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ATTRACTORS FOR SEMI-LINEAR EQUATIONS OF
VISCOELASTICITY WITH VERY LOW DISSIPATION

S. GATTI, A. MIRANVILLE, V. PATA AND S. ZELIK

ABSTRACT. We analyze a differential system arising in the
theory of isothermal viscoelasticity. This system is equivalent
to an integrodifferential equation of hyperbolic type with a cu-
bic nonlinearity, where the dissipation mechanism is contained
only in the convolution integral, accounting for the past his-
tory of the displacement. In particular, we consider here a
convolution kernel which entails an extremely weak dissipa-
tion. In spite of that, we show that the related dynamical
system possesses a global attractor of optimal regularity.

1. Introduction. Let Q C R? be a bounded domain with smooth
boundary 992. For t € Rt = (0, 0), we consider the evolution system
arising in the theory of isothermal viscoelasticity [9, 20|

(11) {8ttu_ Au— f(]oo N(S)AU(S) d8+g(u) = f7

o = Tn + O:u,
where u = u(t) : @ x [0,00) = R, n =7n(s) : @ x [0,00) x Rt - R
and 1" = —0s, supplemented with the boundary and initial conditions
(1.2) {“(t)an =1n'lon = n'(0) =0,

U(O) = Uo, atu(o) = o, 770(8) = 770(5)‘

Here, g : R — R is a nonlinear term of (at most) cubic growth satisfying
some dissipativity conditions, f : £ — R is an external force, whereas
the memory kernel y is an absolutely continuous summable decreasing,
thus nonnegative, function defined on R*. Problem (1.1)—(1.2) is cast
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in the so-called memory setting, see [5, 6], and is equivalent to the
integro-differential equation

Ouu — (1 +¢)Au + /000 w(s)Au(t — s)ds + g(u) = f,

where ¢ = [;° pu(s)ds > 0, with boundary condition u(t)|sq = 0 and
initial conditions u(0) = wp, u(t) = ug — no(—t), for t < 0, and
0:u(0) = vo. We address the reader to [11] for more details on the
equivalence of the two formulations.

It is known that (1.1)—(1.2) generates a dissipative dynamical system
S(t) on the phase space Hg(€2) x L*(Q2) x L%(R*; Hj(R2)), the so-called
history space, since the variable n contains the information on the past
history of the system. The asymptotic behavior of S(t) has been inves-
tigated quite extensively. For instance, if the first equation contains an
extra term of the form d;u (physically, a dynamical friction), then S(t)
has a global attractor of optimal regularity [1, 3, 18]. When this term
does not appear, as in our case, the existence of the global attractor and
its regularity can still be proved, although the dissipation is contained
in the memory term only [4, 10]. Clearly, this situation requires a
more careful analysis, the dissipation being much weaker. However, all
the above results (as well as all the results on the asymptotic behavior
of dynamical systems arising from equations with memory) have been
proved under the apparently unavoidable condition

(1.3) p'(s) +du(s) <0,

for some § > 0 and (almost) every s € R*. Indeed, even in the linear
homogeneous case, (1.3) seemed to play an essential role in establishing
exponential stability, see [8, 15, 16]. It is readily seen that (1.3) is
equivalent to

(s +0) < e *u(s),

for every o > 0 and (almost) every s € R*. On the other hand, [2]
proves that a necessary condition in order to have exponential stability
in the linear homogeneous case (and, consequently, in order for S(t) to
possess at least an absorbing set) is

(1.4) u(s +0) < Ce™*u(s),
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for some C > 1, § > 0, every ¢ > 0 and (almost) every s € R™.
Nonetheless, between (1.3) and (1.4), there is quite a bit of elbowroom.
In particular, (1.3) does not hold when p is too flat (which corresponds
to having zones of very low, or even null, dissipation). An interesting
situation from the physical viewpoint, that might not comply with
(1.3) but obviously fits (1.4), occurs when g eventually vanishes.
Along this direction, the very recent article [17], focused on the linear
homogeneous case, shows that exponential stability is still present when
(1.4) holds, but (1.3) is heavily violated. Here, we are able to translate
the semi-group approach of [17] in terms of suitable energy functionals,
so to extend the analysis to the nonlinear case. This is not, in general,
a straightforward fact: there are linear systems (in particular, the one
associated with our problem) which can be tackled via semi-group
methods, but whose nonlinear counterparts require the introduction
of ad hoc, and often quite subtle, techniques.

In the present work, we establish the existence of a global attractor
of optimal regularity for S(t) when p fulfills the necessary condition
(1.4), but under much weaker hypotheses than (1.3). Besides, contrary
to [4], the kernel p will be allowed to blow up at zero. For instance, we
can consider the weakly singular kernel

ke—as
u(s) = S8

with £ > 0 and «a,8 > 0, which has been successfully used to
fit experimental data for some real materials. To the best of our
knowledge, this is the first result of this kind for nonlinear systems
with memory. In fact, this approach can be successfully applied to
other low-dissipative models with memory, such as reaction-diffusion
equations with a Gurtin-Pipkin conduction law [12].

Plan of the paper. In Section 2, we write the assumptions on
f, g and p. In Section 3, we formulate the main theorem, which is
proved in Section 4. The remaining sections are devoted to the proofs
of Lemma 4.3 and Lemma 4.4 appearing in Section 4.

Notation. We consider the positive operator A = —A acting on
(L2(Q), {-,-), ]| - ||) with domain D[A] = H?(Q) N H}(Q). For r € R,
we denote by H, = D[AT/ 2] the scale of Hilbert spaces generated by
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A, with the usual inner products (-,-)par/2) = (AT/2. AT/2.) ) and by
M, = Li (R*; Hy4,) the Hilbert space of square summable functions
on RT with values in Hj,, with respect to the measure y(s)ds. To
account for the boundary conditions on 7, we view T = —0, as the
linear operator with domain

DIT] = {¢ = ¢(s) € My : 853 € My, 1%(0) =0},

where 0s is the distributional derivative with respect to the internal
variable s. Then, T is the infinitesimal generator of the right translation
semi-group R(t) on M, acting as

0 0<s<t,

COT IR P

Finally, we introduce the product Hilbert spaces
H, = H1+r X H. x M.

Throughout the paper, ¢ > 0 will denote a generic constant (whose
value may vary even within the same formula). Any further dependence
of ¢ on other quantities will be specified upon occurrence. Also, we shall
often tacitly use the Poincaré, the Young and the Holder inequalities,
as well as the usual Sobolev embeddings.

2. General assumptions. Concerning the nonlinearity and the
external force, we take f € Hy independent of time, and g € C?(R),
with g(0) = 0, such that the following growth and dissipation conditions
are satisfied:

(2.1) lg" ()] < e(1 + Jul),

(2.2) lim inf 9(v) > =,

lu| 00 U

where A > 0 is the first eigenvalue of A. Following [4], we decompose
g into the sum g = gg + g1, where go,g; € C?(R) fulfill

(2-3) 190 ()| < (1 + [u]),
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(2.4) go(u)u = 0,
2.5) 90(0) =0,
2.6) g1 (w)| < c

Setting G(u) = [} g(y)dy and Go(u) = [ go(y)dy, it follows from
(2.1)(2.4) that

27~ -@)|AY?u® — e < 2(G(u),1) < e(1+ A 2ul),

(2.8) 0 < 2(Go(w),1) < e(1+[[A"?u]*),

for every u € H; and some w > 0.

Concerning instead the memory kernel, we assume that g : RT —
[0, 00) is absolutely continuous, summable and nonincreasing. In par-
ticular, p is differentiable almost everywhere with p’ < 0, and it is
possibly unbounded in a neighborhood of zero. Without loss of gener-
ality, we may (and do) assume that

/Ooou(S)ds =1

This, together with the above assumptions on f and g, is enough to
show that problem (1.1)—(1.2) generates a strongly continuous semi-
group S(t) on the phase space Hg, see [4, 18]. For further convenience,
we recall that the third component of the solution S(t)(uo,vo,n0) =
(u(t), dru(t),n') has the explicit representation [18]

(2.9) 7'(s) = {“(t) e 0<s<t,

no(s —t) +u(t) —uyg s>t

We point out that, given u(t), the representation formula (2.9) depends
only on the structure of the second equation of (1.1). When f =g =0
(linear homogeneous case), the monotonicity of y ensures that S(t) is
a (linear) contraction semi-group.

Remark 2.1. In fact, as in [2, 17], we could consider without
substantial changes in the subsequent analysis more general kernels,
allowing p to have a finite number of jumps, or even an infinite
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number of jumps, provided that the points where p has jumps form
an increasing sequence.

Definition 2.2. We say that p is an admissible kernel if there exists
a © > 0 such that

(2.10) / p(o) do < Ou(s), forall seRT.

Remark 2.3. Note that, in view of the other assumptions on u,
conditions (1.4) and (2.10) are equivalent. Indeed, it is apparent that
(1.4) implies (2.10) (just take ® = C/§). Concerning the reverse
implication, since p is positive and monotone nonincreasing, we have,
for every r > 0,

oo s+r
ous) 2 [ wloydo= [ lo)do = ru(s v,
Hence, there exists ¢ < 1 and r > 0 such that

(s +1) < op(s).

Due to the monotonicity of u, the above inequality readily yields (1.4).
Indeed, setting o = nr + 0, with n € N and 6 € [0,7), we get

n(s +0) < u(s +nr) < o u(s) = €% 2u(s) < Ce " pu(s),

with C'=1/p and § = —(log o)/r.

Thus, p is admissible if and only if the semi-group associated with
the linear homogeneous system is exponentially stable, see [2].

3. The main theorem. Our main result reads as follows.

Theorem 3.1 (Existence of the global attractor). Let u be an
admissible kernel. Assume in addition that

(3.1) W (s) <0, forae seRT.
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Then S(t) possesses a connected global attractor A C Hy which coin-
cides with the unstable set of equilibria.

Corollary 3.2 (Regularity of the global attractor). The global
attractor A is contained and bounded in Hy. Moreover, calling II the
projection of Hy onto My, we have the additional reqularity

A C D[T], sup | Tn||lm, < oo, sup [|An(s)|| < oco.
nellA nellA
seRT

Remark 3.3. Hypothesis (3.1) can be relaxed when the nonlinearity
g is subcritical, that is, if (2.1) is replaced by

lg'(w)| < e(1+ [ul?), B <2

More precisely, the above results hold true even if the set Py = {s €
R* : 4/(s) = 0} has positive measure not exceeding a certain limit
which depends on the physical constants of the system. The exact
condition is the same as the one required to have exponential stability
of the corresponding linear semi-group, see [17].

Remark 3.4. If the first equation of (1.1) also contains the dissipative
term Oyu, it is not hard to show, using the techniques of this paper, that
Theorem 3.1 and Corollary 3.2 hold without hypothesis (3.1). Hence, in
that situation, being an admissible kernel is a necessary and sufficient
condition in order for the related dynamical system S(t) to possess the
global attractor.

4. Proof of the main theorem.

4.1. The gradient system. We begin by establishing the following
fact.

Proposition 4.1. The semi-group S(t) is a gradient system on H,,
and the set S of its equilibria is bounded in Hy.
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Proof. The second assertion is quite immediate. Indeed,
S = {(U,0,0,0) S HO : AUO +g(u0) = f}a

which is bounded on account of the assumptions on f and g. We define
the function £ € C'(Ho, R) as

E(P,(Iﬂ/)) = ||(P,‘1a1/1)||%{0 + 2<G(p)’ ]-> - 2<fap>

We have to show that £ is a Lyapunov function, namely,
(i) L(z) — oo if and only if ||z|l3, — oo,
(ii) £(S(t)z) is nonincreasing for any z € H,,
(iii) if £(S(t)z) = L(z) for all t > 0, then z is an equilibrium.
Property (i) is apparent in light of (2.7). Indeed,

1
(A1) <lel, e < L) el +e forall 2 € Ho,

for some ¢ > 1. Next, if z = (ug,vo, 10) is a sufficiently regular datum
(in particular, ng € D[T]), we have, see [4],

GESO) = [T as

Hence, choosing § > 0 small enough such that the set N = {s € R" :
p'(s) + 6u(s) < 0} has positive measure (here we are using (3.1)),

L(S(t)z) < L(z —5// s)||AY 207 ()| ds dr, for all t > 0.

By density, the inequality holds for every z € Hy. In particular, (ii)
follows. Finally, if £(S(t)z) = L(z) for all ¢ > 0, then n*(s) = 0 for
every t > 0 and every s € N. From the representation formula (2.9),
we learn that u(¢) has period s, for every s € N. Since N has positive
measure, it follows that u(t) = wp, and therefore d;u(t) = vp = 0.
Using again (2.9), we get

‘ B 0 0<s<t,
m(s) = m(s—1t) s>t
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To prove (iii), we are left to show that 9 = 0. Indeed, the equality
L(S(t)z) = L(2) now reads

o0

f; e Ao ds = [ A (P e o
0 0

Since p vanishes monotonically at infinity, taking the limit ¢ — oo on
the righthand side and applying the dominated convergence theorem,
we conclude that ny = 0. o

Remark 4.2. Note that we did not use (3.1) in its full strength.
Indeed, to obtain the desired conclusion, it is enough to have a set
of positive measure on which p is not constant, cf. Remark 2.1.

4.2. The semi-group decomposition. We decompose the solution
S(t)z into the sum
S(t)z = D(t)z + K(t)z,

where D(t)z = (v(t), 0;v(t),£") and K (t)z = (w(t), dyw(t), (") solve the
problems

v + Av + [ u(s)A&(s) ds + go(v) = 0,
0§ = TE + O,
(’U(O),atv(()),fo) =z

and

Opw + Aw + 77 u(s)AC(s) ds + g(u) — go(v) = f,
o¢=T¢+ dyw,
(w(O), atw(o)a CO) = 0.

Then, we have

Lemma 4.3. There exist & > 0 and an increasing nonnegative
function @ such that

ID#)2ll3, < QUllzll30)e™",

for every t > 0.
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Lemma 4.4. Let B C Hy. Assume that
supsup ||S(t)z||x, = C < .
>0 z€B
Then, K (t)B C H,, for every t > 0 and every r € [0,1/2), and there is
an M = M(C,r) > 0 such that

supsup || K (¢)z||3, < M.
t>0 z€B

Lemma 4.5. Let B C Hy;3. Assume that

supsup [|S(t)z#,,, = C < oco.
t>0 zeB

Then, K(t)B C Hi, for every t > 0, and there is an M = M(C) > 0
such that

supsup || K(t)z|#, < M.
t>0 zeB

The proofs of the three above lemmas will be given in the following
sections.

Corollary 4.6. Let B C H,, for some r € (0,1]. Assume that
K(t)B C H,, for every t > 0, and
supsup | K (t)z||3, = M < .
t>0 z€B
Then, for every t > 0, K(t)B belongs to the compact set
KM = {20+ ollw, < M, [9TTz0]las, -, < M,

| A/ (s)|| < 2M, Tlz(0) = o}.

Proof. The compactness of IIKM in Mg (and, consequently, the
compactness of XM in H,) is guaranteed by Lemma 5.5 of [18]. From
the analogue of (2.9) for ¢*, we know that

ey Jw(t) —w(t—s) 0<s<t,
¢ls) = {w(t) s>t
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This shows that ¢*(0) = 0 and [|A(*7)/2¢t(s)|| < 2M. Besides,

Oiw(t —s) 0<s<t,
0 s> t.

0sCt(s) = {
Hence, ||A"0:C*(s)|| < M, which implies that ||0sCt||m,_, <M. O

4.3. Proof of Theorem 3.1. Since S(t) is a gradient system and S
is bounded in Hg, using a general argument that can be found in [13,
14] (see also [4, Appendix]), the existence of the (connected) global
attractor A coinciding with the unstable set of S is achieved if we show
that

(a) D(t) decays to zero uniformly on bounded sets,

(b) for any given R > 0, there is a compact set K = IC(R) C H, such
that K (t)z € K for every ¢ > 0 and every z € H; of norm less than or
equal to R.

In that case, A C K, for some R > 0 large enough.

Point (a) is exactly the content of Lemma 4.3, which says even more
than is needed, since the decay is of exponential type. Concerning point
(b), due to (4.1) and to the monotonicity of £ along the trajectories,
if |z||lx, < R, then ||S(t)z||n, < C, for some C = C(R). Hence,
given r € (0,1/2), applying Lemma 4.4 (with B equal to the ball
of Ho of radius R), it follows that ||K(t)z||%, < M. Therefore, by
Corollary 4.6 (with B equal to the ball of #,. of radius M), we conclude
that K(t)z € KM. o

4.4. Proof of Corollary 3.2. At this point, we know (in particular)
that A is bounded in #;/3. Besides, A is fully invariant for S(t),
namely, S(t)A = A, for every t > 0. Hence, for every z € A and every
t > 0, there exists z; € A such that z = D(t)z;+ K (¢)z:. An application
of Lemmas 4.3 and 4.5 entails the boundedness of A in #;. Finally,
Corollary 4.6 yields the desired regularity. Indeed, IIK}! C D[T].

Remark 4.7. In fact, by Lemma 4.3 and a slight modification of
Lemmas 4.4 and 4.5, together with the transitivity of the exponential
attraction property [7], one can show the existence of a regular expo-
nentially attracting set and, in turn, of an exponential attractor of finite
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fractal dimension, whose basin of exponential attraction is the whole
phase space Hy. As a byproduct, the global attractor A has finite frac-
tal dimension as well. It is also worth observing that the regularity of
A can be increased up to where f and g permit.

5. Some auxiliary functionals. We begin with some preliminary
work in order to be in a position to prove Lemmas 4.3, 4.4 and 4.5. We
introduce the probability measure i on RT as

AP) = [ n(s)ds,

P

for any (measurable) set P C R™*. For any 6 > 0, we consider the sets
Ps={seR":y/(s)+du(s) >0}

and
Ns={seR*':p/(s) + ou(s) <0}.

Clearly, Ps U N5 = R™T, except possibly a nullset. Besides, on account
of (3.1),

lim z(Ps) = 0.

Lim 7a(Fs)

Then, for ¥ € M, we denote
%M=AM@MWMMWS

and

MM=AM%#%@WM

Observe that Ps[y] + Ns[¢] = [[¢]|34,- In order to deal with the
(possible) singularity of p(s) at zero, given any v € (0,1/2), we choose

$x = 8x(v) > 0 such that
| mtsras <3,
0 2

and we introduce the function w: Rt — R™ as

w(s) = p(54)X(0,5,1(8) + 1(8)X (s, ,00) (5),
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where X denotes the characteristic function. Finally, we define the
functionals on Hg as

¥ (o0, 0) =~ | w(o)la.v(s) ds,
0
*(p,q,v) = (¢, p),
w0, = [ ([ nlora (oo ) 142 wis) - plds,
and the functional
(P(pv(bw) = (Pl(pa (Zﬂ/’) + (l - 2’/)62(paqa 1/’)
In light of (2.10), it is readily seen that

(5.1)  0< (@Y (p,q, %)+ |®2%(p, 0, %) + ¥(p,q,¥) < cl|(p, ¢ %) |54, -

We now consider the system

(5.2) {6ttp+Ap+f0 $)AY(s)ds+ k=0,
Oy =T + Oip,

where k = k(p,t) is a suitable nonlinearity. Observe that (5.2) may
not generate a strongly continuous semi-group on #Hy. Assuming that
(p, O¢p, ¥) is a sufficiently regular global solution to (5.2) (in particular,
¥ € D[T]), we have

Lemma 5.1. The following inequality holds:
d
2 (P, ¥) < 2V || AY2p|)? = (1 = v)||0p|?
_ uise) [ 1/2 2
e [ A () s
—~ 3
+ (20(Fs) + Vv)Psl] + = N5[Y]
/ WAY2p, A2 (s)) ds
5

/°° (5)) ds.
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The last term can be conveniently estimated as

/0 " () (ke () ds < (R

Lemma 5.2. The following inequality holds:
d 1
= ®%(0, 00, 9) < —(1 = )| AY2p|* + [|0rp]]” + — N5 [y]

dt
- /P u(s) (AY2p, AV2(5)) ds — (k. p).

The proofs of Lemmas 5.1 and 5.2 can be found in [17], where the
same functionals have been introduced to treat the linear homogeneous
case. Collecting the above results, and observing that

1
1/2 1/2 < oh 172,12 4, ~
)y, HOA D A ds < aR(PIA DI + i)
for all a >0,

we readily obtain

Lemma 5.3. The following inequality holds:
d
—®(p, 8up, ) < —(1 = 6vv)[|AY?p|* — v||0p|?

dt
e [T P s

+ 2(A(P5) + VP )Ps[] + L No{o] + M,
~ (1= 20) (k).

Finally, we have

Lemma 5.4. The following inequality holds:

d 1 ~
SU(p, 0,4) < 3 Pslu] + 2(P) |45l



SEMI-LINEAR EQUATIONS OF VISCOELASTICITY 1131

Proof. Using the equality 0y = Tv + Oyp,

Gvw o) =2 [~ ([T uorn(o)an)
« (AY2T(5), AY2(5(5) ~ p)) ds

=2 [ ([ utonniorao)

x (A 2y(5), A1) ds
S

- /000 </°° (o)X ps (o) da>

d
x LA () | ds.
An integration by parts then yields

G0 ) = ~Pslu] +2 [ (o) (AV0(5), 41/%p) s,
Ps

and, using (5.3), the conclusion follows. O

Remark 5.5. The above results continue to hold with (A™/%p, A™/20,p,
A"/24) in place of (p,d;p,1). The only difference is that the terms
[F{11llac_, and (k,p) must be replaced by | [47] ur_, and (k, A"p),
respectively.

6. Proof of Lemma 4.3. Here and in the sequel, all the estimates
are performed within a suitable regularization scheme. We define

Ly € C(Ho,R) as
Lo(p,a,%) = || (P, 4, %) I3, +2(Go(p), 1)

For every 6 > 0, we have

%Eo(D(t)Z) = /Ooo W (s)| AY2€! (5)]| ds < 0.

We now choose an arbitrary z such that ||z||3;, < R. Throughout the
end of the proof, the generic constant ¢ > 0 may depend (increasingly)
on R. Hence, on account of (2.3)—(2.5),

D)1, < Lo(D(1)2) < el D(1)z3,-
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Let ¢ € (0,1/2) be specified later, and put v = &2 (this fixes the
corresponding s,). Then, select § > 0 small enough such that u(s,) <
A/6 and [i(P5) < €% Finally, setting (p(t),0:p(t),¥') = D(t)z and
k = go(v) in (5.2), introduce the functional

2

£(t) = $Lo(D()2) +*B(D(1)z) + S U(D(D)2).

For ¢ small enough,
1
(6.1) 5IID®)zl5, < E(#) < ell D)3,

With the above choice of v and d, exploiting Lemmas 5.3 and 5.4, and
noting that (go(v),v) > 0, we obtain the differential inequality

d 1 1
- <_3 - 1/2, 12 _ /5 2 2 = 2
€ = =5 - 00 1420lP - Sl - 2§ - 42 ) Pu

(52 [T wenaee R

+ 4eN5[E] + €[l go (W) lI€ ]| A, -
Observe that

(1 _ M) /00o ' (s)[|AY2¢(s)|1 ds + 4eN;[€]

5 A
<3 /wu’(s)llA”Q&(s)IIQdS+4€Ns[£]
=25 J,

< - (5 - 1)l
while
¥lgo (W) IIEllae_y < ce®(|AY2[]|€]l ao
< §\|Al/2v||2 + e Ns[€] + c®Ps[€).
Hence,
%s < —63@ - 65) 1AM 2] — &5 ,0]2 — &2 (% - cs>735[£]

- <% - ce)./\/é[f].



SEMI-LINEAR EQUATIONS OF VISCOELASTICITY 1133

It is then clear that, up to taking e small enough, depending on ¢, we
obtain

Se(t) + D)2l <0,

which, together with (6.1) and the Gronwall lemma, yield the desired
conclusion. Notice that the obtained decay rate x depends on ¢, and
thus on R. However, using the semi-group properties, it is immediate to

show that it can be fixed independently of R, provided that we enlarge
Q(R) accordingly.

7. Proofs of Lemmas 4.4 and 4.5. The proofs of the lemmas lean
on the existence of a (weak) dissipation integral. Namely,

Lemma 7.1. Assume that the hypotheses of Lemma 4.4 hold. Then,
for every e > 0 and everyt > 7 > 0,

t
[ loatw)ldy < ot + 5.
for some K = K(C,¢e) > 0.

Proof. In this proof, the generic constant ¢ will depend on the bound
C of the norm of S(t)z in Hy. For any fixed ¢ > 0 (without loss of
generality, we assume that ¢ < 1/2), choose v = €2 and § > 0 such that
p(s«) < A/6 and [i(Ps) < €2. It is apparent that

/ u(s)(AY2u, AY?n(s)) ds < ce
Ps

and .
lg(w) = flllnllm_, < 5—2/\/5[77] + ce.

Then, setting (p(t), dp(t),¥!) = S(t)z and k = g(u) — f in (5.2), in
view of Lemma 5.1 and Remark 5.5, the functional ®!(S(t)z) satisfies
the inequality

d 1 2 pis) [ 1/2 2 4
G S gl = B [ ) IA ()P ds + Nl + e
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Finally, we define

£(t) = %E(S(t)z) + AL (S(1)2),

where £ is the Lyapunov function introduced above. Due to (5.1), we
have |€| < ¢/§. Reasoning as in the proof of Lemma 4.3, if € is small
enough (which is clearly not a constraint in view of our aim), we obtain

d et 2 5
Ser < ce’.
dtg + 5 |0sul|® < ce

Integrating this inequality over (7,t), and subsequently applying the
Holder inequality, we reach the desired conclusion. ]

7.1. Proof of Lemma 4.4. Again, the generic constant ¢ appearing
below will depend on the bound C of the norm of S(¢)z in Hy. For
r € [0,1/2), we introduce the functional

Qi (t) = 1K (t)2ll3, + 2(g(u(t)) — go(v(t)) — f, A"w(?)),

which satisfies the estimates
1
5 r(t) —c< K ()z2]13,, <2Q.(t) +c

and the differential equality

d e .
4o [ W1 ) as
0
= 2([go(u) — go(v)]0u, A"w) + 2(gg(v)Orw, A"w)
+ 2(g} (u)Opu, A™w).
By virtue of (2.3), (2.5)—(2.6) and the continuous embedding H* —
L8/3=22)(Q)), we obtain the following estimates:

(7.1) 2([go(u) — go(v)]Oru, A™w)
< c(1+ flullzs + [vllze)l[Oculllwl| o/ a-2m [|A"w][ posar2m
< cf|@pul| | A+ 2w ?,
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(7.2)
2(gy(v)0sw, A™w) < cl[Jv] + [v]*]| s [ Ow]| Lo/ -2 || ATw]| Lo 120

< cf| AY20]|[| AT 0w | AT 2w

and
(7.3)
2(g} (w)dyu, A™w) < c||Oul[|| A"w|| < ¢||dul| + cl|dul[|| A+ 2wl

Thus, we readily obtain

d * (14r)/2 2

@<, W (s)llA ((s)[I* ds < h+ hQ,,
where we put

h(t) = cl|Opull + ]| AY?v]).

For ¢ € (0,1/2), we choose v = €% and § > 0 such that p(s.) < \/§ and
[(Ps) < 2. Setting (p(t), d;p(t),¥t) = A"/2K(t)z, (here, A"/? is in fact
the diagonal matrix whose entries are A”/2) and k = g(u) — go(v) — f
in (5.2), we consider the functional

T, (t) = ®(A?K (t)z) + U(A"?K (t)z2).

Applying Lemma 5.3 and Lemma 5.4, together with Remark 5.5 and
the immediate control

lg(w) = g0(v) = FIIIA™Cla, = (1= 22%){g(w) = go(v) — f, A™w)
< SIATE 20l 4 TPlAT/C) + NS{ATC] +

we obtain

%T’I‘ < 752<||A(1+T)/2w||2 + HAr/2at,w||2 +P5[AT/2C])

* * ! T 5 ™
=) [T w140 ) ds 4 AT e

provided that € is small enough. Finally, we introduce the energy

WD) = £2.(0) + T00),
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which fulfills the inequalities (again, if € is small enough)
1
W(t) —e < K @®)2][3, < Mi(t) +c,

for some ¢ > 1 depending on . Thus, we reach the desired conclusion
if we show that W,.(t) is bounded at all times. In light of the previous
computations, we have

d
=W §755(||A(1+T)/2w||2+||AT/28tw||2+P5[A”/2§])+55N5[AT/2§]

+ (1 - %) / W ($)[ATTDE ()P ds + b+ W, +c.
0

It is then apparent that, provided that we fix € small, we end up with
the inequality

d
%WT—’—BWTS}L—’—hWT—i_c)

for some B > 0. Observe also that, by virtue of Lemmas 4.3 and 7.1,

B
E(t—'r)—i-c

/Tth(y)dyﬁ

Since W,.(0) = 0, the conclusion follows from a Gronwall-type lemma,
see e.g., [4].

7.2. Proof of Lemma 4.5. We basically repeat the proof of
Lemma 4.4, setting » = 1. In this case, the generic constant ¢ appearing
below will depend on the bound C of the norm of S(¢)z in H;/3. The
only difference here is how we reach the control (7.1), whereas (7.2)
and (7.3) remain the same (for » = 1). Since

190(w) — go(v)] < ew|(1 + |ul + |w]),
exploiting the Agmon inequality,

][z < cl| AY2w]|2]| Aw||*? < cf| Aw]*/?
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and the embeddings H*/? < L°(Q) and H'/? — L'8/7(Q), we are led
to

2(l90(u) — g0 (v))0ru, Aw)
< cf|Opull[[wl| Lo | Aw]| + cljull o [|Oew]| pas/7|[w]| oo [| Aw]|

+ cl[w]| 2Bl s 7 ] 12 || Aw]|
< ol Aw|]*’? + ¢]| Aw]]*/?

c
S Y Aw 2 B
| Awl| v
for every v € (0,1). Thus, for any given v € (0,1), we conclude that
d * c
£Q1 - / w (8)||ACEN/2¢(5)||2 ds < || Aw||® + h 4+ hQ; + 5
0

We can now proceed exactly as in the proof of Lemma 4.4. Note that
the term || Aw||? is easily controlled, upon fixing  small enough.
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