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GEODESICS AND CURVATURE
OF MOBIUS INVARIANT METRICS

DAVID A. HERRON, ZAIR IBRAGIMOV AND DAVID MINDA

ABSTRACT. We confirm that certain circular arcs are
geodesics for both the Ferrand and Kulkarni-Pinkall metrics.
‘We demonstrate that ‘most’ Kulkarni-Pinkall isometries are
Mobius transformations. We analyze the generalized Gaussian
curvatures of these metrics. We exhibit numerous illustrative
examples.

1. Introduction. This article is a continuation of [5, 6] wherein we
studied a Mobius invariant metric puq(z)|dz| introduced by Kulkarni
and Pinkhall [8] as a canonical metric for M6bius structures on n-
dimensional manifolds. In [5] we employed the definition given below,
see subsection 2.E, and corroborated various properties of this metric
using classical function theory. In [6] we established pointwise and uni-
form estimates between the Kulkarni-Pinkall metric and the hyperbolic
and quasi-hyperbolic metrics.

Here we examine both the Kulkarni-Pinkall metric and a related
metric first studied by Ferrand in [3]. We show that certain curves are
always geodesics for these metrics, confirm that many Kulkarni-Pinkall
isometries are Mdobius transformation, and investigate the generalized
Gaussian curvatures of both metrics. We also prove a number of basic
facts concerning the Kulkarni-Pinkall metric.

Throughout this paper € is a region on the Riemann sphere C with
at least two boundary points. Circular geodesics are one of the central
objects of our study: we call I' a circular geodesic in (2 if there exists a
disk D in C with D C € and such that I is a hyperbolic geodesic line
in D with endpoints in 8D N IN. (See below for all definitions.)
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While it is rarely true that a circular geodesic in €2 is also a hyperbolic
geodesic in §2, we will see that circular geodesics are actually geodesics
for many natural metrics. In particular, we have the following.

Theorem A. Circular geodesics are both Kulkarni-Pinkall and Fer-
rand geodesics.

We can describe the Kulkarni-Pinkall isometries for many regions.

Theorem B. FEvery Kulkarni-Pinkall isometry between nonsimply
nondoubly connected regions is a Mobius transformation.

In fact this conclusion also holds for most simply and doubly con-
nected regions; the above is just an easily stated consequence of Theo-
rem 4.10 in conjunction with Theorem 4.11.

Both the Ferrand and Kulkarni-Pinkall metrics are negatively curved,
and we have additional information in any region which is the Mobius
image of a convex domain.

Theorem C. The generalized Gaussian curvatures of the Kulkarni-
Pinkall metric lie in the interval [—1,0]. For a Mdbius convex region
this improves to [—1,—1/2]. The upper estimates also hold for the
Ferrand metric, but not necessarily the lower bound.

We mention that the above result is sharp in several ways. First,
there are simply connected regions in which the Gaussian curvature
takes on both values 0 and —1, e.g., any concave infinite sector; in fact,
this even holds for ‘nearly’ convex regions which are infinite sectors
with an angle opening just larger than 7. Next, for a punctured disk
the Gaussian curvature assumes all values in (—1,0), and for an infinite
strip it takes on every value in (—1,—1/2]. See subsections 3.B and 3.C.

Finally, the Gaussian curvature of these metrics can be constant only
in special cases.

Theorem D. If the Gaussian curvature of the Ferrand or the
Kulkarni-Pinkall metric is a constant k in some quasi-hyperbolic re-



MOBIUS INVARIANT METRICS 893

gion (), then either k = 0 and Q) is a twice punctured sphere, or k = —1
and Q is a disk on C. In the former case the metrics are both the cor-
responding Mobius quasi-hyperbolic metric; in the latter case they are
the hyperbolic metric.

This document is organized as follows. Section 2 contains prelimi-
nary information including definitions and terminology as well as basic
and/or well-known facts. We exhibit fundamental examples in Sec-
tion 3, but other examples appear throughout the article. A Euclidean
interpretation for the Ferrand and Kulkarni-Pinkall metrics is presented
in subsection 4.A and the proofs of Theorems A, B, C and D appear in
subsections 4.B, 4.C and 4.D, respectively.

We remark that the quantities 1/§, 745 and ¢ can be defined as
below for appropriate regions in Euclidean n-space (or on the n-sphere).
Also, the hyperbolic metric can be defined for balls, half-spaces, and
the exterior of closed balls. Thus, the quasi-hyperbolic, Ferrand, and
Kulkarni-Pinkall metrics can be defined for these regions. Many of our
results, such as Propositions 2.7 and 4.4, continue to hold in this setting
although sometimes dimensional constants must be included.

2. Preliminaries.

2A. General information. Our notation is relatively standard. We
work in the complex plane C; stated results are valid for the Riemann
sphere C = C U {o0} in terms of local coordinates as the reader may
verify. Everywhere (Q is a domain, i.e., an open connected set, and 0f2,
¢ denote the boundary, complement, respectively, of {2 with respect
to C. The Euclidean disk centered at the point a € C of radius r is
denoted by D(a;r) and D := D(0;1) is the unit disk. We also let H
denote the right half-plane, H := {R(z) > 0}, and we define

C*:=C\ {0}, Cu:=C\{a,b}, Cu:=C)\{a,b};

the latter two definitions are for distinct points a, b in C or in 6,
respectively.

The quantity §(z) = dq(z) := dist (z,09Q) = dist (2,002 N C) is the
Euclidean distance from z € C to the boundary of Q, and 1/4 is the
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density for the so-called quasi-hyperbolic metric |dz|/d(z) when Q C C.
We call Q C C a quasi-hyperbolic domain provided C \  contains at
least two points (one of which may be the point at infinity). We make

frequent use of the notation
D(z) = Dq(z) := D(2;6(2)) = D(z;0a(2))

for the mazimal disk in Q centered at z. The reader should take care
not to confuse the two disks D(z) and A(z) (the latter is defined below
in subsection 2.B) each associated with a point z € .

As our notation above suggests, we do not include  whenever
the region is clear from context. Often, if there are two regions in
consideration, say Q and ', we will use a prime, i.e., a /, to indicate
quantities associated with ¥'. For example, ¢'(z) = dq(z). We hope
no confusion arises!

2B. Conformal metrics and geodesics. Recall that a conformal
metric on a region ) C C has the form p(z)|dz| where p is some positive
continuous function defined on (2. Here we consider several such
metrics. We remind the reader that whenever f : Q — Q' is a (locally
univalent) holomorphic map, every conformal metric o(w)|dw| on
determines a metric, the so-called pullback, p(z)|dz| :== f*[o(w)|dw|] on
Q where

p(2)ldz] = o (f(2)If' ()l dz|.

We often abuse notation and abbreviate this by writing p = f*[o].

A geodesic in a metric space X is an isometric embedding v : I — X
where I C R is an interval; we use the adjectives segment, ray, or line,
respectively, to indicate that I is bounded, semi-infinite, or all of R.
We let |y| := «(I) denote the image of 7. A metric space is geodesic if
each pair of points can be joined by a geodesic segment.

Given a conformal metric p(z)|dz| on €, there is an associated
distance function d, obtained in the usual way by letting

() = / o(2) |

denote the p-length of a rectifiable curve -y, and then defining the p-
distance between two points a, b as

d,(a,b) =inf{l,(7) : v a rectifiable curve joining a, b in Q}.
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In this way we always obtain a length space (£2,d,) which is often a
geodesic space.

In our setting we have the associated hyperbolic, quasi-hyperbolic,
Kulkarni-Pinkall, and Ferrand distances dx, dy/s, d,, dy, respectively.
Since these distance functions all yield complete locally compact metric
spaces, the Hopf-Rinow theorem ensures we get geodesic spaces: all
points can be joined by geodesics. While we do not study these
distances per se, we are interested in their geodesics which we call,
respectively, hyperbolic, quasi-hyperbolic, Kulkarni-Pinkall and Ferrand
geodesics.

2C. Quasi-hyperbolic metrics. As alluded to above, for proper
subdomains 2 C C, the so-called gquasi-hyperbolic metric is given by
|dz|/6(z). This metric has proven useful in many areas of modern
analysis. We mention only the interesting articles by Martin and
Osgood [9] and Koskela [7]; see these for additional references.

The quasi-hyperbolic metric in the punctured plane C* is simply
|dz|/|z|, which classically was called the logarithmic metric. Employing
an auxiliary Mobius transformation, we can define a Mobius invariant
analog of this metric in the region C,; by

_ la — 0]
Tol®) = o o)

with the standard interpretation if one of a or b is the point at
infinity (in which case 74, reduces to the quasi-hyperbolic metric on
the appropriate punctured plane).

The density for the Ferrand metric pq(z)|dz|, introduced in [3], is
given for z € QN C by

o(2) = pa(z) ;== sup 7uwp(2)-
a,beqe

In fact, there exist points a,b € 0Q such that ¢(z) = 74(2); cf.
Proposition 4.4.

2D. Hyperbolic metric. When Q C C has at least three boundary
points, usually dubbed a hyperbolic domain, there exists a universal



896 D.A. HERRON, Z. IBRAGIMOV AND D. MINDA

covering projection p : D — 2 and the density A = Aq of the Poincaré
hyperbolic metric Aq(2)|dz| is determined from

Mz) = Xa(z) = Ap(C)) = 2(1 — <) HP' (O

of course, this is only valid at points z € QN C. Alternatively, A(z)|dz|
is the unique metric on €2 which enjoys the property that its pullback
p*[A\(2)|dz|] is the hyperbolic metric on D. Yet another description is
that A(z)|dz| is the maximal constant curvature —1 metric on €.

We remind the reader that the hyperbolic geodesic lines in Euclidean
disks and half planes are subarcs of circles and lines orthogonal to the
domain’s boundary.

Here is a perhaps surprising extension of Schwarz’s lemma. A proof
can be modeled on the argument for [10, Theorem 1].

2.1. Fact. Let Q and ' be hyperbolic regions. Assume that f is
holomorphic in some neighborhood of a € Q and takes values in .
Suppose that for all z near a, f*[N](z) = N(f()|f ()| < A(z) with
equality holding at z = a. Then f : Q — Q' is a holomorphic covering
projection; in particular, f*[N] = .

We require the following ‘folklore’ information. See, for example, [2,
Theorem 4.1, page 163] and note that any holomorphic covering C —
Q c C must be the exponential followed by a Md&bius transformation.
See subsection 2.F for the definition of Gaussian curvature.

2.2. Fact. Let p(z)|dz| be a conformal metric on some quasi-
hyperbolic region ) on C. Suppose that p(z)|dz| is complete and has
constant Gaussian curvature K, = k throughout Q. Then either k =0
and S is a twice punctured sphere éab with p = cTqp for some constant

c>0, ork <0, Q is a hyperbolic region, and p = (—k)~/2\.

The following hyperbolic geometric information will be useful.

2.3. Lemma. The hyperbolic geodesic line in D with FEuclidean
midpoint x € [0,1) has endpoints
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i 0 _ x+1 :2w+i(lfx2)
’ 1+ iz 1+ 2

and '
l—z<|z—e? <V2(1-2).

Consequently, if T is a hyperbolic geodesic line in some disk D, z € ||,
and € is an endpoint of T' closest to z, then

|z = ¢| < V26(2), where §(z) = dist (z,0D).

Proof. The Mébius transformation w = T(z) = (z + z)/(1 + zz2) is
a hyperbolic isometry of D which maps the Euclidean segment (—i,1)
to the hyperbolic geodesic line in D with Euclidean midpoint x, so

€’ = T(i). An easy calculation reveals that

1+z
Vita?

The distance inequalities now follow since f is increasing with f(0) =1
and f(1) = V2.

It remains to confirm the last assertion. Suppose z € |I'| with ¢ an
endpoint of the hyperbolic geodesic line I' closest to z. Consider the
hyperbolic geodesic line with Euclidean midpoint z, and let 1 be one
of its endpoints. According to what was just proved,

z—e?| = (1 —z)f(z) where f(z) =

2= ¢ < |2 —n] < V25(2)

as desired. O

We require the following estimate concerning the values of certain
hyperbolic metric-densities.

2.4. Lemma. Given x > 0, choose r = r(z) > x so that
the hyperbolic geodesic line in D(0;r) with Euclidean midpoint x has
endpoints €, & which satisfy |t —&| = 1. Then as x increases, the values
of Ap(oyr) (%) decrease from 2 to V2.
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Proof. Using Lemma 2.3 we find that

E=re’ =r 2z /r) +i(l — (w/r)?) _ 2er+i(r® —a?)
1 + (x/r)2 'r2 + 1‘2 ’

the requirement |z — &| = 1 yields 72 + 22 = |z + ir|(r? — z?), whence
r?2 + 2% = (r? — 2%)2. From this we calculate r?> = 2% + 1/2 + (22% +
(1/4))'/2, so (r/x)? = f(1/22%) where f(t) = 1+t + /4t + 2. Note
that f monotonically increases from f(0) =1 to co as t — oo. Finally,
Aom(@) = 20/(r® —a?) = 2rfr? +a?) /2 = 21 + (a/r)?) 12 =
2(1 + f(1/22%)~ 1) 1/2, o

2E. Kulkarni-Pinkall metric. The density for the Kulkarni-
Pinkall metric pua(z)|dz| can be defined for points z € 2N C as

w(z) = pa(z) = inf {)\D(z) :z€ D CQ,D is a disk on 6}

We follow the standard convention that a disk in C is either an open
Euclidean disk, an Euclidean half-plane, or the complement of a closed
Euclidean disk together with the point at infinity. Clearly, ua(z)|dz|
is defined (and positive) for any quasi-hyperbolic domain Q c C.
The ‘infimum’ in this definition can be replaced by ‘minimum,’ see
[5]. This metric enjoys the usual domain monotonicity property, is
Mbobius invariant and complete and bilipschitz equivalent to the quasi-
hyperbolic metric. For precise statements of these results, along with
various other useful facts, we refer the interested reader to [5, 6] and/or
[8]; but, see below as well.

Notice that for the twice punctured sphere Gab we have

p(z) = p(2) = Tap(z) forall z € Gab.

For each z € Q (a quasihyperbolic domain in (A]) there is an associated
unique extremal disk A = A(z) = Aq(z) C Q with the property that

pa(z) = Aa(z).

The extremal disk A = A(z) is either an open Euclidean disk, an open
half-plane, or the exterior of a closed disk, and is characterized by the
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property that K = K(z) = 0A N 02 contains two or more points and

z belongs to the so-called hyperbolically conver hull K (of K in A)
defined by

K= ﬂ {H : H C A, the spherical closure of H contains K };

here H is a closed (relative to hyperbolic geometry on A) hyperbolic
half-plane in A. (As examples: (i) If K = {a,b}, K is the hyperbolic
geodesic in A ending at a and b. (ii) If K = {a,b,c}, K is the closed
ideal hyperbolic triangle in A with vertices a, b, c¢. (iii) If K contains
n points, n > 3, then K is the closed ideal hyperbolic n-gon in A with
vertices at the points of K. (iv) When K = 9A, we let K = A))
Moreover, it turns out that such a disk A is the extremal disk for each
point of K.

Given an extremal disk A and K = 0A N 01, we write Bd (I?) =
0K N Q. Thus, Bd (I?) is a union of hyperbolic geodesic lines in A
(therefore circular geodesics in Q) having endpoints in K; of course,
there may be such a geodesic in Int (K) which is not in Bd (K). Note
that when K consists of precisely two points, Bd (I? )= K is precisely

the circular geodesic in Q with these endpoints.

For convenience, below we collect some useful information regarding
extremal disks. We call a point of Q2 an extremal boundary point if
it lies on the boundary of some extremal disk in 2. Each z € Q has
at least two associated extremal boundary points, namely the points
of K(z) = 0A(z) NON. Note too that the endpoints of each circular
geodesic are extremal boundary points. For detailed information and
proofs regarding extremal disks, we refer to [5]. In particular, Theorems
3.4 and 4.2 therein provide explicit descriptions for the extremal disks
(and formulae for the Kulkarni-Pinkall metric thereof) in the regions
obtained by puncturing the Riemann sphere at two and three points,
respectively.

2.5. Proposition. Let Q be a quasi-hyperbolic domain in C. Then:

(a) For all z € Q there is a unique extremal disk A = A(z) = Aq(z) C
Q with the property that po(z) = Aa(z), K = K(z) = 0ANON contains

~

two or more points, and z € K.
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(b) Each disk A C Q with K = 0ANOQ containing at least two points
is the extremal disk for every point z € K.

(c) Suppose A = A(z) C C, and let T be any hyperbolic geodesic
line in A with Fuclidean midpoint z (T is unique unless z is the center
of A). Then either both endpoints of I belong to K = K(z), or K
contains a point in each of the components of OA \ |T|.

(d) If A(z) is the Euclidean disk D(c;r), then r > §(z2).

(e) The extremal boundary points for Q are dense in OS).

Proof. Parts (a) and (b) can be found in [5, Theorems 3.5, 4.1, 4.6];
(c) is a consequence of z € K. To see that (d) holds, we note that

% > p(z) = Aa(z) > dale) = %

It remains to verify (e).

We start with an arbitrary point n € 9€2. Since Mdbius transforma-
tions preserve extremal boundary points, we may suppose n € 02N C.
There are ‘closest boundary points’ arbitrarily close to 7; if one of
these is an extremal boundary point, then we are done. Thus, we as-
sume ¢ € 0N is near n with ¢ nonextremal, and ¢ a closest boundary
point for some z € €, i.e., §(z) = |z — (|. Making an affine change of
variables, we further assume that z =0 and { = 1.

We claim that for all a € [0,1) there is an = € [a, 1) such that z lies
on a circular geodesic in . If a € Bd K(a), we can just take x = a;
otherwise, since ( =1 ¢ K (a), we must have (a,1) NBd K(a) # @.

Now we confirm that there are extremal boundary points arbitrarily
close to . Let € > 0, and select x € [1 —¢/3,1) with = € |I'| for some
circular geodesic I in €. Let £ be an endpoint of I" closest to z. Since
A=A(x) CQ,da(z) <d(z) =]z - =1—-2z < e/3. Thanks to

Lemma 2.3, we now obtain
|z — €] < V20a(z) < (V2/3)e,

and thus [€ — (| < |z — &+ |z — (| <e. O

Note that one consequence of (a) and (b) above is that for all points
21,22 € Q, the sets K; = K(z;), and also K;, are either disjoint or
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identical. In particular, the sets K form a partition of Q into disjoint
relatively closed 2-cells and 1-cells. A similar statement about extremal
disks is false; however, we can say something about how the extremal
circles intersect.

2.6. Proposition. Let Q be a quasi-hyperbolic domain in 6, fix a
point a € Q, and put A = A(a), K = K(a). (Then each component
of 0A\ K is an open arc whose closure is the ‘outer’ boundary of a
corresponding component of A\ K.) Let U be a component of A\ K.
For all z € U, the arc A = OA(z) N A separates z from OA\ U in A
and has endpoints on OANTU.

Proof. Using a preliminary Md&bius transformation, we assume a = 0,
A =D, +i € K, and U = DNH. Since 0D and 9A(z) are distinct
circles, they have 0, 1, or 2 points of intersection. Since z € D and
+i € 09, it is not difficult to see that neither of the first two cases can
arise, so 0D N OA(z) = {¢,n} for some & # 7.

Let us first check that A = 9A(z) N D (the subarc of A(z) between
¢, and inside D) separates z from C' = D \ U in D. Suppose that A
does not separate z, C'in D. Now, if one or both of &, 7 lies in H, then
we see that one of +i lies in A(z) which cannot happen. Thus, both
points §,n must lie in the closed left half-plane. We claim that this
contradicts z € K(z). Indeed, a careful examination of the hyperbolic
geodesics joining € and 7, one in D and one in A(z), reveals that the D
hyperbolic geodesic separates z from the A(z) hyperbolic geodesic. In
particular, we see that the hyperbolic half-plane H in A(z), determined
by the hyperbolic geodesic joining £ and 7, and not containing z, enjoys
the property that H D K(z). But then K(z) C H, yet z ¢ H.

We conclude that A does separate z from C in D. Once again, we see
that if both &, 7 fail to lie in H, then one of +i belongs to A(z) which

cannot happen. Thus, both endpoints £, of A must lie on 9D NH as
asserted. O

Next we record the following easy proof that the metric u(z)|dz| is
smooth. Kulkarni and Pinkhall assert that the metric is C1'1; see [T,
page 105].
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2.7. Proposition. The Kulkarni-Pinkhall metric is continuously
differentiable. Moreover, given a € Q, A = A(a), K = K(a), we have
forall ze KNC:

1(z) = Aa(z) and Dpu(z) = DAa(z),

where Dy denotes the derivative of .

Proof. It suffices to examine the metric near a point a € Q N A. If

~

a€Int(K) (K =K(a) =0AN0N, A= A(a)) then u(z) = Aa(z) for
all z in an open neighborhood of a; therefore, i is in fact real-analytic
near such points.

Thus, we may assume that a € Bd (I? ). In this situation, a lies on one
of the circular geodesics forming the boundary of K , S0 by employing a
preliminary Mébius transformation, we may further assume that a = 0,
A=Dand £1 € K. Then D C Q2 C C_;3, so by domain monotonicity
we obtain 2/[2% — 1] < u(z) < 2/(1 — |2]?), which holds for all points
z € D with equality for z = z € (—1,1). Continuity at z = 0 is now
evident.

In fact we have g(z) = 4/]22 — 1|> < u(2)? < 4/(1 — [2|*)? = h(2).
It is easy to check that the tangent planes for both g and h at z = 0
are the horizontal plane at height 4. This says that p2, and hence , is
differentiable at z = 0.

Notice that g, h—which are real analytic—are symmetric about (—1, 1);
thus, dg/0y = 0 = dh/0y along (—1,1). Since g < p? < h everywhere
in D with equality along (—1,1), we deduce that p is differentiable at
each point of (—1,1) and Dg = D(u?) = Dh on (—1,1). Our formula
for Dy, valid in K , now follows.

It remains to see that Dy is continuous, at the point a. It is clear
that Du(z) — Dp(a) when z — a with z € Int (K). Using our formula
for Dy at points z ¢ Int (K), and the fact that the extremal disks
A(z) vary continuously, see Proposition 2.9, we conclude again that

Du(z) = Dpu(a) as z — a. o

There is an invariant way to understand the above. Suppose a € |T'|
with T' a circular geodesic in © (so, a hyperbolic geodesic in some
extremal disk A) and having endpoints &, € 0Q. Then A C Q C Cgy,
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SO

Ten(2) < p(z) < Aa(z) for all z € A with equality on T

Thus, the tangential derivatives of ¢, i, Aa along I' all exist and are
equal. Since 7¢, and Aa are symmetric about I', the normal derivatives,
along I, of these three metrics also exist and vanish there.

It is known that u(z) < 2/6(z) with equality if and only if A(z) =
D(z). Moreover, there is even a geometric characterization for when the
supremum of 4 is strictly less than 2. See [6, Theorems 2.1, 2.2]. Here
we provide quantitative estimates demonstrating that when p(2)d(2) is
close to 2, the extremal disk A(z) is close to the maximal disk D(z).

2.8. Proposition. Let ) be a quasi-hyperbolic region on C. For each
e > 0 there exists 9 € (0,1) such that for all z € QNC: if p(2)d(z) > 29,
then A(z) = D(c;r) is an Euclidean disk with |z — ¢| < £6(z) and
8(z) <r < (1+¢€)d(2).

Proof. According to [6, Theorem 2.1], we know that A(z) must be an
Euclidean disk whenever u(2)d(z) > v/2. Recall from Lemma 2.4 that
)\D(O;t)(x) decreases from 2 to /2 as x increases: here t > x > 0 with
|€] = ¢, |z — &| = 1 and z is the Euclidean midpoint of the hyperbolic
geodesic line in D(0;t) with endpoints &,£. Let ¢ > 0 be given and
select 7 € (0,1) so that Ap oy () > 27 implies 0 <z < e.

Put ¥ = max{(1 + ¢)~',7,0.8} and suppose a € Q N C satisfies
p(a)d(a) > 29. Since 20 > 1.6 > /2, A(a) is an Euclidean disk.
Using the affine change of variables w = (2 — a)/d(a), followed by
a rotation if necessary, we may assume that a« = 0, D(0) = D,
and A = A(0) = D(¢;r) with ¢ > 0. Of course, » > ¢. By
Proposition 2.5(d), r > 6(0) = 1. Also, 20 < u(0) = Aa(0) <2/(r—c),
sor<(1/9)+c<1+4+e+ec Thusl <r <1+4c¢e+c, and therefore it
remains to check that ¢ <e.

We claim that there is a point € A with z < 0 and such that the
hyperbolic geodesic line in A with Euclidean midpoint « has endpoints
¢, € € OA satisfying |z — ¢| = 1. Assuming this, and noting that 0 lies
between x and ¢, we deduce that
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Aa(z) > Aa(0) = p(0) = 1(0)6(0) > 29 > 2.
Because of our choice of 7, this means that ¢ < ¢ — z < € as desired.

To see that our claim holds, consider the hyperbolic geodesic line
T in A with Euclidean midpoint 0. According to Proposition 2.5(c),
either both endpoints of I" belong to K = dA N I or K contains
a point in each of the components of A \ |T|. Since D C €, it
follows that the endpoints of I" must lie outside D (although possibly
on OD). The existence of the point x as described above should now
be transparent. u]

Next we confirm that extremal disks vary continuously. Note that for
points a € Int (K), K = 0A N 0N for some extremal disk A C £, we
have A(z) = A for all z near a, so we actually only need to examine

points a € Bd (I?)

2.9. Proposition. Let Q be a quasi-hyperbolic region on C.
Then as z — a € Q, A(z) — A(a). (The latter convergence means

disty (A(z),A(a)) — O where disty, denotes spherical Hausdorff dis-
tance for closed subsets of C.)

Proof. Fix a point a € ). By performing a preliminary Mobius
transformation, we may assume that a = 0 and A(0) = D. Thus,
©1(0)6(0) = u(0) = Ap(0) = 2. Now as z — a = 0 we know that
d(z) = 6(0) =1 and u(z) — u(0) =2, so p(2)d(z) — 2. According to
Proposition 2.8, for such z we have A(z) = D(c(z);7(z)) with ¢(z) = 0
and r(z) — 1. O

Armed with the information from above, we now examine how the
sets K (z) of extremal boundary points vary. Elementary examples
reveal that it is not true that K(z) — K(a) as z — a. However, it is
easy to see that the points of K (z) will accumulate at points of K (a).

2.10. Lemma. Let (z,) be a sequence of points in a quasi-
hyperbolic region Q C C converging to a € 2. Then any sequence
of points ¢, € K(z,) subconverges to some point of K(a), and every
subsequential limit point belongs to K (a).
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Proof. Since 0X is a closed subset of the compact 6, any sequence
(Cn) of points in 9Q subconverges to some point of Q. When ¢, €
0A(z,) — 0A(a), any such limit point must also belong to dA(a),
hence to K(a). (Alternatively, we may assume that a = 0, A(a) = D
and A(z,) = D(cp;ry) with ¢, — 0 and r,, — 1. Thus, if {;, — ¢, then
¢ € 09 and also |¢| = lim |¢, — ¢p| = limr, =1.) O

We continue our analysis of how the sets K (z) vary. Obviously, when
a € Int (K (a)), then (by Proposition 2.5(b) we have) K(z) = K(a) for
all z close to a. Thus, we need only examine what happens for z near

a point a € Bd (K (a)).

2.11. Proposition. Let Q be a quasi-hyperbolic region on C. Fiz
a € Q, and put A = Aa), K = K(a). Suppose that a € |T'| C Bd(K)
where I' is a circular geodesic with endpoints {,n € K. Then, gwen
e > 0, there is a & > 0 such that for z € D(a;9) \ K(a), K(z) C

D(g;g) UD(T]; 6) and K(z) ﬂD(f;g) £ Q@+ K(Z) ﬂD(n;s).

Proof. We assume a = 0, A(a) = D, |T'| = (—i,1), i.e., ¢ = —i and
n =1, and that K C D\ H. Recall from Proposition 2.9 that as z — 0
we get A(z) = D(¢;r) with ¢ — 0 and r — 1. Let € > 0 be given.

Since K ¢ D\ H, 9D NH C Q. Thus, T = {¢"? : [] < (/2) — &}
is a compact subset of €2, so d = dist (T,09) > 0. Now 0A(z) — 0D
(as z — 0), so we can select § > 0 so that for all |z| < §, OA(z) C {w:
1 < |w|] <1+ t} where t = min{e, d}. Note however that no points of
K(z) = 0A(z) N 0N can lie in the ¢t-neighborhood of T'.

Now consider a point z with |z| < § and z € H. According to
Proposition 2.6, the arc A = 90A(z) N D separates z from 6D \ H in
D and moreover has endpoints in H. Thus, 0A(z) \H Cc D C €, and
therefore K (z) = 0A(2)NOQ C H. Combining this with the facts from
the prior paragraph (that K(z) lies in 1 < |w| < ¢t but has no points
in the t-neighborhood of T') we see that K(z) C D(—i;e) U D(i;¢) as
desired. In this setting, with z € H, K (z) must contain points in each
of the small disks because z € K (z).

It is possible that K = K (a) = {i, —i} in which case K = |T|. In this
situation we must also consider points z with |z| < ¢ and R(z) < 0.
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Here we have 0D \ {i, —i} C €2, so we can argue as above replacing T’
with the compact set TUT" C Q where 7 = {—(: { € T'}. i

One might conjecture that more can be said about the sets K(z)
when z is near a point a as above: For example, could it be that
each such K(z) contains precisely two extremal boundary points?
The following example illustrates that, at least from a cardinality
perspective, such conjectures are false. We start by putting a, = 1/2",
rn, =1+1/10", and A,, = D(an;ry,); here we take n = 4,5,.... Then
1< r, <la, £ and 7, — 1. Straightforward calculations reveal
that a, £ir, ¢ A,y 1 UA,_;. Hence, there are subarcs a,, f, = @
of A, \ (A,y1 UA, 1); e.g., a, can be the component which joins
O0A, 41 to @A, and contains a,, +1ir, and (3, its reflection across the
real axis. Finally, welet Q@ = C\ {z £i: 2 < 0} UUp>4(a, U By)).
Then a = 0 has K(a) = D \ H, K(a) = {i,—i}, and there exist points
zn, — a with 2z, > 0 and such that K(z,) = ay, U B,.

2F. Gaussian curvature. Recall that the Gaussian curvature of a
C? conformal metric p(z)|dz| can be calculated via

K,p(2) = —p~%(2)Alog p(2),

where A is the usual Laplacian operator. When u is C? in a neighbor-
hood of a,

Au(a) = lim = [ L /0 " atre®) do - u(a)] .

r—0r? | 27

Heins [4] defined the upper and lower Gaussian curvatures of a contin-
uous, or upper semi-continuous metric, p(z)|dz| by

— 4 [1 [* .
K,(a) = —p~?(a) liminf — {2— / log p(a + re') df — log p(a)]
T Jo

r—0 7‘2

— 4 [1 2 ,
K,(a) = —p~?(a) limsup 2 {2— / log p(a + re'®) df — log p(a)] .
T Jo

r—0
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When p is C? in a neighborhood of a, K,(a) = K,(a ) =K, (a) is just
the (ordinary) Gaussian curvature of p( )| dz| at z = a. In general,

K, (2) < Kp(2).

As a simple example, we mention that /C;,, = 0. Additional examples
are presented in Section 3.

Next we prove a comparison lemma.

2.12. Lemma. Let p and o be metric densities on 2. Suppose p < o
in a neighborhood of some point a € QN C with p(a) = o(a). Then

Ks(a) <Kp(a) and K,(a) <K, (a).

Proof. For all sufficiently small r > 0,

2

1 .
—/ log p(a+re'®) df—log p(a) < 2—/ log o(a+re'?) df—logo(a),
T Jo

2 2m )
lim inf 3 [/0 log p(a 4 re'®) df — log p(a)]

r—0

2 27 .
< liin_é(r)lf ) [/0 logo(a+ re'®)dd —logo(a)|.
Therefore, —K,(a) < —K,(a). The proof of the second inequality is
similar. O

3. Examples. Here we mention a few special examples where one
can calculate the hyperbolic, Kulkarni-Pinkall and Ferrand metrics
as well as their curvatures. We also compute associated universal
holomorphic covering maps (from the right half-plane H to the region)
and indicate certain special hyperbolic geodesics. The reader should
note that these examples reveal information about all Mobius images
of these special regions.

Of course for any disk on C we know that these metrics agree with
the hyperbolic metric, the geodesics are subarcs of circles orthogonal to
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the boundary, and any covering map is a Mébius transformation. Our
first four examples share the property that ¢ = u.

It is also of interest to consider the Gaussian curvature of the quasi-
hyperbolic metric in these examples. For the infinite strip and infinite
sectors this is identically —1 except along the ‘center-line’ (the so-called
centered points which have two or more closest boundary points) where
it is identically —oo, see [9, Corollary 3.12]. For the punctured disk it
is0in 0 < |2] <1/2, —oco on |z| =1/2, and —1/|z| for 1/2 < |z]| < 1.

3A. The strip Sy. For the infinite strip Sy := {& + iy : |y| < 7/2},

T

Az +iy) =sec(y) and p(r+iy) = CIDEETT

A conformal map f: H — Sy is given by f(¢) = Log (¢) (the principal
branch of the logarithm). Semi-circles centered at the origin in H are
mapped to vertical segments in Sp, so these are (circular) hyperbolic
geodesics in Sp.

A straightforward calculation reveals that K, (z + iy) = —2(y/m)? —
1/2. From this we see that —1 < K, (z + iy) < —1/2 with equality for
y =0 and with K, (z +iy) = —1 as |y| = 7/2.

3B. Infinite sectors S;. Next, we consider the infinite sectors
Si:={re? .7 >0, <a} wherea=nt/2and 0 <t <2
Here f: H — S;, f(¢) = (%, is conformal and we have

sin(a)

sec (0/t)

A(re?) = "
,

and  pu(re”’) = rlcos(6) — cos(a)]’

The conformal change of variables z = f(() gives the first formula,
which holds for all 0 < ¢t < 2. The righthand formula is only valid for
convez sectors, i.e., for 0 < t < 1, and can be established using the fact
that re® lies on the hyperbolic geodesic line through the points ret.
(See below for concave sectors.) Now semi-circles centered at the origin
in H are mapped to circular arcs centered at the origin in S;; these are
(circular) hyperbolic geodesics in S;.
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To compute the Gaussian curvature of the Kulkarni-Pinkall metric
we naturally employ polar coordinates and so recall that Au = u,, +
r~u, 4+ r~2ugy. Since logr is harmonic, we obtain

cos(a) cos(f) — 1‘

K (Tew) - sin® ()

For || < a < m/2, cos(a) — 1 > cos(a)cos(f) — 1 > cos?(a) — 1 =
—sin?(a), and thus
cos(a) cos(f) — 1 -1 1

-1 IC i6 = < — .
< Ku(re®) sin?(a) ~ 1+ cos(a) <73

Of course K,(re??) = —1 when o = 7/2 (indeed, S; = H) and, as
a — 0, the above upper bound tends to —1/2 (the upper bound for the
infinite strip Sp).

For a concave sector Sy, with 1 < ¢ < 2, we easily see that
p=1/8, e.g., the extremal disk associated with each point is actually
an Euclidean half-plane, cf. [6, Theorem 2.1(c)]. A straightforward
calculation, see [9, Proposition 3.8], reveals that

-1 form(t—1)/2 < |0| < 7t/2,
Ku(re®) = Kys(re’®) =< —1/2 for 6] = n(t —1)/2,
0 for 8] < w(t —1)/2.

3C. Punctured disk D*. Another simple, although important,
example is the punctured unit disk D* := D \ {0} for which

1 1

|2l log |z]]

In this case a holomorphic covering f : H — D* is provided by
f(¢) = e=¢. We see that horizontal rays in H are mapped to radial
segments in D*; of course, these are (circular) hyperbolic geodesics in
D*.

The curvature can again be calculated using polar coordinates, and
we readily find that K, (re?) = —r.
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3D. Annuli A(R). Finally, we take a look at the annulus A(R) :=
{#z : 1/R < |z| < R}. A holomorphic covering f : H — A(R) is
obtained via f(¢) = (% = €8¢ where log R = 7t/2. Then a routine
computation produces

_ow/2 m log |z|
Aaom (2) = |z\logRSec <2 log R

and
R—-1/R

Ha) ) = BTl - 1/R)
Now semi-circles centered at the origin in H are mapped to radial
segments in A(R), so these are (circular) hyperbolic geodesics.

3E. Thrice punctured sphere. In all of the above examples ¢ = pu.
This is also true for any twice punctured sphere (in which case both
metrics reduce to a Mobius quasi-hyperbolic metric and hence are flat).

For the three-times punctured sphere C_j; = C \{—1,1}, we find that
for each z € C_11,

2/|2% —1] if z € D,
1/|z—=1] ifR(z) > 1,
W) = Yl +1] R < -1,
1/3(z) if z€ A,
-1/3(z) if z € A,
and
2/|z2 —1| ifz €A,
p(z) =4 1/|]z—1] i R(z) >0and z ¢ A,
1/|z+1] i R(z) <0and z ¢ A.

Here A = {2z : |R(2)| < 1, ¥(z) > 0,and|z| > 1}, A* is the reflection
of A over the real axis, and A = {z: |z — 1| <2 and |z + 1| < 2}. The
calculations for y were given in [5, Theorem 4.2]; the interested reader
can readily verify the formula for ¢.

We note that I, is almost everywhere identically —1 or identically
0; in particular, K, is not continuous. On the other hand, K, is
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almost everywhere identically 0, but according to [9, Corollary 3.12],
K, = —o0 on the rays R(z) =0, |[3(2)| > 1 and also on JA by Mdébius
invariance.

4. Proofs of main results. We first provide an Euclidean
interpretation for the Ferrand and Kulkarni-Pinkall metrics. Then we
study their geodesics, isometries and Gaussian curvatures.

4A. Euclidean eyes. Here we present a method for calculating the
Ferrand and Kulkarni-Pinkall metrics based on Euclidean diameters
and circumdiameters.

Recall that, for any compact set A C C, there is a unique smallest
closed disk D4 which contains A; we call Dy the circumdisk about
A. Jung’s theorem, see [1, 11.5.8, page 357], provides the following
information about circumdisks.

4.1. Fact. Let Dy = D(a;r) be the circumdisk about a compact set
A C C. Then:

(a) The center a of Da belongs to the conver hull of ANODa4.
(b) For all subarcs « C 0D 4 \ A, l(a) < 7r.

(c) There exist points b,c € AN ODy such that the shorter subarc B
of 0D 4 joining b, c has (2w /3)r <1(B) < 7r.

(d) diam (A) < diam (D) < (2/v/3)diam (A).

It is convenient to introduce the following notation. For z € C, let
J, be the inversion

4.2. Lemma. Fiz any set £ C C and a point z € C\ E. Then for
any Mobius transformation T with T'(z) € C,

diam J.(E) = |T'(z)|diam Jr(.(TE).
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Proof. Fix a point a« € C\ E, and let b = T'(a), E' = T(E). Consider
F = Jy0T o J ', which is a Mobius transformation fixing the point

a

at infinity, hence a complex linear map of the form F({) = A{ + B for
some A, B € C. Clearly,

diam Jr (o) (T'E) = diam J, (E') = diam F[J,(E)] = |A|diam J, (E);

therefore, it suffices to confirm that |A| = 1/|T"(a)|.
Writing w = T'(z) and ¢ = J,(z), we have

w—b _ T(z) — T(a)

C(wfb):z_a Jopp ~—T'(a) asz—a,
and thus ()
. ro "(z 1
A= lim F(O =1 e —oF ~ T(a)’

as desired. O

4.3. Corollary. For any disk D on C, A\p(z) = diam J,(dD) for all
zeDnNC.

Proof. Put E = 0D, and choose a Md&bius transformation 7' with
T(z) = 0 and T(D) = D. Since Jo(¢) = 1/¢, Jr)(TE) = Jo(0D) =
0D, and thus

Ap(z) = Ap(0)|T'(2)| = |T'(2)| diam Jr(,)(TE) = diam J,(E),

as asserted. O

Now we explain how to calculate the Ferrand and Kulkarni-Pinkall
metrics in Euclidean terms. Recall that D4 denotes the circumdisk
about A.

4.4. Proposition. Assume Q is a quasi-hyperbolic region in C. For
each z € QN C, let Q, = J,(Q), B, = Q¢ and D, = Dp_. Then, for
such z,

¢(z) = diam (B,) and p(z)=diam(D,).



MOBIUS INVARIANT METRICS 913

Proof. First, w = J,(¢) € B, = J.(2°) if and only if ¢ € Q¢. Thus,
for w; = J,(¢;) € B,

|wy — wa| = 61— G | < ¢(z) (by definition of ¢).

|z — G|z — ¢

Since equality does hold for some pair of points ¢; and (2, ¢(z) =
diam (B,).

Next, we claim that D = J;1(D¢) is the extremal disk A(z) in
containing z. Clearly z € D C Q, D is a disk in Q and by Corollary 4.3
we have Ap(z) = diam (D,). Thus, it remains to verify that D = A(z).

According to Proposition 2.5, to corroborate this claim it suffices to
check that K = 0D N 0N contains two points and z € K. The former
condition holds because 0D, NOS), must contain two points by Fact 4.1.
The latter condition is equivalent to having the point at infinity belong
to J,(K), and this is also a simple consequence of Fact 4.1. O

An immediate consequence of the above is an easy method to deter-
mine extremal disks.

4.5. Corollary. Let Q be a quasi-hyperbolic region in C. The
extremal disk A(z) associated with a point z € Q N C is given by
A(z) = T~Y(D®) where T is any Mébius transformation mapping z
to the point at infinity and D = Dp(qe)-

Another easy corollary of the above yields some of the following
inequalities. For more information of this nature, we refer the interested
reader to [6].

4.6. Corollary. For all z € QN C,

A2) < 9(2) < () € and p(2) < —= p(2);

§(2) V3

the leftmost inequality requires €2 to be a hyperbolic region but the other
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inequalities hold for quasi-hyperbolic regions. In addition, we note that

1
A(z) > 50 when Q C C is a disk or half-plane,
z
1
> — C
o(z) > 502) when Q C C,
1
> — A
wu(z) > 502) when A(z) C C

Proof. The inequality A < ¢ was established by Solynin who also
observed that equality holds at a point if and only if the region is
a disk on C, see [11, Theorem 3]. Using domain monotonicity, it is
straightforward to check that ¢ < u, but possibly Proposition 4.4
provides an illuminating interpretation. The inequality p < 2/6
was mentioned in [5, Theorem 3.3], see [6, Theorem 2.1(a)] for a
discussion of when equality can hold; it also follows from Proposition 4.4
by observing that B, = Q¢ = J,(Q)¢ lies inside the disk {|jw| <
1/6(2)}. Finally, u < (2/4/3)¢ is a consequence of Proposition 4.4
and Fact 4.1(d). The lower estimates involving 1/ are well known.
mi

It is natural to inquire about equality between the Ferrand and
Kulkarni-Pinkall metrics. Let us call z an FKP-point if ¢(z) = u(z).
Notice that the examples Sy, S¢, D*, A(R) presented in Section 3 each
have the property that all points are FKP points. It is worthwhile to
mention the following.

4.7. Lemma. For points z in a quasi-hyperbolic region Q C 6, these
are equivalent.

(a) z is an FKP point.
(b) z lies on some circular geodesic.

(c) p(2) = Tup(2) for some a,b € 0.

Proof. If (a) holds, then by Proposition 4.4, diam (B,) = ¢(z) =
p(z) = diam (D,), and so (b) holds for the circular geodesic which is
the J, preimage of the complement of some diameter of D,. Assuming
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(b), we have z € |I'| where I is a hyperbolic geodesic line in some disk
D c Q with endpoints a,b € 9Q. According to Proposition 2.5(b),
D = A(z) and pu(z) = Ap(z) = 7ap(2). Finally, if (c) is true, then
p(2) S p(z) =ap(2) < p(2). o

A notable byproduct of the above is that there does not exists a
region 2 with ¢ < p everywhere in 2. Also, we point out that in the
above situation, with I' a circular geodesic, say a hyperbolic geodesic
in a disk D C Q, in Q having endpoints a,b € 0D N 0f2, we have

|a — |
= = )\ = Tq = -
pa(z) = pa(z) = Ap(2) = Tab(2) = allz = 0|
for every point z € |T'|. In any event we see that, given an extremal disk
A and K = 0A N 909, every point of Bd (K) is an FKP-point; indeed,

~

Bd(K) is a union of circular geodesics. However, there are simple

examples with FKP points which satisfy z € Int (K(z)). Indeed, the
origin is such a point for the domain C\ {1,4, —1, —i}.

We also see that
p=p < Q is foliated by its circular geodesics.

The examples Sy, S;, D*, A(R) from Section 3 are foliated by their
circular geodesics and moreover enjoy the property that each extremal
disk meets the boundary in exactly two points. Of course, this latter
property describes the regions which satisfy the condition #K (z) = 2
for all z € Q, but as the example just above illustrates, it is not
necessarily true for regions with ¢ = p.

In fact we shall see below, see Theorem 4.11, that the condition
#K(z) = 2 for all z € Q implies that 2 must be simply or doubly
connected. On the other hand, it is easy to construct domains of
arbitrary connectivity with ¢ = p. Indeed, given n € N U {0}, let
Q=C\((—00,0]U{k e N:1<k<n}). Then Q is n-connected and,
since {2 is foliated by its circular geodesics we have ¢ = pu.

4B. Ferrand and Kulkarni-Pinkall geodesics. Here we prove
that every circular geodesic is both a Kulkarni-Pinkall and a Ferrand
geodesic line. Then we provide additional information concerning
certain Kulkarni-Pinkall geodesic segments.
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Proof of Theorem A. Let I'" be a circular geodesic with endpoints
&,n € 0DNIQ where D C Q is a disk (and T is a hyperbolic geodesic in
D). Fix points a,b € |T'|, and let &« = I'[a, b]. According to Corollary 4.6
and Lemma 4.7, ¢ < p with equality along I, so

do(a,5) < du(a,h) < (@) = Iy(a).

Thus, to see that I' is both a Ferrand and a Kulkarni-Pinkall geodesic
line, it suffices to confirm that I, (a) < d,(a,b).

Select a Mobius transformation which maps D to H, £ to 0,  to
the point at infinity and say Q,T, a,a,b to Q', T, a’,a’, V', respectively.
Then ¢ is a subarc lying on the positive real axis (which is just I").
Let 8 be an arbitrary rectifiable curve in ' joining a’,’, and consider
the curve 8’ defined via §'(t) = |8(t)|. Note that || C |8'| C |IV|.
Also, for each point w € |8| we have a point |w| € |8'| with

1 1
/ > > = !
¢ )2 o 2 o = ¢ (ol
and thus
[ @ldnl = [ ¢ (uhdul = 1),
B B’
as desired. o

A careful look at the above proof reveals that we have established a
slightly stronger result. We call a conformal metric p(z)|dz| an FKP
metric if it satisfies ¢ < p < p. Notice that such metrics are complete,
since ¢(z)|dz| is complete, and, by Lemma 4.7, agree with ¢ = p along
every circular geodesic.

4.8. Corollary. Clircular geodesics are geodesics for any FKP
metric.

In certain cases we can describe all of the local Kulkarni-Pinkall
geodesic segments.

~

4.9. Proposition. Suppose a € QN C belongs to Int (K (a)). Then
there is an Euclidean disk D C Q containing a with the property that
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any compact curve v, with a € |y| C D, is a Kulkarni-Pinkall geodesic
segment if and only if v is a hyperbolic geodesic segment in A(a).

Proof. Since a belongs to the interior of I/(\'(a), we can simply let D be
a hyperbolic disk in A(a) with center a and sufficiently small radius.
The desired assertion now follows from the fact that po = Aa() in

~

Int (K (a)). O

4C. Kulkarni-Pinkall isometries. The following, one of the main
results in this paper, is the key ingredient in our proof of Theorem B.
Because of its importance, we present two proofs for this crucial fact.
It is convenient to introduce the notation

N = N(Q) :=sup #K(z).
2€Q

4.10. Theorem. FEvery Kulkarni-Pinkall isometry between two
regions, one of which has N > 2, is (the restriction of) a Mdbius
transformation.

Proof. Assume that f :  — Q' is an orientation preserving Kulkarni-
Pinkall isometry; thus, f is a conformal homeomorphism. Suppose
N() > 2; this ensures the existence of a point b = f(a) withb € G' =
Int (I?’) where K' = K'(b) = A’N QY and A" = A(b) = Aq/(b). Let
G = f"YG) and A = A(a).

Notice that in G N A we have
FFa) =f(u)=p<Aa

with equality holding at the point z = a. Indeed, the first equality
holds because ' = Aas in G’, the second equality holds because f
is a Kulkarni-Pinkall isometry, and the inequality holds by the very
definition of u. Appealing to Fact 2.1 we can now assert that f
maps all of A conformally onto A’. Therefore, f must be a Mobius
transformation.

In lieu of the above argument, we can also finish our proof as follows.

~

We have a € K where K = K(a) = 0A N ON. Thus, either a € Int (K)
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or a lies on one of the circular geodesics which form Bd (I? ). In either
case we can find an arc a with the properties that a € |a|, a and
o' = f o« are hyperbolic geodesic segments in A and A’, respectively,
|o/| € G', and such that f is a hyperbolic isometry along « (with
respect to the hyperbolic metrics in A and A’). (Proposition 4.9 and
Lemma 4.7 are useful here.) An easy lemma now confirms that f must
be a Mobius transformation along « and hence (the restriction of) a
Moébius transformation. |

Because of the above result, it is worthwhile to understand which
regions have N = 2; of course, these domains are foliated by their
circular geodesics and described precisely by the condition that each
extremal disk meets the boundary in exactly two points. See also the
discussion at the end of subsection 4.A.

4.11. Theorem. Fvery region with N = 2 is either simply connected
or doubly connected.

Proof. Let § be such a region. According to Lemma 2.10(c), the sets
K (z) (of extremal boundary points associated to each z € Q) can be
described locally by pairs of continuous functions. Fix a point a € €2,
let K(a) = {b, c}, and select components X, Y of 9Q (possibly X =Y)
such that be X and ce Y.

We claim that for all z € Q, K(z) C X UY. Assuming this, we
employ the fact (Proposition 2.5(e)) that the extremal boundary points
are dense in 0f) to deduce that

00=|JK(z) cCXUY =XUY CoQ.
z€Q

It therefore follows that 02 = X UY, as desired.

It remains to confirm the assertion K(z) C X UYj so, let z € Q.
There is a continuous path 7 : [0,1] — € with v(0) = a and (1) = =.
Using Lemma 2.10(c) we construct continuous &, 7 : [0,1] — 9Q with
the property that for all ¢ € [0,1], K(y(¢)) = {£(¢),n(¢)}. Since [0,1] is
connected, so are its images under £, n and hence K (z) = {£(1),n(1)} C
XUY. o
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Proof of Theorem B. Use Theorems 4.10 and 4.11.

4D. Ferrand and Kulkarni-Pinkall curvatures. Here we estab-
lish curvature inequalities for both the Kulkarni-Pinkall and Ferrand
metrics and then we investigate when these curvatures can be constant.
Our arguments are based on Lemma 2.12 along with knowledge of the
curvatures in the special examples from Section 3.

Proof of Theorem C. First we consider the Kulkarni-Pinkall metric.
Fix a point a € QN C, and let A = A(a), K = K(a). Then
p < Aa in A with u(a) = Aa(a), by so Lemma 2.12 we always have
Eﬂ(a) > Kip(a)=—1.

If a € Int(K), then as . = A in Int (K), Ku(a) = —1. Assume
a € Bd(K); say, a € |T| for some circular geodesic ' with endpoints
&n € 0Q. Then Q C Q = 65,7 and p > p' = 7z Since
p(a) = Ap(a) = p'(a) and p' = 7¢, is flat, an appeal to Lemma 2.12
yields K, (a) < Kpur(a) = 0.

Next suppose € is convex. As above, we may assume that a € Bd (I/(\' )
with say a € |I'| for some circular geodesic I' having endpoints &, €
090. Let Q' be the region formed by the intersection of supporting half-
planes for Q at each of &, n; thus, Q' is either an infinite strip or a
convex sector, i.e., () is affine equivalent to some S; with 0 < ¢ < 1.
Since Q C & w1th p(a) = i (a), Lemma 2.12 again produces K, (a) <
K (a) < —1/2, where the latter inequality holds because of Examples
3.A and 3.B.

Now for the Ferrand metric: fix a € Q and &, € 9Q with ¢(a) =
Ten(a). Since Q C Q' = égn and ¢’ = 1¢, is flat, K, (a) < Ky (a) = 0.
Notice that as ¢ < p, Lemma 2.12 ensures that K (a) > K,(a) > —1
at each FKP-point a. However, in general, there is no lower bound on
the curvature of the Ferrand metric; indeed, this may be —oo as the
thrice-punctured sphere example shows, cf. subsection 3.E.

Finally, suppose {2 is convex. Let Q' be the intersection of two open
supporting half-planes for 2 at each of £, n; thus, §' is either an infinite
strip or a convex sector, i.e., £ is affine equivalent to some S; with
0 <t <1 Since @ C Q with ¢(a) = ¢'(a), Lemma 2.12 once again
produces K, (a) < Ky (a) = Ko (a) < —1/2.
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Proof of Theorem D. This is an immediate consequence of the follow-
ing.

4.12. Theorem. Let p(z)|dz| be an FKP metric on a quasi-
hyperbolic region Q on C. Suppose that p(z)|dz| has constant Gaussian
curvature IC, = k in Q. Then either k =0 and Q is a twice punctured
sphere, or k = —1 and Q is a disk on C.

Proof. Since every FKP metric is complete, the asserted claim follows
directly from Fact 2.2 if K = 0. Thus, by Fact 2.2, we may assume that
k < 0, Q is a hyperbolic region and p = t A where t = 1/y/—k. Since
A<p<p=tAt>1(andso—-1<k<D0).

Fix a circular geodesic I' in Q (there are lots of these :-)). Using an
auxiliary Mobius transformation, if necessary, we can assume that T is
the positive real axis R, (and so the associated disk in € is the right
half-plane H). According to Corollary 4.8, I" is a geodesic for p(z)|dz],
hence also a hyperbolic geodesic in ).

Now let f : H —  be a holomorphic covering projection. Since
H is a simply connected subdomain of €2, there exists a single-valued
branch g of f~! defined in H. Then v = goT is a hyperbolic geodesic in
H. Employing another auxiliary Mobius transformation, if necessary,
we can further assume that v is also the positive real axis, that f is
increasing along v = R, and that f(1) = 1.

Recall that the hyperbolic distance between points 1,z € Ry in
H is |logz|. Along I' = R4 we have Ay = p = p = tA, and
f*lp] =t f*[A] = t Au, so we find that

logf@] = [ pe)idsl=t [ A@)|de| = t]logal.
(1), f ()] (1), f(=)]

We conclude that f(z) = x! for all z € Ry, and hence f({) = ¢* for
all ¢ € H.

If t > 2 were true, then we would have Q = f(H) = C* which
would contradict 2 being a hyperbolic region; thus, 1 < ¢t < 2.
Therefore, Q = f(H) = S; is a concave sector. Clearly, S; is foliated
by circular geodesics (each of which is an actual Euclidean ray), and
in fact ¢ = p =1/ in S;. It follows that p = 1/§, but then (see the
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end of subsection 3B) K, = K;,5 = k can only be constant when ¢ = 1,
k=—-1and Q =H. i
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