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COMPACTIFICATION OF MIXED MODULI SPACES
IN MORSE-FLOER THEORY

JELENA KATIC

ABSTRACT. We investigate convergences in spaces which
include holomorphic strips and gradient trajectories of a
Morse function.

1. Introduction. Let M be a compact manifold and f : M — R
a Morse function. Let P = T*M be a cotangent bundle over M, Ly =
O a zero section, H : T*M — R a compactly supported Hamiltonian
and L; = ¢¥(Ly) a corresponding Hamiltonian deformation of Ojy.
Denote by HM,(f) the Morse homology groups generated by critical
points of f and by HF,(H) the Floer homology groups generated
by Hamiltonian paths starting and ending at the zero section. For
two Morse functions f® and f#, Morse homology groups HM,(f%)
and HM,(f?) are isomorphic, and the same is true for two different
Hamiltonians H* and H?. We denote by

T°F : HM,(f*) — HM,(f?), S*’:.HF,(H*) — HF,(H")

the mentioned isomorphisms. (See [9, 10] for more details.)

Floer [1] proved that Morse and Floer homology groups are isomor-
phic, provided that f is C2—small enough, by choosing the Hamiltonian
Hy := fonm, where 7 : T*M — M is the canonical projection (actually
he proved that the sets of generators are in one-to-one correspondence;
the same is true for holomorphic discs and gradient trajectories which
define the boundary operator on the chain complexes).

The constructions of 7% and S%° are based on counting the numbers
of the solutions of some differential equations which are ordinary in
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Morse case and partial in Floer’s (i.e., which are of different types).
Therefore, it is not obvious whether the diagram

HF,(H*) —5">  HF,(HP)

T

HM.,(f*) —"— HM.(f*)
commutes.

The isomorphism between Morse and Floer homology groups can be
established by counting the number of mixed objects which connect
critical points of f and generators of Floer homologies and which
are solutions of some differential equations with Lagrangian boundary
conditions. (This idea goes back to Piunikhin, Salamon and Schwarz
who constructed a similar isomorphism defined by the intersection
numbers of spaces of perturbed holomorphic spheres and spaces of
gradient trajectories [6].) More precisely, let p be a critical point of
a Morse function f : M — R, H € C*(T*M), Xy a corresponding
Hamiltonian vector field and z : [0,1] — 7™M such that

(2) = Xg(z), =(0), z(1) € Oyp.
Denote by M(p, f;z, H) the set of pairs of maps
vi(=00,0] — M, w:[0,+00) x [0,1] — T*M
that satisfy
(dv/ds) = =V [(v(s)),
(0u/0s) + J((Ou/0t) — Xp,m(uw)) =0,
(3) u(9(]0, +00) x [0,1])) C Oy,

(
v(—0) = p, u(+o0,t) = z(t),
7(0) = u(0, (1/2))

where pg : [0, +00) — R is a smooth function such that

(s) = 1 s>R+1,
PRAS) = 0 s<R,

and prH : R xT*M — R, prH(s,z) = pr(s)H(z).
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Then, for generic f and H, M(p, f;z,H) is a smooth manifold,
compact when its dimension is zero. In that case we define the
homomorphism:

Y : CM.(f) — CF.(H), p— Z n(p, fyz, H)x
pi (z)+n/2=m;(p)

on the generators, where n(p, f;z, H) is a cardinal number of M(p, f;
z,H). Here mys(p) is a Morse index of critical point p, pu(z) is a
Maslov index of Hamiltonian path z as defined in [7, 8] and n =
dim M. Similarly, we define the homomorphism ¢ : CF,(H) —
CM.(f). In [2] we showed that chain homomorphisms ¢ and % induce
homomorphisms ® and ¥ in homology which are isomorphisms and
proved the commutativity of (1) in this case. The main technical
tool that we used there was the analysis of compactifications of spaces
M(p, f;z,H) for any p,z. The purpose of this paper is to give the
details of this analysis.

2. Convergence of maps with fixed Hamiltonian and domain.
Denote by M(p, g, f) the set of all v that satisfy:

(dy/ds) +V f(y) =0,
(4) o) = _
and by M(z,y, H) the set of all « which are solutions of:
(0u/0s) + J((0u/0t) — Xg(u)) =0,
u(s,1) € Ly i€{0,1},

u(—o0,t) = ¢ ((¢)~
u(+o0,t) = E ((¢F) M)(y) 2,y € Loy N Ly,

(5)

[u
~
—
8
~

modulo R action.

Recall that Hamiltonian paths with ends in Op (the solutions of (2)
are critical points of the action functional defined on Q := {a : [0,1] —
T*M | a(0), (1) € On}:

1
Ag:Q—R, Ag(y):= /0 7 0 — He((t)) dt.
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The perturbed holomorphic strips u, i.e., the solutions of

(6) %—I—J(%—XH(LL)) =0,

are negative gradient trajectories of this Ag.

Proposition 1. Let (yn,un) be a sequence in M(p, f;z,H). Pro-
vided that (yn,u,) has no WH2-convergent subsequence, there exist

e critical points p = p°,p',... ,p™ of f,
e solutions z°, %, ... ,x' = = of (2),
e trajectories v € M(pt,p*tl, f), i =0,1,... ,m —1,

e perturbed holomorphic discs v/ € M(x/, 291 H), j = 0,1,...,
-1,

o sequences {ti},{tl} in R,
o (v,u) € M(p™, f;2° H), and
e a subsequence (denoted by (Vn,urn) again)
such that
Loy(-+ )% ni i =0,1,... ,m—1,
Te(* + t) 250y

2. up(-+ 4, )%send, j=0,1,...,1—1,
ke ( k )_> J

3. (Vk,Uk)%o°(%U),
4. 1<m+1<mg(p) — (pu(z) + (n/2)).

The proof will be a consequence of the next two Lemmata.

Lemma 2. Every sequence in M(p, f;z, H) has a subsequence which
converges with all its derivatives uniformly on compact sets.

Proof. The sequence 7, is equicontinuous:

(s me) < [ Fa@ldr < V= [ ha)ldr

S1 S1
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= /59 — 51\//82 %f(’yn(r))dr
<Vs2—s1 m]\%xf_f(p)

and 7,(s) is bounded for every s because M is compact. So it follows
from the Arzela-Ascoli theorem that 7, has a subsequence (denoted
again by ~,) which converges uniformly on compact sets. Trajectories
~n are solutions of the gradient equation:

and f is smooth, so 7, converges together with all derivatives on
compact subsets of (—o0, 0], see [10].

Consider now the subsequence (7v,,u,). We can assume that the
codomain of u, is a compact set because the set U,,u,, ([0, +00) x [0, 1])
is CY bounded in T*M (see, for example, Section 3.1 in [4]). The
sequence du, has uniformly bounded energy:

2

—+oo
E(u,) : au" H% — Xppua(u)|| dtds
because we have:
Foo 8un oun, 2
W *XPRH(’LL) dtds
R+1 6un ou,, 2
HW—XPRH(U) dtds
a duy, du,, 2
“ HL — X, pu(u)|| dtds.
R+1 ot
The second integral is umformly bounded because:
(9un Ou,, 2
W(s t) — Xppm(uw)|| dtds
R+1
a dun oy ’
/ Y H Y — Xg(u)| dtds
R+1 Jo
+o00 2
/ / aun H% 5,t) — Xp(w)|| dtds

= Au(z A (un(0,1)) = An (2(t))-
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The uniform estimate of the first one follows from local regularity
theorem B.3.4 in [3]: for every solution v of (6) it holds:

lvllwrz2g) < ¢ (10v]l20) + vllLz@))

where Q = [0,1] x [0, R+ 1], D @Q is an open subset of R?, assuming
that measure of € is finite. But [|0v||12(q) = |V(pH)(v)| 2(0), and it
holds that ||V(pH)(v)||z= < ¢1 uniformly (in v) because ||v]co < c2
for every solution v of (6). For the same reason we have ||v||12(q) < c3.

When the energy of u,, is uniformly bounded, it follows from Gromov
compactness that u, has a subsequence that converges together with
all derivatives on compact subsets of ([0,4+o00) x [0,1])\{z1,...2p}. If
z; is the interior point of [0,400) x [0, 1], then it is a point in which a
bubble can occur [9]. In the case of the sequence of holomorphic strips
with Lagrangian boundary conditions it is also possible that bubbles
appear as holomorphic strips with the same boundary conditions—in the
boundary point z; [5]. But in our case neither holomorphic spheres nor
strips appear. There are no holomorphic spheres because w is exact, so
we have, for holomorphic v : §%2 — T*M:

/ Hdv||2 :/ viw :/ v*0 =0,
52 52 952

and no holomorphic strips with Lagrangian boundary conditions when
the Lagrangian manifold L is exact, because 6|1, is an exact form dF,

so:
/||dv\|2:/v*w:/ v*@:/ d(Fov)=0
by b % %

(where ¥ = [0, +00) X [0, 1]). This completes the proof. O

Lemma 3. If the sequence (Vn,u,) C-converges to (y,u) €

M(p, f;z,H), then (Yn,un) is also WH2 convergent.

Proof. If the limit (v,u) is an element of M(p, f;z, H), then v,(s)
converges uniformly to p, when s — —oco and u,(s,t) converges
uniformly to z(¢), when s — 4o00. To prove that ’yn(s)j}p, let us
argue by contradiction. Assume that there a sequence of real numbers
sy — —oo and a subsequence 7,, such that d(p,vn,(sx)) > €. Let
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U be a neighborhood of p such that f(z) = f(p) + . £2? in local
coordinates in U C B.(p). Let sg be such that y(s) € U when s < s
(such an s exists because y(—o00) = p) and ng such that v, (s) € U, for
n > ng (there is such an ny because v, (so) = ¥(s0)). But we conclude
from gradient equations in local coordinates that v,(s) € U, for all
s < so. This is in contradiction with our assumption, so 7,(s) 23 p,
when s — —oo.

In order to prove the uniform convergence of u,(s,t), take € > 0
and choose the neighborhood U, of z(]0,1]) such that |Ag(a(t)) —
Ap(z(t))| < € and ||[dAg(a(t))|| < e for every path « contained in U..
There exist ng and sp such that u,(sg,t) € B, for all t € [0,1], n > ny
(because u(s,t) converges toward z(t) uniformly in ¢, when s — co [9,
11] and u,, converges locally uniformly toward u and the set {s¢} %[0, 1]
is compact). For s > so (assume sy > R + 1) we have:

|Am (un(s,t) — A (z(t)] = Ar(un(s,t)) — Au(z(t))
< Ag(un(so,t)) — An(z(t))
= |Ag (un(s0,t)) — Am(z(t))| < ¢

(because Ap decreases along its gradient trajectories). The sets U,
form a local base for the critical points of the action functional. By
decreasing e, if necessary, we conclude that wu,(s,t) is contained in
an arbitrarily small neighborhood of z(t) for n > ng, s > so (we
can assume that the values which Ay takes in its critical points are
different; these critical paths are isolated). So u,(s,t) 3 z(t), when
s — oo uniformly in ¢ and n.

The uniform estimates:
(8) |’Yn(8)| < cpespsv s < —so, ||un(37t)|| < cze_szsa s 2> S0,

(cp, Cu» Ep, €5 are constants depending on p and z) follow from the
estimates [9, 10]:

Iv(s)| < cpe?®, s < —sq, llu(s, t)|| < cpe™*%, s> s

and the uniform convergence that we have just proved. But ~, =
exp(&n), un, = exp((y,), and by the assumption &, %iac (), ¢, Y20, and it
- —

follows from (8) that &, and ¢, converge uniformly everywhere. It is
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also true for its derivatives, because 7y, and u,, are solutions of (6) and
(7); thus, we conclude that (v,,u,) converges in W2 topology. O

Proof of Proposition 1. Now the rest of the proof is standard: it
follows from Lemma 2 that there is a Cp, convergent subsequence, if
its limit (y,u) is an element of M(p, f;x, H), then it is also W12-
convergent (Lemma 3), so assume that it belongs to M(p™, f;2° H)
for some critical point p™ and Hamiltonian path z° (the pair (y, u) has
to belong to some space of this type because -, and u,, are solutions of
equation (3), and the convergence is together with all derivatives). It
holds Ag (z°) > Ag(z) and f(p™) < f(p) because f and Apg decrease
along their gradient flows. The rest of the proof is the same as in
separate cases of gradient trajectories or holomorphic discs, see e.g.,
9,10. O

3. Convergence of maps with variable Hamiltonian or do-
main. Let p and ¢ be critical points of f such that ms(p) = ms(q).
In [2] we defined, for a fixed R > 0:

Mg(p,q, f; H)
v- (—O0,0] - M7 Y+ ¢ [0,+OO) — Ma
u:R x[0,1] - T*M,
o (dv+/ds) = =V f(y+), (Ou/0s)
e (7—7’7—{-7“)

+ J((Ou/0t) = X, (u) =0, ’
V-(—00) = p, v+(+00) =g,
u(O(R x [0,1])) C O, u(Foo,t) = v+(0)

where pr : R — [0, 1] is a smooth function such that

and

M(p,q, fs H) == {(R,v—, v+ ) | (=, 7+,u) € MR(p,q, s H)},

for R > Ry. The set m(p, q, f; H) is a one-dimensional manifold.
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Definition 4. A broken (perturbed) holomorphic strip w is a
pair (v1,vs) of (perturbed) holomorphic strips such that vy (+00,t) =
va(—00,t). A sequence of perturbed holomorphic strips u,, : Rx[0,1] —
T*M is said to converge weakly to a broken trajectory w if there exist
a sequence of translations ¢¢, : R x [0,1] — R x [0,1], for i = 1,2 such
that u,, o ¢, converges to v; uniformly with all derivatives on compact
subset of R x [0, 1].

In the same way one can define broken gradient trajectory and weak
convergence of gradient trajectories, see [10].

Proposition 5. Let (R,,y",v%,u") be a sequence in M(p,q, f; H).
Then it either W2 — converges toward an element of M(p, q, f; H), or
there are four possible limit behaviors:

1) There is a subsequence (denoted by (Ry,¥™,v%,un) again) such
that R, — Ry and (y™,~",un) converges to (y—,v+,u) € Mg, (p, g, f;
H).

2) There is a subsequence of (Rn,y",7",un) that converges to a
broken trajectory in M(p,r, f)x M(r,q, f; H). Here (v, u™) converges
in W2 topology, and Y™ converges weakly.

3) Similarly, there is a subsequence of (R, Y™, ,un) that converges
to a broken trajectory in M(p,r, f; H) x M(r,q, f).

4) There is a subsequence of R,, R, — +o00, and there is a
subsequence of (Y, ,u,) that converges weakly to a broken element

of M(p, f;x, H) x M(z,H;q, f).

Proof. Assume first that R, is bounded, so there is a compact
K D {R,}. The family pr can be chosen to depend continuously on
R, so all estimates in Lemmata 2 and 3 hold for all R € K uniformly
in R too. In the same way as there we conclude that (y",~%,u™)
has a subsequence that converges locally uniformly, so if it does not
converge toward an element of M(p,q, f; H), then either R, — Ro
(and (y™,%,u™) converges in W2 topology) or R,, — Ry > Ry and
(Y2, 7%, u"™) converges to a broken trajectory, denoted by w. Since
the dimension of M(p,q, f; H) is one, w can be broken only once.
Indeed, if the sequence (y",~"+,u™) degenerates into a trajectory w
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which consists of the trajectories ~vi,7ve,..., vk, V+,u, where k& > 3,
it means that all manifolds M(p;,pi+1,f) O ;i are nonempty. (Here
P = p1, (Ve Ye,u) € M(pk,q, f; H).) But then we would have (since
dlmM(p, q, f) = mf(p) - mf(q) - 1)

my(p) — ms(q) = SE2 (my(pi) — myp(pig1)) + (mg(pi) — my(q))
>yl —1=k-2>0,

which contradicts our assumption that m¢(p) = my(g). Although the
domain of u, is noncompact, u, cannot converge to a broken disc
because the nonholomorphic part of the domain is compact, and there
u, converges. But there are no solutions of:

u:R x[0,1] = T*M,
(Ou/0s) + J(Ou/0t) =0,
u(O(R x [0,1])) C Op,

(except for constants).
This is how the first three cases can happen.

Now let R,, be unbounded, say R,, — +00. Define 4,, and ,:
Un(s,t) := up(s—Rn— Ro —1,1), Un(s,t) := un(s+ Rn+ Ro+1,1).

It holds:

0 s € (=00, Ro] U [2R,, + Ry + 2, +00),

D yiin(s,t) =
7in(5:1) {XH(an(s,t)) s€[Ro+1,2R, + Ro +1],

and

= . 0 s € (—00,—2R,, — Ry — 2] U [—Ry, +0),
8Jun(s; t) = .

Xpg(an(s,t)) s€[-2R, —Ry—1,—Ry—1].
The parts of the domain where %, and i, are neither holomorphic nor
gradient trajectories of A are compact sets, so all uniform estimates
that we proved in Lemmata 2 and 3 hold for @,, and t,,. Therefore, @,
and 1, converge locally uniformly with all derivatives toward @ and 4,
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where 4 and 4 are the solutions of:

(9/ds) + J((9a/0t) — Xpp, 1 (1)) = 0,
a(O(R x [0,1])) € O,

i(+00,t) = z(t),

4(—o00,t) = v-(0),

(0u/0s) + J((90/0t) — X 1 (1)) =0,
a(O(R x [0,1])) C Oy,
i(—o00,t) = xz(t),

t(+00,t) = 74(0)

Here pg, and pg, are smooth functions such that:

PRy (8) = {(1)
PR, () = {(1)

SSR07

SZRO+1,
SZ_RO)

SS—Ro—l,

933

and 4 the limits of 4}. In general, sequences vy} can degenerate to a
broken trajectory, but in our case that’s not possible because of dimen-
sion. Indeed, if both the sequence (for example) v™ and the sequence

uy, broke, there would exist an element in M(p, r, f),

M(r, f;2,H) and

M(z, H;q, f), so it would hold (since dim M(r, f;z, H) = mys(r) —

g (z) —n/2 and dim M(z, H; q, f)

0 =ms(p) —my(q)

= (g 0) = () + (s (1) = (o) = ) + (o) + -

>140+0.

= pu(z)+ (n/2) —ms(q)):

2 2

o)

The pair (@, @) is a broken trajectory in 4) and the proof is finished. O

In [2] we also considered, for pg(z) = pm(y) and fixed ¢ > 0, a

zero-dimensional manifold:
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M (z,y, H; f)
u_ : (—00,0] x [0,1] = T* M,
ug : [0, +00) x [0,1] = T* M,
v:[—e,e] = M,
(dv/ds) = =V f(7),
=4 (u—, uy,7) | (Ous/0s) + J((Out/0t) — Xppm(us)) =0,
u—(a((*oo 0] x [0,1])) C O,
u4(9([0, +00) x [0,1])) C O,
ui(O 1/2) v(+e),
(—00,t) = a(t), uy(+o0,t) =y(t)

Uu_

and a one-dimensional manifold:

M(z,y, H; f) = {(e,u—, us,7) | € > eo,
(u,,’U,+,’Y) EME(m,y,H;f)}-

Proposition 6. Let (e,,u”,u’},v,) be a sequence in M(z,y, H; f)
and assume that it has no subsequence that converges in W% topology.
Then there are four possibilities:

1) There is a subsequence which converges to an element of M., (z,y,
H; f);
2) There is a subsequence which weakly converges to an element of

M(z,z, H) x M(z,y, H; f);

3) There is a subsequence which weakly converges to an element of

(
)
M(z, 2, H; f) x M(z,y, H);
)
(

4) There is a subsequence which weakly converges to an element of

M(z, H;p, f) x M(p, f;y, H).

Proof. Obviously, all uniform estimates in Lemmata 2 and 3 are
true for u”, v’} and 7,, also uniformly in €, so are the conclusions:
the sequences u", u/ and 7, converge locally uniformly, and the
only obstruction to W'2-compactness is the convergence to broken
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trajectories. If the sequence ¢, is bounded, then the domain of -, is
compact, so the only possibilities are described in 1), 2) and 3). (Again
the sequence (u™,u,v,) can break only once, for the dimensional
reason.) If g, — 400, then the domains of 7, are not contained
in any compact set—and there we have no global convergence. Then
we can consider v, as the trajectories with the domain R (such that
Yn(8) = const, for |s| > €,) and after certain reparametrization, as in
subsection 2.4.2 in [10], we obtain the last case, concluding the proof. o

4. Gluing. In this section we formulate the converses of Propositions
1, 5 and 6 for the sake of completeness. The proofs are based on the
implicit function theorem and the pre-gluing and gluing techniques.
Since they all have a local nature, and thus their proofs are the verbatim
of proofs of analogous propositions in other versions of Morse-Floer
homology, we are going to skip them. We refer the reader to [10] for
more details about gluing of gradient trajectories and to [9] for gluing
of holomorphic curves. The next proposition shows that the set of
broken trajectories from Proposition 1 is contained in the boundary of

M(p, f;z, H).

Proposition 7. Let p = p° pt,... ,p™ be critical points of f, and

let 2% 2%, ... 2! = z be Hamiltonian paths which solve (2). For any

m + 1+ 2-tuple (Y0, 4L, ... ,y™ulut, ... ul) in

M(poaplaf) XX M(pmilapmaf)XM(pmaf;anH)xM(woawlaH)
x - x Mzt 2t H)

there exists a sequence (Yr,ur) i M(p, f;xz, H) and the sequences
{ti.}, {t.} in R such that

oo

7k(+t§c)ic>7l’ i:O,l,...,mfl,
—
i\ Cloc .
up(-+t4,) 2Sul, j=0,1,...,0-1,
—

and

oo
loc

(Vis k) j(% u).
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The following proposition says that every broken object mentioned
in Proposition 5 is a limit of some sequence from M (p, ¢, f; H); hence,
the broken objects of this type form the set which is bigger then a
boundary of M(p,q, f; H).

Proposition 8. Let w be a broken trajectory of some of the next
three types:

o w= (7,774 u) € M(p,r, f) x M(r,q, f; H),
o w= (7—77—%7“77) EM(p,T,f;H) X M(Taqaf)a
o W= (717u17u2772) EM(pvf;xaH) XM(l‘,H;q,f).

Then, there exists a sequence (R,,¥™,v%,u") in M(p,q, f; H) that
converges weakly to w.

The same is true for the union of broken trajectories from Proposi-
tion 6: it is a subset of the boundary of M(z,y, H; f).

Proposition 9. For any broken trajectory w of some of the next
three types:

o w=(uu,ug,y) € M(z,z, H) x M(z,y, H; f),

o w=(u_,uy,7,u) € M(z,2,H; f) x M(z,y, H),

o w = (u1,71,72,u2) € M(z, H;p, f) x M(p, f;y, H),

there is a sequence (e, u”,u’t,vn) in M(x,y,H; f) that converges
weakly to w.

In the next section we will summarize the compactness results for the
space of mixed objects. It is the direct consequence of Propositions 1
and 7.

5. Compactness and non-compactness. It follows from previous
considerations that the boundary of space of mixed trajectories consists
of broken mixed trajectories. More precisely, the next theorem holds:
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Theorem 10. The topological boundary of M(p, f;x,H) can be
identified with

UM(pOaplaf) X X M(pmilapmaf) X M(pmaf;xO’H)
xM(z0 zt H) x -« x M(2!71, 2!, H).

Here the union is taken in all integers m and [ such that 1 < m+1 <

m¢(p) — (pu(z) + (n/2)), all critical points p = p°,pt,... ,p™ of f and

all Hamiltonian paths 2%, 2!, ..., 2! = x such that

mp(p) > mp(p') > o > mpp") > () + 5 > () +

S
|3

> > pn(@)+ 5.

The next corollary holds for the dimensional reason.

Corollary 11. If ms(p) = pu(z) + (n/2), then M(p, f;x,H) is
a compact zero-dimensional manifold, i.e., a finite set. If m¢(p) =
pa(x) + (n/2) + 1, then M(p, f;z, H) is a one-dimensional manifold
with topological boundary

U M(p,q, f) x M(q, f;z, H)

mg(q)=mg¢(p)—1

U U M(p, f5y, H) x M(y, =, H).

pa(Y)=pH(T)+1

Proof. If m(p) = pu(z) + (n/2), then all the components M (p°, p,
f)’ Tt 7‘M(pm717pm7 f)7 M(pm7 f; xO’H), M(m07m17H)7 tet 7M(ml717
z!, H) of the boundary of M(p, f;x, H) are the manifolds of the di-
mension at most —1 because of (9), hence empty sets. For the same
reason, when m(p) = pu(x) + (n/2) + 1, then all the mentioned com-
ponents have the dimension at most —1, except for one, which is zero-
dimensional. It could be either M(p,q, f) (and hence M(q, f;z, H)
also) for some p such that m¢(q) = mys(p) — 1, or M(p, f;y, H) (and
M(y,z, H)) for some y such that pg(y) = pg(z) + 1. O
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The first part of Corollary 11 implies that the homomorphism
is well defined, and the second that v defines a homomorphism on
homology groups.

A similar result holds for the manifolds of mixed objects with variable
Hamiltonian or domain. From Sections 3 and 4 we conclude that the
topological boundary of M(p, g, f; H) can be identified with

MRo(paqvf;H)U U M(p,r,f)XM(T,q,f;H)
my(r)=ms(p)—1
u U M fiH) x M(r,q,f)
my(r)=mg(p)
U U M(p, f;2, H) x M(z,H; q, f)

pu (@) +(n/2)=m;(p)

and the boundary of M(z,y, H; f) with

M, (z,y, H; f)U U M(z, 2, H) x M(z,y, H; f)
pr(2)=pn (2) 1
U U M@z Hf) x M(z,y, H)
o (2)=pr (2)
U U M(z, H;p, f) x M(p, f;y, H).

my(p)=pw(z)+(n/2)

These established results allow us to prove that ¥ o ¢ and ¢ o ¢ are
identities on homology groups (see [2] for more details).
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