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MARKOV CHAINS:
ERGODICITY IN TIME-DISCRETE CASES

N. KATILOVA

ABSTRACT. The aim of this article is to propose some
localization methods for checking ergodicity of time-discrete
finite Markov chains. The numerical example allows us to
compare these methods in order to find the optimal one. The
obtained results are generalized to the n-dimensional case and
can be used as a reliable criterion to establish ergodicity. Some
explicit theoretical results are given as well.

1. Introduction. Let the matrix M = (m;;) be Markov. This
means that it is nonnegative and the sum of elements in each matrix
column is equal to 1:

(1.1) m;; >0, 4,j=1,...,n, and

(1.2) Y omij=1, j=1,...,n
=1

If the matrix is Markov, then there exists a critical eigenvalue, equal
to 1, that corresponds to the critical eigenvector on the lefthand side:
1=(1,...,1), because

(1.3) 1M =1.

We call this the Markov property of the matrix M.

Let L be an (n — 1)-dimensional subspace of the real n-dimensional
linear space R™ consisting of those column vectors z with components
which sum to zero:

(1.4) L:{meR”:imizo}.
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Moreover, let W be the simplex in the space R"™ consisting of all vectors
with nonnegative components with sum equal to 1:

(1.5) W:{meR”:mZO,...,ngO, Zmizl}.
i—1

Definition 1.1. A Markov chain, described by the linear difference
equation

z(t+1) = Mz(t),

where M is a Markov matrix and where ¢ € Nr, is called ergodic if for
any initial condition z(0) € W its solution z(t) = M*z(0) has a limit
m € W as t — oo and this limit does not depend on the choice of the
initial condition.

If the matrix M is considered as an operator, then it maps the
simplex W into itself. Since a finite dimensional matrix M determines
a continuous operator, this mapping is continuous. The set W is
compact and convex. Therefore, by applying Brouwer’s fixed point
theorem, the matrix M, considered as an operator, has a stationary
point (equilibrium state) in W. In general, there exist several such
equilibrium states. They form a closed convex set in W. Ergodicity
means that there exists only one equilibrium state 7 and, furthermore,
lz(t) — «|| = 0, as t — oo.

Next we fix the Markov matrix M, and we consider perturbations
of the form M — ul, where u is a column vector with components

(u1,...,uy,), and 1 is the row vector with all components equal to 1;
then,

mi1 — Uy min — Ul
(1.6) M —ul =

Mp1 — Uy oo Mpp — Uy

These perturbations are admissible in the sense that (M — ul)|L =
MIL.
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2. Localization methods for checking ergodicity of finite dis-
crete Markov chains. If in the subspace L we select an appropriate
basis and write the matrix of the operator M|L using this basis, it will
be a matrix of order (n — 1) and its eigenvalues coincide with those of
the matrix M, except 1 counted once. Ergodicity means that the eigen-
values of the new matrix M|L lie in the open unit disc [2]. Therefore
the following statement is true:

Theorem 2.1. The Markov chain is ergodic if and only if the
operator M|L has a spectrum in the open unit disc, or, in other words,
its spectral radius is strictly less than 1

(2.1) p(M|L) < 1.

If the Markov matriz M is ergodic and the vector u in the space R™
meets the condition

(2.2) 11— 1u| <1,

then the spectral radius of the perturbed matrix M — ul s strictly less
than 1, i.e.,

(2.3) p(M —wul) < 1.

Conversely, if for some vector u € R"™ inequality (2.3) is true for the
Markov matriz M, then the matriz M is ergodic, i.e., inequality (2.1)
is true, and u meets condition (2.2).

If condition (2.3) is fulfilled, the stationary probability distribution m
is described by the following formula:

(2.4) 7=~ (M-ul)) tu.

To prove (2.1) it suffices to find, among these perturbed matrices,
one with a spectral radius strictly less than 1.

In order to estimate the spectral radius of the matrix M of order n we
use the special vector space norm described in the following definition.
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Definition 2.2. For o € [0,1] and M = (m;;)};_;, written in an
appropriate basis, the special a-norm || M|, is described by

@29 Il = max {0 Yl +a D
j= j=

According to this definition, for a perturbed matrix with elements
m;; — u; we have:
(2.6) | M —ul||, = max {(1-@2 mij —wil +a ) |myi —uj|}.

1<i<n . .
- Jj=1 Jj=1

For a fixed parameter a € [0, 1], the following formulas are known [6]:
(2.7)

l—a a
p(M) < lglia?n{|mii + <Z|mij|) (Z|mji|> }, 0<a<l,

J#i J#t

and

(2.8) p(M) < max {(1a)zmij|+azmﬂ|}.

~ 1<i<n

This last inequality (2.8) is a consequence of (2.7) together with Young’s
inequality, which reads as follows,

(2.9) w < o+’ ,8>0, a+pB=1

From the latter estimate we get the first criterion of ergodicity.

Proposition 2.3 (First criterion). Let, for some parameter value
a € [0,1], the following n conditions be fulfilled

i — i+ (1= ) Y Jmaj —wi +a ) jmji —u;| <1,
(2.10) j#i j#i
1=1,...,n,
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where uy,Us, ... , Uy are some nonnegative numbers. Then the Markov
matriz M 1is ergodic.

The function v(u, «) is defined by the expression in (2.6):
(2.11)

wlusa) = |01 = w1, = max {(1-0) 3 byl +a 3 s .

j=1 j=1

The disadvantage of the formulated criterion is the following. Each
time we have to apply this criterion we need to find an explicit vector
u and an explicit value of the parameter « satisfying (2.10) instead of
indicating general conditions under which these objects exist.

Next we propose a second criterion of ergodicity. It is stronger and
follows from (2.7).

Proposition 2.4 (Second criterion). Let for some parameter value
a € ]0,1] the following conditions be satisfied:

l-« o
o 1o M — ui| + <Z|mij —ui|> <Z|mji —Uj> <1
(2.12) i i
1=1,...,n,

where again uyi,us, ... ,U, are some nonnegative numbers. Then the
Markov matriz M s ergodic.

Using condition (2.12) the following function serves as an estimate of
the spectral radius of a Markov matrix M:

(2.13) w(u,a) = max {m“ it (ij _Ui)la

1<i<n
T J#i
et
X <Z|mji —Uj> }
J#i

Thus, in order to check ergodicity of the Markov matrix M we have
to estimate the spectral radius of the perturbed matrix M — u1 and to
convince ourselves that the conditions (2.2) and (2.3) are true.

Here u = (uq,...,uy) and « € [0,1].
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We have given two different methods to do this by minimizing the
functions v(u, @) and w(u, @) over the parameter o and over the vector
U= (Ug,...,Up).

In order to examine the sharpness of the estimation for p(M|L)
we compute the eigenvalues of the matrix M in the subspace L and
compare them with the minimum values of the functions v(u, «) and
w(u, ). The results of these two methods are illustrated by the next
example.

Example n = 4.

01 0 024 0.3
02 034 0.1 0.1
0.1 03 0.06 0.5
0.6 0.36 0.61 0.1

M =

The four eigenvalues of the matrix M are:
A1 =1; A2 =-0.5134; A3 =-0.0461; Ag=0.1495.

First method. (i) optimal parameter oo = 0.5087.
(ii) estimate of the spectral radius p = 0.5272.
(iii) optimal vector u = (0.1205; 0.3407;0.4905; 0.3110).

In this case the perturbed matrix has the form:

—0.0205 —0.1205 0.1195 0.1795

—0.1407 —0.0007 —0.2407 —0.2407

—0.3905 —0.1905 —0.4405 0.0095
0.289 0.049 0.299 —0.211

M —ul =

The eigenvalues of this matrix are
Ap = —0.5134; Ay =0.1495; A3 = —0.0461; X4 = —0.2627.

Since the spectral radius p is the modulus of the largest eigenvalue, we
have p(M — ul) = 0.5134. This is in agreement with (2.7). It also
shows that condition (2.3) is satisfied. Thus, we have

p(M —ul) < ||M —ul|, =v(y,a) < 1.
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Second method. (i) optimal parameter o = 0.6103,

(ii) estimate of the spectral radius p = 0.5236

(iii) optimal vector u = (0.0045; 0.4362;0.5731;0.2514).
In this case the perturbed matrix has the form:

0.0955 —0.0045 0.2355  0.2955
—0.2362 —-0.0962 —0.3362 —0.3362
—0.4731 —-0.2731 —-0.5231 —0.0731
0.3486  0.1086  0.3586  —0.1514

M —ul =

Its eigenvalues are:
A1 = —0.5134; Xy =0.1495; A3 = —0.0461; A4 = —0.2652.

Here the spectral radius of the perturbed matrix is given by p(M —ul)
= (0.5134. This is in agreement with (2.3). Thus, we get

p(M —ul) <w(u,a) < 1.

Remark. As we see both methods give the same three of the four
eigenvalues for the perturbed matrices. Hence, it looks as if three of
the eigenvalues of the perturbed matrix M — ul do not depend on the
vector u and that the fourth eigenvalue of the perturbed matrix does
not depend on the entries of the Markov matrix M.

First we shall show this in the four-dimensional case, where we have

(2.14) det (M —ul — XI)

mip — U — A miz2 — U1 mi3 — u1 miq4 — U1
— det M2y — U2 Moy — Uz — A M2z — U2 Mog — U2
m31 — U3 m32 — U3 m33 — Uz — A M3q4 — U3

M4l — Ug M2 — Ug M43 — Ug Mag — Ug — A

= \* — (trace M — trace (ul))\®
1
+ 5((trace M — trace (ul))? — trace (M — ul)?))\?
1
- 6((trace M — trace (ul))®

— 3(trace M — trace (ul)) trace ((M — ul)?)
+ 2trace (M — ul)3))\ + det (M — ul).
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Using the Markov properties of the matrix M:
mi1 + ma1 + ma1 +my =1
miz + mag + m3z2 + my2 = 15
mi3 + meg + m33 + maz = 1;
mi4 + mag + Mm3g + mag = 1,
and the fact that for any Markov matrix M:
(2.15) (ul)M = ul, trace(M(ul)) = trace(ul), and
trace (ulvl) = trace (ul) trace (v1),

together with

1 1 1
detM = g(trace M)3 — 3 trace M trace (M?) + 3 trace (M?)
(2.16) . )
- E(trace M)? + 3 trace (M?) — 1 + trace M,

we obtain the following characteristic polynomial, see equality (2.18)
and (2.19) of Proposition 2.5,

(2.17)  A\* — (traceM — trace(ul))\3

1
+ 5((traceM)2 — trace(M?) + 2(1 — traceM )trace(ul))\?

1
- 8((trace M)? — 3trace M trace (M?) + 2 trace (M3))\
1
+ 5((trace M)? — trace (M?) — 2trace M + 2)trace(ul)\
det (AT — M
(1 - trace (ul))det M = (A — 1 + trace (m))%.

The zeros of this polynomial are the eigenvalues of the matrix M — ul.
One of these eigenvalues is 1 — trace (ul), the others are eigenvalues of
the matrix M.

In equality (2.17) we used assertion (b) and (c) of the following
proposition, for n = 4.

Proposition 2.5. For a general n x n matrix X write

det (X — M) =Y (—1)"a;(X)A" .

j=0
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(a) Then ap(X) =1, a;1(X) = trace (X), az(X) = (1/2)((trace (X))?
— trace (X?)), a,(X) = det (X). In general a;(X) is a linear combi-
nation of expressions of the form

trace (X7') trace (X72) - - - trace (X7*),
with j1+jo+---+jk=J, 1 €N, 1 <1<k, 1<k<j.

(b) The following relationship exists between the coefficients a;(M),
0 < j < mn, of a Markov matriz M:

n

(2.18) > (~1)ia;(M) =0.

=0

(c) Let M be a Markov matriz, and u a vector in R™. Then
(2.19)
j—1
aj(M —ul) = a;j(M) + trace (ul) Y (1) *ap(M), 1<j<n.
k=0

(d) Again, let M be a Markov matriz and u a vector in R™. Then
the following identities are valid:
(2.20)
ag(M — ul

(
(M —ul
(
(

L
trace M — trace (ul);

ax

%((traoe M — trace (ul))? — trace (M — ul)?));

ax(M —ul
- det (M — ul) = (1 — trace (ul))det M.

an (M

)
)
)
ul)

Proof. A proof of assertion (a) can be found in [8].
(b) By definition we have det (M —I) = 3" (—1)""Ja;(M). If, in

j=0
addition, M is Markov, then det (M — I) = 0, and the conclusion in

(b) follows.

(c) For general n € N and an arbitrary vector u € R™ we have:

A—1+t 1
det (M —ul — \) = + trace (ul)

det (M — \I)

A-1
A — 1+ trace (ul) «— i i
e S I

i=0
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(use the following equalities det (M — I) = >7_(~1)"7a;(M) = 0)

(2.21)

A — 1+ trace (ul) nej_ nj
AT el N 1y g (e - 1)

j=0
n—1 n—j—1
= (A — 1 + trace (ul)) Z(—l)”*jaj(M) Z Ak
j=0 k=0
n—1 n—j—1 n—1 n—j—1
= S (1) 3 A 3 (1) e () Y A
j=0 k=0 j=0 k=0
n—1 n—j—1
+ trace (ul) » (—1)""7a;(M) 2F
7=0 k=0
n—1 n—j n—1 n—j—1
=D ()" (M) YN =D (1)) Yo N
j=0 k=1 j=0 k=0
n—1 n—j—1
+ trace (ul) » (=1)""7a;(M) Ak
j=0 k=0
n n—k n—1ln—-1-k
= 3 S (1) ey (M)A - (-1)" Jay (M)N*
k=1 j=0 k=0 j=0
n—1ln—1—k
+ trace (ul) Z (=1)"Ja; (M)
k=0 j=0
n—1n—k n—1ln—-1-k
= 33 (1) ay (M)A - (1" Tay(M)A*
k=1 j=0 k=1 j=0
n—1

n—1ln—1—
+ trace (ul) Z Z (=1)" Ja; (M)
k=0 j=0
n—1 n
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n—ln—1—k
+ (=1)%a,, (M) + trace (ul) (=1)"a;(M)NF
k=0 j=0
n—1ln—1-k
—ZZ K (M)NF + trace (ul) (=)™ Ta;(M)N*
k=0 j=0 k=0 j=0

Since we also have
det (M —ul = AT) =Y (=1)*an_5(M — ul)A*,

from equality (2.21) we obtain, for 0 <k < n —1,

(=1)*an-r(M —ul) = (=1)"an_r(M)
n—1-k
(2.22) + trace (ul) Z )"a; (M),

or, equivalently, the equality in (2.19).

(d) This assertion follows from (a). O

3. Conclusion. The main issue related to a time-discrete finite
Markov chain consists in investigating its ergodicity. The methods
given in this article are based on using the elements of the Markov
matrix M = (m;;), see (1.1) and (1.2), as well as the elements of the
perturbed matrix M — ul, see (1.6).

In order to establish the ergodicity of the Markov chain M it is
required that the absolute values of the noncritical eigenvalues of the
matrix M are strictly less than 1 or, equivalently, that, for some vector
u € R"™, the eigenvalues of the perturbed matrix M —u1l have absolute
values strictly less than 1, see Theorem 2.1. In the example we first
compute the eigenvalues of the given Markov matrix and then we check
its ergodicity by two different methods. In order to find the optimal
method we finally compare the corresponding two criteria.

The eigenvalues of the matrix depend only on its matrix elements.
Since we are only interested in the eigenvalues that are less than 1, we
use two localization methods for the matrix eigenvalues.
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Unfortunately, both methods have the following disadvantage. We
need to find an explicit vector v € R™ and an explicit value of the
parameter o which satisfy (2.10) and (2.12), respectively, instead of
indicating general conditions under which such objects exist. Our
numerical example is in agreement with the observation that the second
method is stronger than the first one. Some of the above results can
be obtained via the following Theorem 3.1. In particular, Theorem 2.1
follows from its Corollary 3.2. The result of Theorem 3.1 was inspired
by the result in the four-dimensional case (2.17); a proof of the latter
equality was based on Proposition 2.5. However, the proof of the
following theorem is in fact independent of Proposition 2.5.

Theorem 3.1. Let M be an arbitrary n x n Markov matriz. Then
the following identities are valid:

3.1
( )((/\ ~ DI +ul)(M — M)= A\~ 1)(AM +ul — M);
(3.2) det (A — DT +ul) = (A —1)"" (A =1 4+ trace (ul));
(3.3)
(A —1)det (M 4+ ul — M) = (A — 1 + trace (ul))det (A — M).

Proof. In (3.1) the Markov property of the matrix M is heavily used:
see (2.15). Equality (3.2) follows via mathematical induction. More
precisely, developing det ((A — 1)I + u1) with respect to the first row
shows

A—1+wuy U Uy
U2 A—1+wug --- U2
det .
Up, Up, e A—1+4u,
)\71+UZ Ug
=(A—14uj)det :
Up, e A—=1+4u,
u2 u2 u2
us )\—1+U3 us
— udet . + -

Unp Up, - A—1+4wu,
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U2 A—1 +uy - U2

+ (—1)"det '
Up—1 Up—1 cer  A=14uy_q

U, Up, cee U,

(in the first term we use the induction hypothesis; in the second we
use the first row to simplify and calculate the determinant; in the third
term we use the second row and in the last term the n — 1th row)

=A=14u)A=D"2A=1+ug+--+uy,)
—ugug(A = 1)""2 — - —ugu, (A —1)"72
=(A=1""1(\ =1+ trace (ul)).

Notice that (3.3) is a consequence of (3.1) and (3.2) and the fact that
det (AB) = det (A)det (B) for general square matrices A and B. O

As a corollary we have the following; it is in agreement with Theo-
rem 3.1.

Corollary 3.2. Let M be a Markov matriz and u a vector in R™.
Then

(3.4) o(M —ul) U {1} = o(M)U {1 — trace (ul)}.

Proof. This assertion follows from equality (3.3) together with the
remark that 1 is always an eigenvalue of the matrix M. ]

As a conclusion for the n-dimensional case we proved that of the n
eigenvalues of the perturbed matrix M — ul there are n — 1 which do
not depend on the vector u. The other eigenvalue, of the perturbed
matrix, does not depend on the entries of the Markov matrix M. As
we have seen, this was suggested by a numerical example.

The example shows us that the exact estimates of the spectral radius
p(M|L) and their approximate values are quite close to each other.
But generally the second method, using the function w(u, @), gives us
a better result than the first method, using the function v(u, o).
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