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SPECTRAL THEORY FOR
NONLOCAL DISPERSAL WITH PERIODIC
OR ALMOST-PERIODIC TIME DEPENDENCE

V. HUTSON, W. SHEN AND G.T. VICKERS

ABSTRACT. In applications to spatial structure in biology
and to the theory of phase transition, it has proved useful to
generalize the idea of diffusion to a nonlocal dispersal with
an integral operator replacing the Laplacian. We study the
spectral problem for the linear scalar equation

ut(z‘,t):/K(x,y)u(y,t)dy+h(z‘,t)u(x,t),
Q

and tackle the extra technical difficulties arising because of
the lack of compactness for the evolution operator defined by
the dispersal. Our aim is firstly to investigate the extent to
which the idea of a periodic parabolic principal eigenvalue
may be generalized. Secondly, we obtain a lower bound for
this in terms of the corresponding averaged spatial problem,
and then extend this to the principal Lyapunov exponent in
the almost periodic case.

1. Introduction. Recently there has been extensive investigation
into a class of models for nonlocal spatial dispersal, in which the
dispersal operator D, say, involves an integral operator, for example

(1.1) (Du)(z) = / K(z,y)[u(y) - u2)] dy.

Such models occur in a number of applications, for example biology and
the theory of phase transition, as a generalization of classical diffusion
where D = A, the Laplacian with a suitable boundary condition. The
derivation in the biological context is discussed in [12, 17, 22], and for
the theory of phase transition, see [5 , 7, 8]. The nonlinear theory has
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been investigated in a number of papers, of which a sample, in addition
to the above, is [4, 6, 11, 16, 25].

We shall consider here aspects of spectral theory for linear evolu-
tion problems with nonlocal dispersal; this of course provides a basic
technical tool in the nonlinear theory, for example in a discussion of
stability. Nonautonomous models have scarcely been considered in the
dispersal context, and here we shall focus particularly on the periodic
and almost-periodic cases. Consider then the linear evolution equation

(1.2) ui(z,t) = /Q K(z,y)u(y,t) dy + h(z, t)u(z,t),

where u; denotes the derivative of u with respect to time ¢, with x
constant, and Q C R” is a compact spatial region; note that the second
term in D in (1.1) has been incorporated into h. It is convenient to
abbreviate the notation and write this as

uy = Xu+ Hu,

where X is the integral operator in (1.2) and H is multiplication by h.

If D = A, for the autonomous case (h independent of ¢) and for the
periodic case (h(z,t) = h(z,t +T) for all z € Q and t) there is a well-
known theory yielding the existence of a principal eigenvalue (PEV) and
eigenfunction (PEF). For the theory, see [15]; in applications the idea
has been used for example in studying the evolution of diffusion [18] and
in permanence, see [2, Chapter 2]. This has important implications for
the study of stability, rate of increase, invasion problems and sub/super
solution methods for nonlinear models. The partial differentiation
equation (PDE) technique of proof depends critically upon compactness
properties for the evolution operator based upon A.

Our first objective here is to inquire to what extent these results
hold for the nonlocal case (1.2). The PDE technique is not applicable
as the evolution operator generated by X does not appear to have
compactness properties in convenient spaces. We employ a method
based on using the evolution operator generated by the linear operator
(—(0/0t) + H) (this is related to an approach used in [3]) together with
the compactness of X itself. It is proved that

e if N = 1, reasonable smoothness conditions on h are sufficient to
ensure the existence of a PEV, Theorem 3.1.
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However, if N > 2, then examples show that smoothness is not enough.
This interesting issue is further discussed at the end of Section 3.

An upper bound for the growth rate of the solution for a continuous
initial condition is provided by the principal Lyapunov exponent Ap,
see Definition 2.3. If a PEV X exists, then A\, = A; in general, it is also
shown that

o )\ = s :=supyc, R(A), where o is the spectrum of (—(0/0t) + X +
H) on the space of T-periodic functions, Theorem 3.2.

If h is almost periodic (AP) only, there appears to be no analogue
of a PEV. A partial analogue of the above is provided by using the
dynamical spectrum, see Definition 2.2, S of (—(8/0t) + X + H). Then
AL = As = SUpy¢cs A

Our second main objective is to investigate the influence of time
periodicity/almost periodicity on the principal eigenvalue/principal
Lyapunov exponent. We show that

e for the periodic case, when a PEV exists it is always larger than or
equal to the PEV for the associated time-average case, Theorem 4.1.

This result extends a result of [19] for the PDE problem. In the bio-
logical context, this inequality shows that, perhaps rather counterintu-
itively, invasion by a new species, see [2, page 220], is always easier in
the periodic case. We also show that

e for the AP case, an analogous result holds, viz. that A\ is always
larger than or equal to the PEV for the time-averaged case, Theo-
rem 5.1.

An outline of the contents is as follows. In Section 2, the notation is
described and some background results proved. This is a preliminary
section for the later ones. The question of existence of a PEV for the
periodic case is considered in Section 3 and in Section 4 the lower bound
for the PEV is established. In Section 5, the AP case is discussed.

2. Definitions and basic properties. First the notation is
described. Some of the spectral theory for the most general case to
be considered here (h AP in t) is then outlined. We note that the
theory is not as simple as for the well-known case where the dispersal
operator is an elliptic partial differential operator.
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The following conditions are assumed throughout.
(H1) (a) & c RY is compact.
(b) K : Q@ x  — R is continuous and

(2.1) K(z,y) >0, z,ye.

(c) h: Q2 x R — R is Lipschitz continuous, uniform limit of periodic
functions (hence, uniformly AP, see [9]) in its second argument, ¢, and
uniformly bounded.

Remark. The result in fact holds if A is uniformly AP, but for brevity
in the presentation of the proof, we make the stronger assumption (c).

Let E = C(Q2) be the Banach space of continuous, complex valued
functions on 2 with the maximum norm |Ju|| = max;cq |u(z)|. With
the ordering induced by the positive cone

E,={uecE|u(z)>0, zcQ},

(E,||-]|) is a complex Banach lattice, and we write u > v if u(z) > v(z),
z € Q. The notation u > v if u(z) > v(x) for all z € Q will be adopted.
A linear operator L : F — F is said to be positive if u > v = Lu > Lv.
For each ¢, define the (continuous) operators X, H : E — E as follows.

(2.2) (Xu)(&,1) = / K (@ 9)u(y, £) dy,
(2.3) (Hu)(z,t) = h(z, t)u(z,t).

In writing down the governing equation, we treat u(-,t) as an E-valued
function for each ¢t and, for brevity, suppress the t-dependence. We
study the equation

(2.4) u; = Xu + Hu.
Let ®(s,t), s < t, defined by
D(t, s)ug = u(t, -;up,s), ug € E,

be the evolution operator generated on E, where u(t, z;s,ug) is the
solution of (2.4) with u(s,z;s,up) = up(z). For a given A € R, define

By(t,s) = e =) B(t, s).
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In general, the ‘spectrum’ of the evolution operator and the ‘spectrum’
of its generator may not be the same, see [23, Chapter 2, Example
2.1]. Tt is the spectrum of the evolution operator which characterizes
the asymptotic behavior of solutions. For completeness, this concept is
defined here.

Definition 2.1. Given A € R, {®(t,5)}s,tcr, s<¢ is said to admit
an exponential dichotomy (ED for short) if there exist > 0 and C >0
and continuous projections P(s) : E — E, s € R, such that for any
s,t € R with s < ¢, the following holds:

(l) Q)\(tas)P(S) = P(t)é)\(ta S);

(2) @a(t,8)|rR(P(s)) : R(P(s)) — R(P(t)) is an isomorphism for ¢ > s
(hence, ®y(s,t) := ®5(t,5)~! : R(P(t)) — R(P(s)) is well defined);

(3)
1@ (t, 8)(I — P(s))]| < Ce Plt=5)  ¢>g

[|@A(t, s)P(s)]] < CePlt=9) <.

Definition 2.2. (1) A € R is said to be in the dynamical spectrum,
denoted by X(X, H), of (2.4) if ®,(¢, s) does not admit an ED.

(2) A\s(X, H) :=sup{\ € (X, H)} is called the principal dynamical
spectrum point of (2.4).

Definition 2.3.

In||®
AL(X, H) o= limsup TI2E )

t—s—00 - S

is called the principal Lyapunov exponent of (2.4).

Proposition 2.4. Assume that ug € C(Q2) and ug > 0. Assume also
that p: 2 xR — R s continuous and uniformly bounded. Suppose that
u: QxR — R is continuous and differentiable in its second argument
with u; continuous on Q X R. Then if u satisfies the following:

w2, 1) > / K (2, y)uly,t) dy + plz, Oulz,1), t>s

u(z, s) = ugp(z),

(2.5)
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then
(1) K(z,y) >0, z,y € Q= u(z,t) >0,z € Q,t > s,
(2) K(z,y) >0, z,y € Q, and ug # 0 = u(z,t) >0,z € Q, t > s.

Proof. Note first that from (2.5), v(z,t) = e)*~u(z,t) satisfies the
inequality

ve(z,t) > /QK(ac,y)v(y,t) dy + [p(x,t) + Nv(z,t), t>s,

with v(z,s) = ug(x). Therefore, it may be assumed without loss of
generality that p(z,t) >0,z € Q, ¢t € R.

(1) Let

Ky = max/ K(z,y)dy and po=supp(z,t).
z€Q Jq ze}&'{)
te

Take 7 = (Ko + po)~!/2. Suppose that for some = and t € [s,s + 7],
u(z,t) < 0. Then there exist 1 and t; € [s, s+ 7] such that

min  u(z,t) = u(z1,t1) <O.
€N
s<t<s+T1

Integrating (2.5) with respect to ¢ over [s,t1] and using the mean value
theorem for integrals, we deduce that

u(z1,t1) — u(z1,8) > (t1 — 8)(Ko + po)u(z1,t1).
But by assumption, u(z1, s) = ug(x1) > 0. Therefore,
u(a:l,tl)[l — (tl — 8)(K0 +p0)] > 0.

Since (t; — s) < 7 = (Ko + po)~'/2, we have u(z1,t;) > 0 which is
a contradiction. Therefore u(z,y) > 0 for all z € Q and s < ¢t <
s + 7. The result follows on repeating the argument with initial times
S+ T,5+21,....

(2) From the result just proved and (2.5), clearly u;(z,t) >0, z € Q,
t > s. Also, since K > 0 and ug # 0 we see that us(z,s) > 0, z € Q.
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Therefore, by continuity and compactness, there exist 6 > 0, tg > s,
such that u(z,ty) > §, z € Q, and u(z,t) >0, z € Q, s < t < ty.
If the assertion does not hold, there exist x; € Q, t; > to, such that
u(zy,t1) = 0. But u(zy,tp) > § and ug(zy,t) > 0 for all ¢ > s. This
yields a contradiction. o

Proposition 2.5. M\;(X,H) = A\ (X, H).

Proof. The proposition may be proved by arguments similar to those
in [24, Proposition 4.1]. For completeness, we provide a proof here.

First we note that there are C and w € R such that
(2.6) [®(t, s)|| < Ce(t=*)

for any s,t € R with s <t.

Next, suppose that A;(X, H), Ap(X, H) > —o0. By (2.6), \s(X, H) <
oo. Hence, for £ > 0 and A* = \;(X, H) +¢, there is a C' > 0 such that
le" Vet s)| < C

that is,
@ (t,)| < CeN )

for s < t. It then follows that
AL(X,H) <A = X(X,H) +¢.

By taking ¢ — 0, we have A\ (X, H) < A\;(X, H). Conversely, since
AL(X, H) < o0, for any € > 0,

e~ AeLH+)(E=9) 1B (¢, 5)|| = 0 ast—s — 0.

This implies that Ap(X,H) + ¢ € R\ (X, H) and A\;(X,H) <
AL(X, H) + . Since ¢ is arbitrary, As(X, H) < AL(X, H). Therefore,
)\S(XaH):/\L(XaH)'

Now if \;(X, H) = —oo or A\ (X, H) = —o0, by the above arguments,
for any M > 0, Ap(X,H) < —M or A\s(X,L) < —M. Therefore,
AL(X,H) = —00 or A\s(X,H) = —00. O
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The above result implies that investigating the properties of A;(X, H),
AL(X, H), is equivalent to investigating the properties of A\r (X, H),
As(X, H), which may be an easier problem.

Proposition 2.6. A (X, H) is continuous in H with respect to the
topology of uniform convergence, that is, if h,(x,t) — h(z,t) asn — oo
uniformly in z € Q and t € R, then A\ (X, H,) — Ap(X, H), where
H,u = h,u and Hu = hu.

Proof. First, let ®*°(t,s) be the evolution operators generated by
4) wit elng replaced by €. It 1s clear that
2.4) with H being replaced by H + €. It is cl h

BEE(t,5) = Bo(t,s) = e D(¢, 5).
Therefore,

(2.7) AL(X,H +¢e) =M (X,H) +e.

Next, for given hy, hy with hy < hg, let ®(t,s), i = 1,2, be the
evolution operators generated by (2.4) with Hu = H;u := h;u. We
claim that
(2.8) [@1(t,s)|| < 1@%(t, ).

In fact, for any given uy € F with ug > 0, by Proposition 2.4 (1)

with p = h;, ®%(t,8)up > 0 for s < t and i = 1,2. Let v(x,t)
®2(t, s)ug — ®1(t, 5)up. Then v(z,t) satisfies

v = /QK(m,y)v(y,t) dy+ha(z, t)o(z, t)+ (he(z, t) —ha (2, 1)) @' (¢, 5) uo
> / K (2, y)o(y, t)dy + ha(, o(z, )

with v(z, s) = 0. By Proposition 2.4 (1) with p = ho, v(z,t) > 0 which
implies (2.8) and this in turn gives

(2.9) AL(X, Hy) < Ap(X, Ha).

The proposition then follows from (2.7) and (2.9). mi
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3. The periodic case. Our objective is to inquire to what extent
the well-known PDE theory for the existence of a PEV when h is
periodic extends to the nonlocal dispersal case (2.4). It will be proved
that, under the assumed smoothness condition, that is, h is Lipschitz
in z, the results extend if the dimension N = 1. If V > 1, in general a
smoothness condition is not enough; this observation raises questions
which are discussed at the end of this section. We also show that
even when a PEV does not exist, the principal Lyapunov exponent
AL = s(X,H), s(X,H) := SUD) (.71 R(X), where X, H are X,
—(0/0t) + H, respectively, restricted to a space of periodic functions
and o (X, H) is the spectrum of H + X.

Since the problem is linear and we shall be discussing the spectrum,
we may assume h(z,t) < 0, z € Q, t € R, without loss of generality,
since only a shift in the spectrum is involved. By a solution of equation
(2.4), or related equations, we shall mean a function v € C(2 x R)
which is continuously differentiable in the second variable with wu;
continuous on 2 x R.

Set
E = {ue CQAxR)|u(z,t+T) =u(z,t)},

equipped with the sup norm. Let ﬁ[, X : E — E be the linear operators
defined as follows:

(Hu)(z,t) = —uy(z, t) + h(z, t)u(z,t),
with domain

D(f[):{uef[\uisclintandutEE},

and
(Ru)(a, 1) = / K (2, y)uly, t) dy.

The governing equation (2.4) restricted to E becomes, in this notation,
(3.1) (H + X)u =0,

and our objective is to study the spectrum of (ﬁ + )N() Denote
by p(X,H), o(X,H) its resolvent set and spectrum, respectively:
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s()z, fI) =Sup ¥ R(p) will be called the principal spectrum point
(s(X, H) is defined to be —oo if o(X, H) = @). As usual, A € C is said
to be an eigenvalue of (H + X) if there is a nontrivial solution ¢ € E,
an eigenfunction, of the equation

(3.2) (H+ X)p = Ao

An eigenvalue A is called the principal eigenvalue (PEV) if there is
exactly one corresponding principal eigenfunction ¢, with ¢(z,t) > 0,
z € Q, t € R, and the inequality R(u) < A, p € 0()~(,ITI), holds.
Obviously, A = s(X, H) (if A exists).

We use p(H), o(H), and s(H) for p(X,H), o(X,H), and s(X, H),
respectively, when K(z,y) = 0.

The following additional conditions are imposed in this section.
(H2) (a) K(z,y) >0, z,y € Q.

(b) For each z and ¢, x € Q, t € R, h(z,t) < 0 and h(z,t) =
h(z,t+T).

Our main results of this section are stated as follows.

Theorem 3.1. Assume (H1) and (H2) and take N = 1. Then
A = s(X, H) is the PEV of (3.2) and is an isolated point of o(X,H).
Furthermore, ¢(z,t) >0, z € Q, t € R.

Theorem 3.2. Assume that (H1) and (H2) hold. Then A\s(X,H) =
AL(X,H) =s(X,H).

The PEV X and PEF are useful in providing estimates of rates
of growth, and for the application of sub/super solution methods.
Theorem 3.1 shows the PEV of (3.2) exists when N = 1. Observe
that the maximum growth rate for the initial value problem is indeed
measured by Ar(= A;), the principal Lyapunov exponent. It may be
shown that A, = A, and of course A = s()z, INI), the principal spectrum
point (if A exists). However, as mentioned above, when N > 1, in
the dispersal case (as opposed to the case of classical diffusion) a PEV
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may not_exist. Theorem 3.2 shows that in general, we always have
AL = s(X, H), thus providing a partial analogy.

The proof of Theorem 3.1 is based on a result by Biirger [1, Theorem
2.2 and Remark 2.1], and for convenience we give the part of this result
needed here translated into the current notation. Let

Ta = r()?(ﬁ[ —a) Y

where r(-) denotes the spectral radius.

Theorem 3.3. Assume that
(1) X is positive and bounded and X : F — E is compact, where
F = D(H) with the graph norm.

(2) H is closed with dense domain and generates a positive continuous
semi-group of contractions.

(3) rq > 1 for some o > s(H).

Then there is a unique ag, > s(H), with ro, = 1 and ay = s(X, H).
Further, o is an isolated eigenvalue of (X + H) of finite multiplicity
with a positive eigenfunction.

In the following lemmas we verify that the conditions in Theorem 3.3
hold.

Lemma 3.4. _ f{ generates a positive continuous semi-group of
contractions on E. H is closed with dense domain.

Proof. Let ¢(s) : E — E, s € R, be defined by

@ =en{ [ a6 defutei )

and let U(s, z,t;u) be the solution of

ou ou
a = *E + h(x,t)U

with U(0, z,t;u) = u(z,t) € E.
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Then by direct computation, we have

{u cE | lim % exists} =D(H)

s—0+

and
U(s,z,t;u) = (H(s)u)(z, t)

for any u € D(H). Hence {¢(s)}scr+ is a continuous semi-group on E

with generator H.

By the definition of ¢(s), for any u € E with u(z,t) >0, ¢p(s)u >0
for any s > 0. Moreover, since h(z,t) < 0, we have

[o(s)ullz < llullz

for s > 0. Therefore, {¢(s)}ser+ is a positive continuous semi-group
of contractions on E with generator H. It follows from [23, Chapter 1,
Corollary 2.5] that H is closed with dense domain. O

Lemma 3.5. X : F — E is positive and compact, where F = D(ﬁ)
with the graph norm.

Proof. From (H2)(a), the positivity is obvious. Let {u,} be a
sequence in the unit ball of F, and let

vn(z,t) = /QK(:v, Y)un(y,t) dy.

Then [Qu, /0t(z,t)] <1,n >1,z € Q, t € R, and there is a constant
M > 0 such that |(0v,/0t)(z,t)] < M, n > 1,z € Q, t € R. Also,
from the uniform continuity of K, given € > 0 there is a § > 0, such

that
|un (21, t) — v (22,1)] < &,

T, €Q, |1 —w| <, n>1, teR.

It follows that the sequence {v,} is equicontinuous and the compactness
then follows from the Arzela-Ascoli theorem. a

To investigate the spectrum of X+H , take
E={ucCR)|ult+T)=ut)}
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and let C(R) have the sup norm. For a given zo € Q, let H(zo) be the
linear operator on E defined by

(H (wo)u)(t) = ——(t) + h(wo, t) u(t)
with D(H) the set C'(R) C E of functions with continuous first
)

derivatives. Denote by p(H (z)) and o(H (o)) the resolvent set and
spectrum, respectively, of H(zg). Define

1 /7
Azo) = T/o h(zo, s) ds,

and note that by (H2) (b), A(zp) < 0.

Lemma 3.6. (1) For fized zo € Q and A € R, H(zo)u — Au = 0 has
a nontrivial solution u € E if and only if A = A(xo).

Choose any § > 0. Then there are constants My, My > 0 such that
the following hold for any xy € Q.

(2)
_ 1 M,
(3.3) |(H (zo) = A) || = X = A(z0)|
for A € R with 0 < |A — A(zg)| < 4.
(3)
— = M,
(3.4) [(H(zo) —X) |l < IR(A) = A(zo)]

for A € C with 0 < |R(A) — A(zo)] < 4.

Proof. (1) This follows from the Floquet theory for periodic ordinary
differential equations.

In preparation for the proofs of (2) and (3), we first note that by the
Fredholm alternative, see [13, Chapter IV, Lemma 1.1, Theorem 1.1],
for any zp € Q and A € C with ®()\) # A(zy), and for any v € E, the
equation

[H(zo) — Nu=0
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has a unique solution u € E. Denote it by [H(z¢) — A] 'v. We show
that [H(zo) — A" 'v = u(-;v), where u(-;v) is defined by

(3.5) u(t;v) = — /too exp { /9t[h($0,7) — Al dr}v(s) ds
it R(A) > A(zo)

and

(3.6) ultiv) = /t°° eXp{ - /ts[h(IO,T) — Al dT}v(s) ds
it R < Azo).

By direct computation, we have that u(t;v) is a solution of
[H(zp) — Nu = v.
We claim that u(;v) € E, i.e., u(t + T;v) = u(t;v). We prove the

claim for the case R(A) > A(zo). It can be proved similarly for the case
R(A) < A(=mg). By (3.5),

w(t+Tsv) = —/t+T exp{/st+T[h(mg,T) A dr}v(s) ds

:—/:t:exp{/s:zT[h(:L‘g,T)—)\] dr}v(s—i-T) ds
:—/_tooexp{/:[h(mg,r)—)\] dr}v(s) ds
— u(t;).

Hence u(;v) € E. It then follows from the uniqueness of the solutions
of [H(zo) — Nu = v, [H(zo) — \]71v = u(t;v).

(2) We next prove (3.3) for the case A > A(xp); the case A < A(zo)
may be proved similarly. Note that

I[H (o) = A" = sup  [I[H(z0) — Al "o].

vEE, ||v]|=1
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By (3.5), since the exponential is positive, we have
I[H (zo) — A7 H| = [I[H (zo0) — A" o™,

where v*(t) = 1 and

H(z0) — A~ "v* = —/t exp{/st[h(xg,T)—)\] dT} ds.

— 00

Let n, be the largest integer less than or equal to (¢t — s)/T. Then

‘ /too P { /:[h(mo,f) = A dr} ds
= /too exp { /St"sT[h(wo,T) - dr}

exp { /ttnST[h(:co, )= A dr} ds.

Hence,

‘ /too P { /:[h(mo,f) = A dr} ds
> My /too exp { /ttnST[h(a;O,T) Y dT}ds

= Ml/ exp {[Mzo) — AJnsT} ds

> M, /t exp {[)\(xo) - A](t ;S>T} ds
T
A = Ao)l”
where
t—ngsT
My =t <exp { / [h(zo,7) — Al dT}).

ToEQN
0<|A=A(z0)|<§
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The length of the integration range is less than 7', and since the
integrand is independent of s, M; > 0 and (3.3) follows.

(3) We note that from (3.5)
ITH (o) = XM < I[H (z0) — ROV~

where v*(t) = 1. A very similar argument yields (3.4), and we omit the
details.

Lemma 3.7. (1) {\(zo)|zo € Q} C o(H).
(2) C\ {A|infsyen A(z0) < R(N) < sup,,cq M)} C p(H).

Proof. (1) Given A = A(zo) for some zq € €, if A € p(H H), then for

any v € E,
d
~ =+ [h(@,t) — Aao)lu =
has a unique solution u € E, where v(z,t) = (). This implies that

for any v € E,

du _
T + [A(zo,t) — AMzo)]u =170

has a solution w € E. Then by the Fredholm alternative, see [13,
Chapter IV, Lemma 1.1, Theorem 1.1], H(xo)u — A(zp)u = 0 has no
nontrivial solution in E, which contradicts Lemma 3.6 (1). Hence,
A€ o(H).
(2) Take any A € C with R(A\) > sup,,cqA (o) or R(A) <
inf,,cq A(xg). By Lemma 3.6 (3), A € p(H(z)). Also, for each z € (,
([H = N""u)(wo,t) = ([H(z0) — Al u) (o, ).

Hence, also \ € p(H). O
Lemma 3.8. Take N = 1. There is an o > s(H) such that

r(X(H—-a) ™) > 1.

Proof. First note that A\(xg) is continuous in zg, and it follows from
Lemma 3.7 that there is an 9 € Q such that A(zo) = s(H). In the
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rest of this proof, zg is the z for which A(zo) = s(H). By Lemma 3.6,

[H(z) — o] ! exists for any z € Q and o > A(z), and there is an
M; > 0 such that if o # A\(x) then

_ M
(3.7) I[H(z) = o] 7' 27—
o = A(z)]

for all z € Q and « in a neighborhood of A(z). Note also that

(3.8) M@:%Ah@ﬂw

From (H1)(c), there is an M3 > 0 such that

|h(z,8) — h(zo, s)| < Ms|lz —xzo|, x€Q, s€R.

Therefore,
1 T
59) |Mm—angTA|M%@—Mmﬁn@
S Mg‘m — l’0|.

From (3.7) and (3.9),

H(z)—a)t 4M1
(@) = ) 2 =y
M,y

> .
T o= Azo)| + Ms|z — x|

(3.10)

Noting that, by (H2)(a), min(, ) caxa K(z,y) > 0, we deduce that for
u(z,t) = 1, there is a constant My > 0 such that

(X(H — )" u)(z,1)| = ‘/QK(wvy)((ﬁ— ) "hu)(y, t) dy),

dy
> M
- 4/9 lov — A(zo)| + Msly — zo|

from (3.10). The righthand side of this inequality tends to infinity as
a — A(zp). This completes the proof. O



1164 V. HUTSON, W. SHEN AND G.T. VICKERS

Proof of Theorem 3.1. Under the assumptions of Theorem 3.1,
(1)—(3) of Theorem 3.3 are satisfied. In fact, (1) follows from (H1)
and Lemma 3.5, (2) is a consequence of Lemma 3.4, and (3) follows
Lemma 3.8. The assertions of Theorem 3.1 then follow except for the
claims that the eigenfunction, ¢ say, is strictly positive and unique.

For the positivity, note first that for every ¢, there is an zg such that
¢(zo,t) > 0. For, otherwise, for some ty, ¢(z,tg) = 0, z € 2, and by
uniqueness for the initial value problem, ¢(z,t) = 0, z € Q, t € R,
in which case ¢ is not an eigenfunction. It follows from Proposition
2.4 (2) with p(x,t) = h(z,y) — A that ¢(z,t) >0,z € Q, t € R.

The uniqueness is proved by a contradiction argument: suppose there
is another eigenfunction . Then one can choose ¢ € R with a # 0
such that w = ¢ — ay and

w(z,t) >0, z€Q, teR and w(z,to)=0

for some =g € 2, tg € R. But this contradicts the conclusion of the
previous paragraph and so yields uniqueness. u]

To show Theorem 3.2, we first show

Lemma 3.9. s(X,H) > s(H).

Proof. We prove the lemma by contradiction. Assume that s()N( , H ) <
s(H). Let Ao = s(H). Then Aol — (X + H) is invertible and

Mol — H = A — (X + H) +
= (hoT - (X + 1)) <I+ (ol = (X + 1)) 7' X).
By Lemma 3.7, s(H) € o(H ) We then must have —1 € o((Aod — (X +

ﬁ))_l)N() By Lemma 3.5, X is compact. Hence (Mol — (X—i—f[))_l)? is
compact and —1 is then an isolated eigenvalue of (Aol — (X + H))™'X.

Let ug € E be a nontrivial solution of

(3.11) (I + (Mol — (X + ﬁI))’l)?) o = 0.
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It follows that _
()\0[ - H)UO = 0,

ie.,

Oup(z,t)

(3.12) 7

= (h(z,t) — Xo)uo(z, t).
This implies that

wo(z, ) = ug(x, 0)edo P& 0 47

for every = € Q.

Let vo(z,t) = |ug(x,t)|. Clearly vo(x,t) is also a nontrivial solution
of (3.12) and thus is a nontrivial solution of (3.11).

Note that X is positive. By [10, Theorem 1.1], (Ao — (X + H)) ™! is
positive. Hence, (Aol — (X + H))™'X is positive. Therefore,

0= (1+ (oI = (X+ )™ X )vo > v >0.

This implies that v9 = 0 and hence uy = 0. This is a contradiction.
The lemma then follows. O

Proof of Theorem 3.2. To clarify the proof, we shall slightly contract
the notation and put A\; = A\s(X, H), A\ = A\p(X, H) and s = s(X, H).
From Proposition 2.5, Ay = AL.

We claim that s < A;. For any A with R(\) > A,
[@A(t, 5)l| = [le 72 (t,5)| — 0
as t — s — oo exponentially. It then follows that, for any v € C(Q2 x R)

with v(z,t + T) = v(z, t),

u(z,t) = —/ D, (t, s)v(z,s)ds

— 00

is the unique periodic solution of (3.1) with period T. Therefore
A € p(X, H), and the claim follows.
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We next prove that, for any € > 0, A\ < s+¢. Consider the equation
(3.13) —us + Xu+ Hu — A\u=0,

where A, = s+ ¢ and v € E. Since . € p(X, H), equation (3.13) has
exactly one solution u € E. Rewrite (3.13) as

(3.14) <X [%H-}-)\s])u:v.

By Lemma 3.4, H = —d/(1t) + H generates a positive continuous
semi-group of contractions on E. By Lemma 3.9, A, € p(H). Hence
Ae — H =0/(0t) — H + ). is invertible and

a —1
(3 w0

and
5 -1
X|{=—H+2X
<6t " )
are positive. Equation (3.13) can then be rewritten as
(3.15) XQ—H—{—)\ 71—] ﬁ—H—i—)\ u=v
' ot : ot °)

From [1, Theorem 2.2 (ii)], if & = s,

(sl )

By Lemma 3 of [1], r(-) above is a strictly decreasing continuous
function of o. Hence,

9 -1
X|=—-H+2X <1
(-] )
Therefore, by [21, Proposition 4.1.1], I — X((8/0t) — H + X\.)~! is
invertible and has a positive inverse. Now (3.13) can be rewritten as

3.16 (2 _gia - x|2 g o
(3.16)  u={7 ¢ ot ¢ v
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By the positivity of ((8/0t) — H + X\.)~! and [I — X((8/0t) — H +
)7L if v <0, then u > 0.

Take v*(z,t) = —1, and let u* be the (unique) solution of (3.13) given
by (3.16) in E with v = v*. Clearly u* # 0, and by the conclusion of the
last paragraph u* > 0, so there are an s and an « such that v*(z, s) > 0.
Since u* satisfies

u; = Xu* + (H
> Xu* + (H

—A)u*+1
— A )u*,

by Proposition 2.4 (2) with p(z,t) = h(z,t) — A, v* > 0. From
periodicity and the compactness of €2, there exists § > 0 such that
u*(z,t) >0,z €Q,teR.

Fix some s € R, and define

O(z,t) = @(¢t,s)u”(z, s),

w(z, t) = ety (x,1).
Simple calculations show that € is the solution of
(3.17) 0, — X0 —HO=0
with 0(z, s) = u*(z, s), and w is the solution of
(3.18) w; — Xw — Hw = e*<(t=9)

with w(z, s) = u*(z, s). Therefore, (w — 0)(z, s) = 0. Also, subtracting
(3.17) from (3.18), we see that by Proposition 2.4 (1) applied to
p=w-—0 0(z,t) < w(zt), z€Q,te R. Thus, for all z,s,t with
s <t,

(3.19) 0 < ®(t, s)u*(x,s) < eXE=2u*(x,t).

Note next that for any ug € C(Q) with |Jup|| = 1,

u*(z,t) u*(z, s)
Y () < T,

Applying again Proposition 2.4 and using (3.19), we conclude that

1@(t, 8)]| < X~ [u”l/.
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It follows from Definition 2.3 that
)\L S AE,

and since ¢ is arbitrary, A, < s. Together, with the opposite inequality,
this proves the result. ]

Remark 3.10. By Theorem 3.1, when N = 1, the Lipschitz continuity
of h ensures the existence of a PEV of (3.2). If N = 2, a smoothness
condition on A is not quite enough. However, we may prove the
following by a slight extension of the above argument. Let {2 have
a uniform cone property: there exist a,b > 0 such that for any z € €,
there is a right circular cone V, with vertex z, opening a, height b,
such that V,, C Q. Assume that h(-,t) € C'(2) and h,(-,t), the partial
derivative of h with respect to x, is uniformly Lipschitz. Note that there
is an zg € Q such that A(z¢) = maxzecq A(z), where \(x) is defined by
(3.8).

Then the conclusions of Theorem 3.1 hold if zy € Int (), where
zo € Q is such that A(zg) = maxgzeq A(z).

In order to discuss the dimension issue further, let us rewrite the
governing equation (2.4) slightly, by replacing X by pX, where X is
fixed and p > 0 is a parameter, obtaining

(3.20) uy = pXu+ Hu.

Here p is a dispersal rate, analogous to the diffusion rate for the
corresponding reaction-diffusion case. To show that a PEV may not
exist, let us consider the special case where h is independent of ¢, that
is the stationary case, and the kernel K = 1. It is then straightforward
to show explicitly, by constructing a counterexample, that in general a
PEV does not exist for small p > 0, even in the following cases.

(1) N =1 and h is continuous.

(2) N = 2 and h satisfies the conditions of Remark 3.10 except for
the restriction xy € Int (£2).

(3) N > 3, Q is the closed unit ball and h = —r? where r is the
distance from the center of Q.
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In each of these, a further condition is needed, and similar remarks of
course broadly apply for general K. This condition is that the dispersal
rate p in (3.20) is large enough. It is not apparent what the implications
are in applications, for example in biology. This issue raises interesting
questions about the invasion of species, and further investigation is
warranted. For information on invasion and its relation to the PEV for
classical diffusion, see [2, page 220].

4. A bound for the principal eigenvalue. Here it is assumed
that a strictly positive PEF ¢ exists for the periodic case. We show
that a lower bound for the PEV is the PEV for the stationary case
obtained by taking the time average of h. Again it is assumed that this
time-averaged problem does have a strictly positive PEF, .

Theorem 4.1. Assume that (H1) and (H2)(a) hold and that h(z,t)
is pertodic in t. Define

(4.1) W) = % /0 B, t) dt,

and let A, \* and ¢, be the PEVs and PEFs for the original problem
and the time-averaged autonomous problem, respectively. That is,

42—t + | K@)t dy+ (e 00(,t) = M(e. )
and

(43) | Ko dy+ ha)pta) = X

Then X\ > X*. Also, if A = \*, then

h(z,t) = h(z) + g(t).

The following corollary follows directly from Theorems 3.2 and 4.1.

Corollary 4.2. If K(z,y) > 0 for z,y € Q, then \;(X,H) =
s(X,H) > s(X,H) = \*, where Hu = hu.
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The proof of the theorem will depend upon a preliminary lemma,
and the proof of that depends upon a Jensen inequality, viz. if f is a
positive, continuous function defined on [0, 7] then,

(4.4) %/OT F(t)dt > exp{%/oT In[f (£)] dt}

with equality if and only if f is a constant function.

Lemma 4.3. Let w(z,t) be a positive, continuous function defined

on Q x [0,T]. Let
T
an=L [0
0

T
Then either w(z,t) is independent of x or there exists z* € Q such that
O(z*,y) > 1 forallye

with strict inequality for some y.

Proof. Let

{
(4.5) = &P {
{
{
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Now X is a continuous function defined on the compact set {2 and so is
bounded and attains its bounds. Let its least value occur at zg. Then

O(zo,y) > 1 forally e Q.

If X is not a constant, then the inequality will be strict for some y and
the required result (with x* = x¢) is established. Otherwise X is a
constant and so

O(z,y) >1 forall (z,y) € Q x Q.

If this last inequality is somewhere strict, say at (x1,y1), then the
theorem is proved with z* = z;. Suppose therefore that there is
equality everywhere, i.e., (z,y) = 1. This implies that there is equality
in (4.5) and so there is equality in (4.4) with f(¢) = w(y,t)/w(z,t) and
therefore w(y, t)/w(z,t) is independent of ¢. Let

w(y,t)
w0.0)= (1) awd TEH = ()
then
w(y,t) = F(y)y(t)
and so - .
T )y w(wt) TJy F(z) F(z)
Thus, F is a constant and w(z,t) depends only upon t. o

Proof of Theorem 4.1. Following from the arguments in the proof of
Theorem 3.1, ¢(z,t) > 0 for all ¢ € R and « € Q and ¢(x) > 0 for all
z € Q. Then, from equation (4.3),

2 = h(z) +

for all x € Q,

and from equation (4.2),

Jo K(@,9)d(y,t)dy  ¢u(x,t)

(4.6)  A=h(z,t)+ e )

for all z,t.
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When integrated over ¢, this last equation, because of equation (4.1)
and ¢ being periodic in ¢, implies

_ 1 1 T¢(y7t)
)\—h(w)—i—?/ﬂK(m,y)/o o(z.1) dtdy for all z € Q2

and so

)\*)\:/QK(%ZJ){%%
Set w(y,t) = é(y,t)/Y(y

A*—A:/S)K(x,y)%{l—%/: :U”Ezg dt}dy for all z € Q.

From the lemma, we know that there exists an x* such that when
x = x* the expression within {} is nonpositive for all y. Since K(z,y)
is nonnegative and 1 is positive, it follows that A\* < .

<

T
/ ‘b(y’? dt} dy for all z € Q.
0

to give

~ &

If K is strictly positive everywhere, then the lemma implies that
either w(y,t) varies with y (and hence A* < A) or w(y,t) depends only
upon t (and hence A = A*). In this latter case

o(y,t) = P(y)v(t)

and so, from equation (4.6),

Jo K(z,9)¥(y)dy  1dy

e S B T
=\ = il(l‘) + fﬂ K(xw’?a)z;/}(y) dy
1dy

and so A has the required form. a
5. The almost-periodic case. In this section, we consider (2.4)

with h(z,-) being almost periodic. Our aim is to obtain a lower
bound for the principal dynamic spectrum point Ag, or equivalently
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the principal Lyapunov exponent. This provides the natural extension
of the previous section from the periodic to the AP case. Define

t

(5.1) h(z) = lim ! h(z,s)ds.

t—oo 0

Of course, p(X, H), o(X, H) and s(X,H) are defined in the obvious
way for the stationary problem on C(2) for the operator (X + H),

where X is the integral operator and His multiplication by h.

Theorem 5.1. Suppose that (H1) and (H2)(a) hold. Assume that
a PEV X\ ezists for the stationary case with h defined by (5.1), and
suppose moreover that \ is an isolated point of o(X, H). Then

AL(X, H) = A\ (X, H) > s(X,H) = \.

Proof. By (H1)(c), there are periodic functions h,(z,t) such that
hn(z,t) — h(z,t) asn — oo
uniformly for x € 2 and ¢t € R. Then

¢
%/(h(ac,s)—hn(w,s))ds—>0 as n — oo
0

uniformly in z € €2, that is,
hn(z) — h(z) as n — oco.
By Proposition 2.6,
(5.2) Xs(X, Hy) — A(X,H) asn— oo

and by Proposition 2.6 and Theorem 3.2,

(5.3)  s(X,H,) = \(X, H,) — M\(X,H) = s(X,H) asn— oo.
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From the assumed condition on A, by perturbation theory for the
spectrum, see [20, IV Section 3.5], A\;(X, H,) = s(X, H,) is an isolated
PEV of (X + H,,) for n > 1. Hence, by Theorem 4.1,

(5.4) Ao(X, Hy) > (X, H,)
for n > 1. It then follows from (5.2)—(5.4) that

A(X,H) > s(X,H). o
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