) In addition, all points in
N{ with y-coordinate less than A\ go into Ny, for some ¢ > 0.

5. We may choose 7 > 0 sufficiently small so that N N{(v, w,y) | v =
c+n} and NN {(v,w,y) | v=c—n} are local sections for ®° and so
that Np is above the plane {(v,w,y) | v =c+ n} and Ny, is below the
plane {(v,w,y) | v=c—n}.

6. We may take 7 > 0 smaller if necessary so that if IV /l7+ =
N/ n{(v,w,y) | v > ¢ —n}, then there exists a time 7" > 0 such that
SN, T) C intgs (Np) U intra gy (Np 0 {(0,0,9) | y = p+ 6})
(where the subscripts for int specify the set we are taking the interiors
with respect to) and such that ®*(N)*,T) C intgs (Np) for small ¢ > 0
(see the assumptions about the function g).

7. We may take n > 0 smaller if necessary so that if N;:M = (Ny U
Ni)Nn{(v,w,y) | v < c+n}, then there exists a time 7" > 0 such that
®O(Ny 5y, T) C intrs(Np) Uintrzx (x—53 (N N {(v,w0,9) [ y = A — 6})
and such that ®°(N} ,,,T) C intgs(N) for small & > 0.

The following two theorems are the main applied theorems in [11].
The first is proven using Theorem 3.12. The second is proven using
Theorems 3.13 and 4.1.

Theorem 4.1. The set N is a singular isolating neighborhood for
the family {®°}e>0.
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Theorem 4.2. For ¢ > 0 sufficiently small, Inv (N, ®%) is a
nonempty attractor. Furthermore, h(Inv (N, ®%)) is the homotopy type
of the disjoint union of a circle and a distinguished point.

The list of properties above should give intuition as to why N contains
a nonempty attractor for small € > 0. The attractor consists of solution
curves which slowly travel to the right through Ny near the curve of
asymptotically stable equilibria for the fast-subsystem of (3), pass into
N, before quickly moving up into Np (at least once y > p), slowly
travel to the left through Np while quickly rotating near the surface of
asymptotically stable periodic orbits of the fast-subsystem of (3), pass
into N}, and possibly into N} before quickly moving back down into
Ny, (at least once y < A) and then repeating this cycle.

What may not be so clear is why Theorem 4.1 is true. As mentioned
above, Theorem 3.12 is the key to the proof. But to use this theorem,
we need to know what the sets Sy, S(;L and S, are. It turns out that
Sy = Sg and that this set consists of one point on the left side of Ny, a
curve on the right side of N}, a curve on the left side of IV, ;, and a disk
on the right side of Np. The details are in [11] although the definition
referred to in Remark 5.4 should be used rather than the definition
given in [11]. If Definition 3.5 is used, the details are quite similar to
those alluded to in Section 2 and Remark 3.7.

We will find it useful in subsection 4.4 to have an attractor block at
our disposal. Choose £ > 0 so that IV is an isolating neighborhood and
Theorem 4.2 holds for all € € (0, &].

Lemma 4.1. For each ¢ € (0,&], there exists a set B C N C R?
which is an attractor block for ®° and which is homotopy equivalent to
the circle St.

Proof. Let ¢ € (0,é]. By Theorem 3.2, there exists a (bounded)
open neighborhood W¢ of Inv (IV, ®¢) such that ®¢(cl (W*),t) C W*¢ C
int (V) for all ¢ > 0. Let B® := cl(W®). Clearly B¢ is an attractor
block for ® and h(Inv (N, ®°)) = [B*/o], see Theorem 3.5. But now
Theorem 4.2 implies that B® is homotopy equivalent to S*. ]
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4.2. Existence of a periodic orbit for the three-dimensional
system. In [36], Terman proved the existence of a periodic orbit for
(3) by doing constructions similar to those done in [11] (Terman’s con-
structions were done first) and then by proving there is a Poincaré map
with a fixed point. Here we illustrate how to prove the existence of a
periodic orbit using the Conley index. By the content in subsection 3.2,
we know that one thing that must be done is to construct a Poincaré
section for IV under ®°. Let & > 0 be chosen so that IV is an isolat-
ing neighborhood and Theorem 4.2 is applicable for all ¢ € (0,&]. Let
M, = max{|v| : (v,w,y) € N}, M, := max{|w| : (v,w,y) € N}, and
let M > max{M,, M, }.

Let

Apront = {(v,w,y) |w=M,c+n<v<M,A-25 <y < h+d}
Apack = {(v,w,y) |lw=-M,c+n<v<MMN-2 <y<h+d},
Aop = {(v,w,y) | - M <w < M,v=M\—-20 <y<h+d}
Apot = {(v,w,y) | - M <w<M,v=c+nA—20 <y<h+6},

w=M,-M<v<c—np—06<y<p+20},
w=-M,-M<v<c—np—0<y<p+25}
M <w<Mouv=-M,p—5§<y<p+2§}
~M<w<Muv=c—np—06<y<p+2§}

Bfront ==
Bpack :=
Bbot =

{( )|
{( )|
{( )|
{( )|
Areg = {(v,w,y) | - M <w<M,c+n<v<My=\-—25},
{( )|
{( )|
{( )|
Biop = {( )|

and
Biight = {(v,w,y) | -M <w<M,-M <v<c—ny=p+25}

Let EL = Afront U Aback U Atop U Abot U Alefta ER = Bfront U Bback U
Biot U Brop U Bright, and Z := £, UEg. For each ¢ € (0, €], deform the
flow of ®° outside N as necessary to make = a local section, also see
Property 5 in subsection 4.1.

Lemma 4.2. For ®° deformed outside N as above and € > 0
sufficiently small, the set = is a Poincaré section for N under ®°.

Proof. First note that ZN N is closed and that = is a local section for
each ®¢ with € € (0, ] by assumption (choose £ smaller if necessary so
that = remains a local section inside N). Now let & = (vg, wo,yo) € N.
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Suppose first that vg > ¢+ n and & € Ny U N},. By the properties
of ®° described in subsection 4.1, the construction of =, and since
g(v,w,y) < 0 is bounded away from zero on N for v > ¢+ 7 it is clear
that if € € (0,&], then there exists a time T' = T'(£,e) > 0 such that
(¢, T) € EL CE.

Next suppose that £ € Np. By the properties describing the behavior
of ®° on the boundary of Np, there exists an 0 < & < & such
that if € € (0,e1], then there exists a time T} = Ty(£,e) > 0 such
that ®<(¢,T1) € Np N Ny,. Therefore, by the preceding paragraph
we can say that there exists a time T' = T(®°({,T1),e) > 0 such
that ®<(®°(¢,T1),T) € Er, C E. In other words, we can write that
(¢, T1+T) €=, CE.

Now suppose that vg > ¢ — 7 and £ € N,. Then { € NL"’ and
Property 6 in subsection 4.1 implies that there exists a time 75 > 0 such
that ®°(N.f, Ty) C intgs (Np)Uintge (o451 (NpO{ (v, w,y) | y = p+6})
and there exists an 0 < 2 < £; such that for all ¢ € (0,e3], we have
®°(N,*,Tz) C intgs (Np). It follows that for 0 < e < &3, there exists a
time 7 = 7(&,€) > 0 such that ®¢({,To + 7) € Ef, C E. Let &, 1= eq.

Similar arguments apply to the cases (a) vo < c¢—nand £ € N, (b)
€ € N, and (c) vg < c+nand £ € N{ UN,. In these cases, we would
obtain a number &g > 0 for which the forward orbits of these points
would intersect Zg for any ¢ € (0,&g]. Taking € = min{éy,ég} gives
us an upper bound on ¢ sufficient to reach the desired conclusion. a

Remark 4.1. Note that, since B* C N, for sufficiently small € > 0, =
is also a Poincaré section for B¢ under ®¢ if we deform ®° appropriately
outside V.

Since deforming ®° outside N has no bearing on what happens inside
N, Theorem 4.3 below now follows as an immediate consequence of
Theorem 4.2, Theorem 3.9, Corollary 3.1 and Lemma 4.2.

Theorem 4.3. For £ > 0 sufficiently small, there exists a periodic
orbit for ®¢ inside N.
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It should be noted that, in addition to the fact that Terman [36]
already proved the existence of a periodic orbit for this model, Lee and
Terman [14] characterized the set of parameters for which there is a
unique and asymptotically stable periodic orbit.

4.3. Relating the five- and three-dimensional models. Next,
we move on to the five-dimensional model. This is where use of Conley
index theory pays dividends, especially in subsections 4.4 and 4.5. The
notation used here is meant to be somewhat consistent, on an overall
level, with the varying notations found in [2, 3, 11, 36].

In constructing the original five-dimensional model of the electrical
activity in an isolated pancreatic §-cell with no applied current, Chay
and Keizer [3] used Hodgkin-Huxley formalisms to create the following
five-dimensional system of ordinary differential equations.

Cmv = (§K,Ca + §K,HHUJ4> (vk —v)

Yy
1+y
+ 2§Ca,HHm3h(UCa - U) + gL(UL - U)
Weo (V) — w

®) o

iy Moo v) —m
Tm(v)

. heo(v) —h

h= 7h(v)

The meanings of some of the parameters and variables were alluded
to earlier. More detail on these quantities and on the nature of we, (v),
Moo (V) hoo(V) Tw(v), Tm(v), and 7,(v) are given in [2, 3] and in the
appendix. In addition to what was said earlier, suffice it to say here
that ko, is the control parameter (called k earlier) which we take as
a constant, « is taken as a constant, the vs and gs with subscripts are
taken as constants, and the 7s are functions with small positive values
for all values of v.

If we let
g = 2§ca,mH oo = JK,Ca g = JK HH e/
Cyv Cm ) K,C Cm ) K,v Cm ’ L Cm )
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and k = k¢q, then system (5) can be written as

. * * y *
v = gc,vmsh(vca —v) + <9K,0m + gK,vw4> (vk —v)

+91(vL —v)
_ Weo (V) — w
Tw (U)

(6) §=c¢(am’h(vce —v) — ky)
Moo(V) — m

m= Tm (V)
: heo(v) —h
h= —Th(v) .

The reduced three variable model of Chay [2] is obtained by replacing
the variable m by the function mu,(v) and the variable h by the
function he(v) in the first and third equations and deleting the last
two equations to give us

i} = gé’,v (mOO (v))3h00(v)(UCa - ’U)
+ (o T + gk ) (0 = 0) 4 gi(0n — )
Woo (V) — w

Tu)(v)
y=e (a(moo(v))ahoo(v)(vca —v) — ky) .

This reduction is justified from a modeling perspective because the
relaxation times for m and h (relative to their v-dependent “steady
states” Mmoo (v) and hoo(v)) are small relative to the relaxation time for
w and the reduction produces the same type of behavior in v and y,
the variables of most interest.

To simplify this system to look like (3), we first define

* y * *
(v, w,y) := <9K,Cm + gx,vw“) (vie —v) + g1 (v —v),
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(the reason this is convenient will be clear soon) and then we make the
definitions

fi (’U, w, y) = gav (mw(v))shoo (U)(UCG - ’U) + ¢(U7 w, y)v
fg(v,w,y) = —)_7

9(v,w,y, k) = (Moo (v)*hoo (V) (Ve — v) = ky

(we write fo as if it is dependent on y and g as if it is dependent on
w to stay consistent with notation in [11, 36]). Also, though k plays
no role, we will include it for the sake of consistency and as a reminder
that it is an important part of the model.

With these definitions in hand, we can now write system (7) as

v = fi(v,w,y)
(8) w = f2(v7 U),y)
y' = sg(v,w7y’ k),

which is the same as (3). The qualitative assumptions in [11, 36] can
also be verified from these equations.

AS before, let x = (anay)T and f(X, 6) = (fl(vawa y)a fZ(anay)v
eg(v,w,y,k))T, so that (8) becomes

(9) x = f(x,¢).

To prove the existence of a nonempty attractor in the five-dimensional
model, it will be beneficial to relate system (7) (and (8) and (9))
to a transformed version of the five variable system (6). We start
by introducing new variables z,, and z, by m := z, + ms(v) and

h:= zp + hoo (v). Also, we define

fl (’U, W, Y, Zm, Zh) = gé‘,v (Zm + Moo (’U))3
X (Zh + hOO(U))(UCa - U) + ¢(vaway)7 and
g(’U, W, Y, Zms Zhy k) = a(zm + Mo (’U))B(zh + hoo(’l)))(’l)ca - ’U) - ky
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With these definitions, the five variable system (6) can be transformed
to
U= fl(vawaya Zm, Zh)
W= f2 (U, w, y)
Y= Eg(’l), W, Yy Zms Zhs k)

1o o = —— L ) )
Zm = Tm(v) Zm moo V)J1\V, W, Y, Zmy Zh
1 _
= — o — B! s 7).
Zh Th(U)Zh oo(v)fl(vvw7yaz Zh)

Furthermore, if we let
(0, 2ms 21) 7= (2m + Moo () (2 + hoo (V) = (Mo (v))* oo (v),
then we see that

fl(vvwv Y, Zm, Zh) = fl(vv w, y) + gé’,v(vca - U)d’(“a Zm Zh)

and
g(’U, W, Y, Zm;s Zh; k) = g(v, w,y, k) + 0{(ﬁUCa - ’U)'(,b(’l), Zm; Zh)-
Thus, we can write the transformed five variable system (10) as

V= fl(vawvy) + gé‘,v(UCa - U)'(/J(U, Zms Zh)

W= fZ(v;w,y)
Y= Eg(va w,Y, k) + Ea(vCa - U)¢(U, Zm, Zh)
(11) _ 1 L
Zm = — Zm — moo(v)fl(vawvya Zmazh)
Tm (V)
.1 o
Zh = Th(v) Zh hoo(v)fl(vawayazmazh)

where, if we let z = (2., 2n)T, we have ¥(v, 2, z) = O(|z]).

We now write this system in vector form by defining the functions

r(x,z,¢) == (ge,v(UCa = V)Y(v, Zm, 21n), 0,€(Voa — V)Y (v, 2, Zh))Tv

A i= diag (s ) and

S(X, Z) = (_mgo (U)fl (Ua W, Y, Zm, Zh)a _h;o(v)fl (Ua W, Y, Zm, Zh))T-
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Then system (11) becomes
x =f(x,¢e) + r(x,2,¢)

(12) z = —A(x)z + s(x, z),

where r(x,2,¢) = O(|z|) and all functions are smooth when y # —1.
This is the transformed five-dimensional system. In the next section,
we will use this system and Conley index theory to prove the existence
of a nonempty attractor for (5).

4.4. Existence of an attractor for the five-dimensional sys-
tem. Choose & > 0 as in subsection 4.2 so that IV is an isolating
neighborhood of the flow ®¢ for (4) and so that Theorem 4.2 holds for
all € € (0,]. Consider the system

x =f(x,¢e) + nr(x, z,¢)

(13) z=—-A(x)z +s(x,2)

where 1 € [0, 1].

Let I'“" be the flow for (13), and let ¥° be the flow for (12). Note
that I'©! = ¥° and that ¥ is a small perturbation of I'*7 when |z|
is small since r(x,z,e) = O(|z|). Also note that if 7 : R®> — R?
is the projection onto the first three coordinates (x,z) — x, then
7 ([0((x,2),t)) = ®°(x,t). Let 7, : R> — R? be the projection
onto the last two coordinates (x,z) — z.

For r > 0, let D, := {z : |z| < r}. The next lemma says that if r
is sufficiently small and if the 7s are sufficiently small functions, then
B® x D, will eventually get mapped into itself under I'*"", where B¢ is
the attractor block constructed in Lemma 4.1.

Lemma 4.3. Given ¢ € (0,&], there exists ¥ > 0 and functions
Tm @ (0,7] = (0,00) and 74 : (0,7] — (0,00) such that if 0 < r < T,
0 < 7 (v) < T (7) for all v, and 0 < 7, (v) < T4(r) for all v, then there
is a number to(n,r) > 0 with the property that, for each n € [0,1], we
have

I'®"(B® x D,,ty(n,r)) C int (B x D,.).

Proof. Fix ¢ € (0,&]. Our first step is to show that, for a given
r > 0, if 7,,(v) and 7,(v) are chosen sufficiently small for all v, then
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=% B¢ x D,,t) C int (B x D,) for all t > 0. To accomplish this, we
begin by noting that m, (I'*°(B¢ x D,., t)) = ®(B*¢,t) C int (B¢) for all
t > 0 by Lemma 4.1.

Since the continuous function s(x,z) is bounded on the compact set
B* x 0D,., for any given r > 0, we can choose 7,,(v) and 7, (v) so small
(say 0 < Ty (v) < T (r) for all v and 0 < 71, (v) < Tx(r) for all v) that
the term —A(x)z will dominate the equation z = —A(x)z + s(x,z) on
B® x 0D, for (13) to the extent that m,(I'*"(B* x 0D,,t)) C int (D,)
for each n € [0,1] and for all sufficiently small ¢ > 0. Combining this
fact with the observation at the end of the previous paragraph, we see
that [=0(B® x D,, t) C int (B%) x int (D,) = int (B° x D) for all ¢ > 0.

Since r(x,z,e) = O(|z|), the interval [0,1] is compact, and the
family {I'*"},c[0,1) is continuously parameterized, the conclusion of
the previous paragraph implies that we can choose 7 > 0 so small that
if r € (0,7], 0 < 7 (v) < T (r) for all v, and 0 < 73,(v) < Tx(r) for all
v, then for each n € [0, 1], there exists a number to(n,7) > 0 such that
Ir'="(B¢ x D,,to(n,r)) C int (B* x D,.). o

We can now state and prove a theorem which leads to one of the main
results of this paper, Corollary 4.1.

Theorem 4.4. Given € € (0,&], there exists ¥ > 0 and functions
Tm @ (0,7] = (0,00) and 7, : (0,7] — (0,00) such that if 0 <
r <7, 0 < 7)) < Tp(r) for all v, and 0 < T(v) < Tp(r) for
all v, then Inv (B¢ X D,,V¢) is a nonempty attractor for (12) and
h(Inv (B¢ x D,,¥¢)) is the homotopy type of the disjoint union of a
circle and a distinguished point.

Proof. Fix € € (0,&]. Choose 7, Ty, and 7p, so that Lemma 4.3 applies.
Fix r € (0,7] and choose 7, and 7, so that 0 < 7,,(v) < 7, (7) for all
vand 0 < 7, (v) < T(r) for all v. As in the proof of Lemma 4.3,
B¢ x D, is an attractor block for I'*"0. Thus, h(Inv (B¢ x D,,I'*0)) =
[(B® x D,)/] by Theorem 3.5.

By Lemma 4.3 and Theorem 3.1, B® X D,. isolates an attractor for I'*:"
for all n € [0,1]. Therefore, since ¥¢ = I'*:}, the continuation property
of the Conley index (Theorem 3.8) gives h(Inv(B® x D,,¥¢)) =
(B° x D,)/2).
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But B¢ x D, is homotopy equivalent to S! x D? (where D? is the unit
disk) which, in turn, is homotopy equivalent to S'. An application of
Theorem 3.4 implies Inv (B¢ x D,, ¥¢) # &. u]

Using the change-of-variables in the previous section to transform
back to the original equations gives us a result about the system of
Chay and Keizer.

Corollary 4.1. System (5) has a nonempty attractor for € > 0
sufficiently small.

Remark 4.2. Our work would have been easier if we had used the fact
that B¢ could have been taken to be a “strong” attractor block, one
with the vector field for ®¢ pointing transversely inward everywhere
along the boundary, see Remark 3.1. Since r(x,z,¢) = O(|z|), such a
choice would have implied, for 7,7,,, and 75, sufficiently small, that
B® x D, is an attractor block for I'®7 for all n € [0,1], including
rel = e,

We purposely chose B® to be a “weak” attractor block to illustrate
the continuation property and to illustrate that the same conclusion
about the index of the attractor can still be drawn in that setting. It is
often the case that similarly weak notions must be used and therefore
the continuation property of the Conley index is not irrelevant (con-
tinuation is also important in, for example, the proof of Theorem 3.13
[11]).

4.5. Existence of a periodic orbit for the five-dimensional
system. Our final application is to prove the existence of a periodic
orbit for (5). First, we provide ourselves with a buffer by extending
the set Z from subsection 4.2 as follows. Choose 8 > 0 so small that
h+d+ B < p— 06— B. Construct the strips

A:=0{(v,w,y) |c+n<v< M,
~M<w<Mh+6<y<h+6+p8}
{(wy)ly=h+dory=h+35+f}
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and
B:=0{(v,w,y) | -M <v<c—n,
~M<w<Mp-5-F<y<p—oh
{v,w,y) [y=p—3d—Bory=p—3}

Next, let 2} := Ef Ucl(A), E := Egp Ucl(B), and E' := 2} U E}.
Furthermore, choose 3 smaller if necessary so that Z’ is a local section
for ®° for € € (0, £].

For given € > 0 and r > 0, let N¢ := B® x D,. and let =] := &' x D,..
We will prove, for small r, 7,,,, 7, and ¢, that Z/. is a Poincaré section

for Nt under ¥¢ and that there is a periodic orbit for ¥¢ inside IV}.

Since Z' is a local section for ®¢ when ¢ € (0, £] and since r(x,z,£) =
O(]z|), we can choose & smaller if necessary and choose 7 > 0 so that

' is a local section for ¢ for all € € (0, 2] and for all r € (0, 7.

—
—
—

Lemma 4.4. Given ¢ € (0,¢], there exists ¥ > 0 and functions
Tm : (0,7] = (0,00) and 7 : (0,7] = (0,00) such that if 0 < r < T,
0 < 7y (v) < T (7) for all v, and 0 < 13,(v) < Th(r) for all v, then the

set Z!. is a Poincaré section for N, under We.

Proof. Clearly Z! N N, is closed for any r > 0. Choose & and 7 as
above so that =/ is a local section for ¥¢ for € € (0,¢] and r € (0, 7.

Fix € € (0,&]. As in the proof of Lemma 4.3, for a given r > 0, we
can find 7, () > 0 and 7, (r) > 0 so that if 0 < 7, (v) < Ty (r) for all
v and 0 < 7,(v) < 7 (r) for all v, then 7, (¥*(B* x 0D,,t)) C int (D,.)
for all sufficiently small ¢ > 0.

Now the (geometric) boundary of Z at y = h+d and y = p— 4 is
bounded away from the (geometric) boundary of 2" at y = h+ § + 3
and y = p— 6 — . Also, as noted in Remark 4.1, for every £ € BE C N,
we have ®¢(¢,T) € E for some T > 0. Therefore, we can once again use
the fact that r(x,z,e) = O(|z|), this time to say we can choose 7 > 0
smaller if necessary so that for every ¢ € N,, we have U¢({,T) € =
for some T' > 0 and we are done. a

Since N, is homotopy equivalent to S! it follows (as in subsection
4.2) that
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voltage gated (sensitive
to tetraethylammonium

ions) \
voltage gated —% A\ <— activated by Ca™

and sensitive to
quinine

leak for
sodium and

chlorine ~,

ions

FIGURE 5. Relevant ions for the model in a pancreatic 3-cell.

Theorem 4.5. For ¢ > 0 sufficiently small, there exists a periodic
orbit for ¥¢ inside N.

And, via deformation and change-of-variables,

Corollary 4.2. System (5) has a periodic orbit for ¢ > 0 sufficiently
small.
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would like to thank him for his help and guidance. I would also like
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APPENDIX

5.1. More on the model of bursting in pancreatic ($-cells.
Here we briefly describe the meanings of the various parameters and
variables in system (5) as well as describe the nature of the functions
Woo (V), Moo (V)y heo(V), T (v), Tm(v) and 7 (v). A fuller treatment is
given in [2, 8, 27]. The reader should also consult [28, 32] for more
on Hodgkin-Huxley type models of bursting.



APPLYING THE CONLEY INDEX 1209

The parameter C,,, represents the membrane capacitance of the pan-
creatic B-cell. The parameters gk ,ca, 9k, HH> §Ca,HH, and g, Tepresent
conductances of various channels. In particular, gx,ca represents the
maximum conductance per unit area for the potassium channel acti-
vated by intracellular calcium ions and is sensitive to quinine, Jx g
represents the maximum conductance per unit area of a voltage-gated
potassium ion channel sensitive to tetraethylammonium ions, gce,mn
is the maximum conductance per unit area for a voltage-gated calcium
channel, and gy, is a leak conductance for sodium ions and chlorine
ions, see Figure 5. The parameter ¢ represents the fraction of free cal-
cium ions inside the cell to total calcium in the cell and k¢, is the rate
constant for the removal of calcium and is glucose dependent.

The variable v represents the electric potential across the cell mem-
brane, w represents the fraction of the potassium channel activation,
y represents the intracellular calcium ion concentration divided by its
dissociation constant to the channel gate, m represents the fraction of
the mixed channel activation and h represents the fraction of the mixed
channel inactivation.

Following Hodgkin-Huxley formalism, the function ws(v) is the
steady-state probability for potassium channel activation. Likewise,
the functions me(v) and h(v) are the steady state probabilities of
activation and inactivation of the mixed channel. These functions are
all sigmoidal in shape, bounded between 0 and 1, and approach 0 as
v — —oo and 1 as v — +4o00.

The functions 7,(v), Tm(v) and 7,(v) are the so-called relaxation
times of w, m, and h, respectively. These functions have positive values,
are bounded above by small numbers, and end up being somewhat bell-
shaped.

Here are explicit formulae used in [3] for computer simulations:

1(25 4+ v)/(1 — e 0125y
e—(u+50)/187

_ m (V) .
Am (U) + Bm (U) ,
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ap(v)

hoo0) = T + (o)’

v

(v) =
aw(U) = 001(20 + U)/(l - 670'11’72),
Buw(v) = 0.125@*(v+30)/80,
wao(v) = — 2l
= Qo (’U) + /Bw (’U)’
1

7e(?) = 330 (e (o) T Au )’

Here are some relatively realistic parameter values that lead to
bursting (some values are taken directly from [2, 3]):
* _ —1 * _ —1 * _ —1 * —1
9cw = 1800 s™ 7, 9k,c = 10s™7, Ikw = 1700 s™7, g5, =7s

voe = 100 mV, wvg =-75 mV. vy =—-40 mV.

Setting K = 0.012ms™!, & = 0.2 C-mol/J-s-um, and ¢ = 0.1
(which is between 10-100 times too big, but gives nicer pictures) leads
to bursting solutions (that is, solutions which approach the attractor
consisting of solutions which have the “burst-like” behavior, see [2, 3,
36| for pictures of these solutions). For these functions and constants,
the overall bursting time scale is on the order of 75 seconds and v
typically varies between about -50 mV and -20 mV. In fact (using
notation for equilibria described in [11, 36]), for the fast-subsystem of
(8), where we set ¢ = 0 and treat y as a parameter in the first two
equations, we get a saddle-node bifurcation to create the equilibria m
and [ at y ~ 0.52 (so p =~ 0.52), a homoclinic bifurcation at y =~ 0.548
(so h ~ 0.548), and a saddle-node bifurcation to destroy the equilibria
m and u at y ~ 3.5 (so A & 3.5) (in Figure 3 we are visualizing the
positive direction for the y-axis in reverse of what the equations actually
give us).

5.2. Remarks on various kinds of C-slow exit and entrance
points. The definitions of fsl simple C-slow entrance and exit points
(Definitions 3.5 and 3.6) are easy to use, but not as general as might
be useful in other circumstances. Other types of slow exit and entrance
points have been defined, see [5, 9, 11, 17, 21, 22], and, while they are
more general, they are somewhat unwieldy to use and are not always
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as directly applicable as would be desirable [11, 12]. Furthermore,
as mentioned in Remark 3.4, the definitions of simple C-slow exit
and entrance points given in [11] need modifications to make things
work out there. In particular, they need to be modified so that the
corresponding analogs of Theorems 3.11 and 3.12 are true. It also
needs to be shown that this does not affect the application in [11], see
Remark 3.8. All of this is done in [12] and will be alluded to presently.

The following definition is a preliminary definition needed before we
give the modified definition of a simple C-slow exit point.

Definition 5.1. Let {¢*},ca be a continuous family of flows. Let
K be a compact invariant set under ¢, and let a neighborhood U
of R(K) be given. A simple chain recurrent set neighborhood and e
collection (a simple CRSNE collection) of K relative to U is a collection
{V, W, e} such that (a) V is an open neighborhood of R(K) and V C U,
(b) W is an open neighborhood of K, and (c) for all A with d(A, A\g) < ¢,
if x € V, then either:

1. p*(z,[0,00)) C U or

2. there exists a to > 0 such that p*(z,[0,%0]) C U and ¢*(z,t) €
U\W.

Remark 5.1. Clearly we can take the neighborhoods V' of R(K) and
W of K smaller and take £ > 0 smaller and still retain a simple CRSNE
collection of K relative to U.

Remark 5.2. This definition takes the “main lemma” of Conley in
[5], simplifies it (by avoiding Morse decompositions), and turns it into
a definition. Conley’s point was that simple CRSNE collections can
always be found in a theoretical sense. The point of this definition is
that, in applications, one may want to find simple CRSNE collections
by actually constructing them from the details of the flow. This can
make application of Conley’s ideas more direct [12].

Now we come to the modified definition of a simple C-slow exit
point. The context for this definition is for a flow ¢ defined by the
differential equation & = fo(x) 4+ ef1(z), where fy and f; are smooth
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and z € R". A function g defined on S = Inv (N, ¢°) is said to
have strictly positive averages on S if the limit of the set of numbers
{1/T fOTg(gao(x, s))ds | € S} has closure in the interval (0, c0).

Definition 5.2. A point x € Sy is called a simple C-slow ezit
point if there exists a compact set K, C S which is invariant under
¢° a bounded neighborhood U, of the chain recurrent set R(K,),
and a differentiable function ¢y : cl(U,;) — R such that the following
conditions are satisfied.

(a) w(z, ¢°) C Ky

(b) Let go(2) = V&o(2)- fo(z) and g1(z) = V&y(2)- f1(2). Then go =0
on U, and g; has strictly positive averages on R(K,).

(c) There exists a number £ > 0, an open neighborhood V,, of R(K,),
and an open neighborhood W, of K, such that (i) {V,,W,,&} is a
simple CRSNE collection for K, relative to Uy, (ii) fo|y, > —¢ for
some § > 0, and (iii) fo|c(v,n(s\w,)) < —md for some m > 1.

(d) If U] is a neighborhood of R(K,) with U, C U,, then there
exists an open neighborhood V] of R(K,) and an open neighbor-
hood W/ of K, such that (i) {V,W/., &} is a simple CRSNE col-
lection for K, relative to U, (ii) o|v; > —n for some > 0 and
(iii) €0|C1(U;Q(S\Wa’:)) < —nn for some n > 1.

Remark 5.3. Tt is shown in [12] that this definition is easier to use
than it may appear.

Remark 5.4. We can, of course, define the dual notion of a simple
C-slow entrance point and we can also define a strict simple C-slow
entrance point. The analogs of Theorems 3.11, 3.12 and 3.13 are also
true in this context.
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