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XIA’S ANALYTIC MODEL OF A
SUBNORMAL OPERATOR AND ITS APPLICATIONS

JIM GLEASON AND C. RAY ROSENTRATER

ABSTRACT. In this paper, we provide an exposition and
some applications of Xia’s analytic model for pure subnormal
operators and the associated mosaic. Using the model, we
provide a complete set of examples of subnormal operators
with rank one or two self-commutator.

1. Preface. One of the best ways to prove theorems about
operators contained in a certain category is to show that all operators
in the category can be expressed in a certain way. Examples of this
include the model of multiplication by the independent variable on
an L?(u) space for #-cyclic normal operators and the Toeplitz type
model for hyponormal operators of Sz.-Nagy and Foiag. In the late
1980’s, Daoxing Xia created such a model for subnormal operators.
In his papers, Xia proves that every pure subnormal operator can be
expressed as multiplication by the independent variable on a certain
type of vector-valued R? space.

The purpose of this paper is to give an exposition of this work. We
offer new proofs of some of the results and provide many examples to
help clarify the model. We also give several applications that have
resulted from using the Xia model. It is our hope that this exposition
encourages more work in the area. To that end we conclude each
section with “Notes and open problems” which gives some additional
background to the topics covered in the section as well as some of
the related open problems. Furthermore, for the sake of brevity, only
illustrative proofs are included. For the complete set of proofs and
computations, the reader should contact the authors.

We have tried to be thorough and include all of the results related
to the Xia model and to make correct references to theorems that have
previously been published. For any omissions, we apologize.

Section 2 gives a thorough exposition of the works of Xia concerning
his analytic model. We also describe some of the complete unitary
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invariants for pure subnormal operators that result from this model.
One set of complete unitary invariants is the pair of operators S*| x4 and
[S*, S]| m where M is the closure of the range of the self-commutator of
S. We also explore the Xia mosaic which is another complete unitary
invariant when the spectrum of the minimal normal extension has zero
area measure.

Section 3 explores these unitary invariants when the self-commutator
is of finite rank. In particular, matrices are constructed that classify
all of the rationally cyclic, pure subnormal operators with rank 2 self-
commutator. We also give a brief summary of the work of Dmitry
Yakubovich which classifies all pure subnormal operators with finite
rank self-commutator.

2. Xia’s analytic model. One of the basic results in operator
theory is the spectral theorem for normal operators. It states that if
N is a normal operator on a Hilbert space, then there is a measure
space (X,,v) and a function ¢ in L*(v) such that N is unitarily
equivalent to M, acting on L?(v). It would be ideal to have a similar
result for other classes of operators. One such result is the Foiag, Pearcy
and Sz.-Nagy theory of Hilbert space contractions (see [22, 48]). In
this section we will show some of the work done towards this end for
subnormal operators.

2.1. Notation and background. Throughout the paper all Hilbert
spaces will be separable and the algebra of linear operators on a Hilbert
space H will be denoted by B(H). For T € B(H) the resolvent of T
will be denoted by p(T"), and the spectrum of T will be denoted by
o(T). Also, the set of eigenvalues of T" will be denoted by o, (7).

An operator S in B(#) is called subnormal if there is a normal
operator N on a Hilbert space K O #H such that N|3; = S. Such
an operator N is called a normal extension of S.

S is called pure if there does not exist any nontrivial invariant
subspace of H on which S is normal.

S is said to be of finite type if it is pure and the rank of the self-
commutator of S, [S*, S] = §*S — 55*, is finite.

A normal extension N of S is called a minimal normal extension
(mne) of S if there does not exist any reducing subspace K’ C K of
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N which contains H and for which N[k’ is also a normal extension of
S. Since any minimal normal extension of S is unitarily equivalent to
any other minimal normal extension we can talk about “the” minimal
normal extension of S. Thus, for each subnormal operator S we
can define o,(S) and p,(S) to be the spectrum and resolvent set,
respectively, of the minimal normal extension of S. We will call these
sets the normal spectrum and the normal resolvent set of S.

To provide some background we give the following common example
of a subnormal operator.

Example 2.1. Let v be a compactly supported measure on C, and
let P?(v) denote the closure of polynomials in L?(v). For any compact
subset K of C, we define R?(K,v) to be the closure in L?*(v) of the
rational functions with poles off of K. Finally, we define the Bergman
space LZ(K,v) to be the space of functions analytic in the interior of
K. It is evident that if K contains the support of v, then we have the
following inclusion:

P*(v) C R*(K,v) C L3(K,v) C L*(v).

Note. There are examples of measures v and compact spaces K for
which each of the inclusions are strict.

Let N, be the operator on L%(v) defined by N, f = (-)f(:). Then the
restriction of N, to each of these spaces is subnormal. In particular,
we define S, to be the restriction of N, to P?(v).

Bram [5] and Singer [51] showed independently that every cyclic
subnormal operator is unitarily equivalent to S, for some compactly
supported measure v on the plane. Then in [31] McCarthy and Yang
proved that every rationally cyclic subnormal operator with finite rank
self-commutator is unitarily equivalent to the restriction of IV, to
R?(K,v) for some compact set K which is a quadrature domain. In
[63], Daoxing Xia showed that every subnormal operator can be written
as a type of direct sum of these operators. He did this by showing that
the subnormal operator is unitarily equivalent to multiplication by =z
on R*(K,e) for a certain type of compact space K and operator-valued
measure e. This multiplication operator associated to a subnormal
operator S will be called the analytic model of S.
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2.2. The analytic model. Let M be a separable Hilbert space and
e(+) a B(M)-valued positive measure on a compact support set vy C C
such that e(y) = In. If in addition there are operators A and C' in
B(M), with C positive, which satisfy the following properties:

(2.1) / W=y =0

u—z

for z in the unbounded component of C \ v, and

(2.2) /F((m _ A")(ul = A) = C)e(du) = 0

for every Borel set F' C v, then we will call e(-) a compressed spectral
measure.

For each of these compressed spectral measures, we define L?(e) to
be the Hilbert space of all measurable M-valued functions f satisfying

171 = [ (eldw)f(w), £(w) < +0

where f and g are considered the same function if ||f — g|| = 0.

Let D be the set of z € C\ 7 such that (2.1) holds, and let K be the
set C\ D. Then define the space R?(K, ¢) to be the closure in L?(e) of
all linear combinations of the functions f(-) = (A— (-)) ‘o with A € D
and o € M.

Then the operator S on R?(K,e) defined by

Sf=()f(), for f € R*(K,e)

is a pure subnormal operator with minimal normal extension N on
L?(e) defined by

Nf=()f(), for f € L*(e).

We see from the following theorem that in fact every pure subnormal
operator is of this type.

Theorem 2.2 [53, Theorem 1]. Let S be a pure subnormal operator
on a separable Hilbert space H with minimal normal extension N on
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a Hilbert space K D H. Let M be the defect space [S*,S|H, and let
Py € B(K) be the projection onto M. If E(-) is the spectral measure
of N, then the B(M)-valued positive measure e(-) on o, (S) defined by
e(-) = P E(-) Py, satisfies the following:

(2.3) e(o,(5)) =1,

(ul —A)
2.4 ~ Ze(du)=0
(2.4) Lm)wﬁ (du)

for z € p(S). Taking A* = (S*|m) and C = [S*, S]|m,
(2.5) / ((al — A*)(ul — A) — C)e(du) =0
F
for every Borel set F C 0,(5).
Furthermore, the operator U defined by
Uh(N)a = h(")a,

for every bounded Borel function h and o € M, extends to a unitary
operator from K onto L*(e) satisfying

UH = R*((9),e),
Usu~f =()f(),

and

(2.6) US'Uf = C)(f() = f(A)) + A" F(A)
for f € R*(0(S),e), where

ﬂm=/wﬂmmm=mwv

In the proof of Theorem 2.2, Xia makes use of a B(M)-valued analytic
function

(2.7) S(z,w) = Ppm(wI — S*) (21 — S)™' Py,
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for z, w € p(S) which he calls the determining function. He proves that
this determining function can also be written as

(2.8) S(zyw) = (Wl — A*)(zI —A)—C)7".

This determining function is one of the essential components in the
classification of subnormal operators of finite type and so we will include
the proof of the equation here.

A S
tion of N with respect to K = H* @ H. Since [N*, N] = 0, we have
that

Proof of equation (2.8). Let N = (SM 0) be the matrix decomposi-

[S*,S] = AA%, [$™,8] = A*A and S*A = AS'.
Thus, M = AH-+ and M is an invariant subspace of S*.
We now show that p(S) C p(A) which makes the function

T(z,w) = (2 — A)~' (@l — A*)™?

well defined for z,w € p(S).

If X € p(S*), then A € p(N*) since ¢(S) D 7,(S). Thus, for every
x € H' there is a unique pair of vectors z; € H' and z, € H such

that
(5)=0r-m(2) = (“arem ™)

Thus, (A — S*)ze = 0 and, since X € p(S*), we conclude that z2 = 0.
Hence, (A — §")z; = z.

Multiplying both sides of the equation by A on the left and using the
property that S*A = AS’ we find that

Az = AN — S")zy = (M — S*) Azy.

Thus, (A — S*)M is dense in M and, since (AI — S*) is invertible, we
conclude that

(A = A" )M = (M = S )M = M
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and
ker(AI — A*) C ker(M — S™) = {0}.

Hence, A € p(A*) and we have that p(S*) C p(A*) and o(A*) C o(S™).
Using the properties of the adjoint it follows that

p(S) C p(A).

Thus, the function T'(z,w) = (2I — A)"}(wl — A*)~! is well defined
for z,w € p(S).

An equivalent definition of T'(+,-) is found using inner products. For
u,v € M,

(2 — A~ (@I — A*) " u,v)
= ((@I — A*) " tu, (I — A*) 1)

(@I — §*) u, (21 — S*) o)

(2 = 8) ' (@I — S*)"tu,v).
So T'(z,w) = Pp(2I—S) "} (wI—S*)~! P}, where Py is the projection
map onto M.

Now the functions S(-,-) and T(+,-) satisfy the following identity.

S(z,w) = T(z,w)
= Py(wl — S*) 1 (2I — S) 'P} — Ppm(zI — S) H(wI — S*) 1Py,
= Py (Wl — S*) 71 (2I — S)"' P},
x Pp[S*, S|Py Prm(2I — S)~H(wI — S*)~' P},
= S(z,w)CT(z,w).

Equivalently, S(z,w) — S(z,w)CT(z,w) = T(z,w). Since T'(z,w) is
invertible this can be rewritten as

S(z,w)(T(z,w)™ =C) =1

S(z,w)((WI —A")(zI —A)—-C=1.
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Since S(z,w) — T'(z,w) = T'(z,w)CS(z,w) as well, we have
(@I =A")(zI —A)-C)S(z,w) =1
and hence

S(z,w) = (@l — A*)(zl —A)—C)"". @

In what follows we will always assume that any subnormal operator is
in the form of the analytic model and we will omit the unitary operator
U.

Before moving on, it might be useful to examine the meaning of
f(A). Note that when f is a real-valued function in R?(o(S)), f(A)
is an operator in B(M) but when f € R?(0(S),e), f(A) € M. To
illustrate, suppose that f € R?(c(S)) and a is a fixed vector in M.
Define f € R%(0(S),€) by f(z) = f(z)a. Then

ﬂmz/@ﬁmvw=/$fwmwmﬁw

=P [Tl PR = Pacf (V) P

On the other hand,

ﬂm=/}$dwvwm=ﬂMw

Since the dual, S’, of S is also a pure subnormal operator with
minimal normal extension N* it is useful to understand the model
of S’. Therefore, we list some of the properties of S and S’ in the
following theorem.

Theorem 2.3. Let S be the pure subnormal operator on R*(K,e)
defined by Sf = ()f(-), and let N be its minimal normal extension
defined on L?(e) by Nf = (-)f(). Let A and C be operators on M
satisfying the conditions of the model. Let A and S’ be the operators

such that ,
S* 0
v=(% )
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with respect to the decomposition L*(e) = R*(K,e)t ® R?(K,e). (Note
that since N is normal we may assume that A : [S™*, S/|R?(K,e)+ —
M.) Then for f € R*(K,e) and g € R*(K,e)* we have the following:

(2.9) §°f = ()(f() = F(A) + A" f(A) where f(A) = /e(dU)f(U),

(2.10) A*f = (()I = A")f(A),

(2.11) Ag = /(uI ~ A)e(du)g(u),
(2.12) S'g=()g(-),

(2.13) 879 =()g0) -~ [l - Neldvig(v)
(2.14) C =[S",S]|lm=AA", A* = S*| s
and

(2.15) (5, SR (K, ) = M.

Furthermore, if we let

(2.16) M =[5 8NR3(K,e)t, and C' =[S"*, S| mr,
then

(2.17)  C'g= A"Ag = ()T — A") /(vI ~ A)e(dv)g(v)
and Q = A*C /2| pq is a unitary mapping from M onto M'.

In order to gain some understanding of the analytic model we will
include the proof of the theorem.
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Proof. First note that equation (2.9) is the same as the description
of S* in equation (2.6) of Theorem 2.2.

Using the matrix representation of N and [N*, N] = 0 we have the
identities

(2.18) [S*,S] = AA*, [S"*, 8| = A*A, S*A=AS,

and, for f € R*(K,e) and g € R*(K,e)*, we have

g\ _( S"g (9)_ (A f+S'g
(2.19) N<f>_<5f+Ag> and N <f>_< iy )

Viewing f € R?(K,e) as an element of L?(e),

A f=N*f—S*f
= (O = OF () = £(A) = AT f(A)
= (O~ A")f(A)

and we have (2.10). To prove (2.11) we take f € R%*(K,e) and
g € R?(K,e)* and compute the inner product

(Agaf)Rz = (g,A*f)RzL
= /(e(du)g(u), (@l —A*)f(A)) e

= </(uI A)e(du)g(U),f(A)>

= </(u1_A)e(du)g(u),/e(dv)f(v)>M
- [ (ctao) fwr = mye@nrstur. s))

~ ([ r = et ) R

Since S'g = N*g and S™*g = Ng — Ag for g € R?(K,e)" we have
(2.12) and (2.13).

M
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In order to prove (2.14), we look at M as the set of constant functions
in R?(K,e). From equation (2.9) we see that S*a = (-)(a —a) + A*a =
A*a for a € M. Using (2.9) as well as equation (2.5) we get

(5%, Sla = 5*((-)a) — S(A%a)

= (O] = Aa+ A*(Aa) - ()A%a

= (OO =Aa—A*(()] = Aa

= (O =A")(() = Aa

= Ca.

Equation (2.17) is proven in the same way. Since C is positive, we
have (2.15). Finally, from (2.14), (2.15), (2.16), and (2.17) we see that
M = AR%*(K,e) and M’ = A*(R%(K,e)l) and that Q = A*C~ /% is a
unitary mapping of M onto M’ such that QCQ* = C". O

From this we see that S’ can be thought of as the multiplication by
z on the co-analytic functions with properties similar to that of S.

2.3. Unitary invariants. One of the goals of studying the analytic
model is to be able to create a classification of all subnormal operators.
Along these lines, we make use of two sets of unitary invariants.

The first set of unitary invariants is the pair of operators A and C.

Lemma 2.4. The set of operators {A,C} is a complete unitary
invariant.

The following proof of the Lemma is due to Putinar, [39]. It is distinct
from the proof in [53] and is based on a matricial construction of the
subnormal operator.

Proof. In [39], Putinar proves a decomposition theorem for hyponor-
mal operators which we will use to prove that the set of operators
{C, A} discussed above form a complete set of unitary invariants for
a pure subnormal operator. This decomposition resembles the Jacobi
matrix decomposition of a self-adjoint matrix.

Much of the following comes directly from [39] and so we will state
many of the results without proof.



860 JIM GLEASON AND C. RAY ROSENTRATER

If S € B(#H) is a pure subnormal operator on a separable Hilbert
space H with defect space M, then for n > 0 the spaces

@:Qﬁm
k=0

form an increasing sequence of subspaces of H. Furthermore, by letting
H, = G, O G,_1 for n > 1 and Hy = M, we construct a canonical
decomposition of the space H with respect to the operator S which
satisfies the following relations:

(i) H = ®r>oHr;

(ii) Ho is invariant under S*;
(iii) S*Hp C Hp1 @ Hp, p > 2;
(iv) SH, CHp @ Hpt1, 0 > 15
(v) dim Hpy1 < dim#H,, p > 1.

Using this decomposition and the fact that the image of the self-
commutator of S is contained in M we have the following two-diagonal
matrix representation of S:

Dy O 0 0

Ci D O 0

S = 0 02 D2 0
0 0 Cs5 Ds

Moreover, the operators {C},D;};>1 above can be constructed by
setting

Cy1 = (CZ — (D}, D)2,
and

Dn+1 - ;ianquLl
for n > 0 with Cy = C*/2 and Dy = A. Since the subnormal operator
can be constructed from our pair of invariants, we conclude that the
pair {C, A} is a complete unitary invariant. O
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This lemma raises the question, “What are the restrictions on op-
erators A and C such that they represent a subnormal operator?” In
the case when M is a finite-dimensional space, the question has been
investigated by Yakubovich [63, 64] and will be discussed in Section 3.
In the case that M is infinite dimensional, nothing is known in general.

Another invariant is what Xia refers to as the mosaic.

Given a subnormal operator S in analytic form, the mosaic of S is a
function u : p,(S) — B(M) defined by

p(z) = / W= A ).

u—=z

It has the following property.

Theorem 2.5 [53, Theorem 6]. Let S; and Sy be subnormal
operators on the spaces Hi and Ho with minimal normal extensions
N; and Ny and mosaics py and pz. Suppose that v = o(Ny) = o(Na)
has zero area measure. If there is a unitary operator V. from My =
[St,S1]H1 onto My = [S3,Sa|Ha such that pa(z) = Vui(2)V=" for
z € C\1, then there is a unitary operator U : K1 — K2 satisfying

Sy =USU Yy, and Np=UNU L.

2.4. The mosaic. We will now develop some of the properties of
the mosaic of a subnormal operator S. This will result in, among other
things, the identification of o(S), the spectrum of S, in terms of the
mosaic. Recall that for a subnormal operator S in analytic form, i.e., S
is multiplication by this independent variable on R?(K,e), the mosaic
of S is the function p : p(S) — B(M) defined by

w(z) = /(ufz)*l (ul — A)e(du).

We begin by extending f € R?(K,e) to be defined on all of p,,(S) =
p(N), the resolvent set of the minimal normal extension of S.

Lemma 2.6 [53, Lemma 3]. If z € p,(S), then for every f €
R2(K,e), there is a unique vector in M, denoted by f|z], such that

—f —fL] € R*(K,e) and Il
’ () —

()—=

€ R?(K,e)".
z



862 JIM GLEASON AND C. RAY ROSENTRATER

f[z] is said to be the value of f at z and satisfies the following properties
for any f € R*(K,e).

(i) (af + Bg)lz] = aflz] + Bylz], for f,9 € R*(K,e), o, € C and
z € pn(S).

(ii) (AL = 8) ")z = (A — 2) 7 flz] for X € p(S).
(ii) If {fn} C R*(K,e€) and || fn — fIl = 0, then ||fu[2] — f[z]]| = 0.
(iv) flz] = n(2)flz]-

(v) f[#] is an analytic function of z € py(S) which can be computed
as

fle] = /(u—z)*l(uI—A)e(du)f(u).

In his paper, Xia uses the notation f(z) for the value of f at z. We
have chosen the alternate notation f[z] since Xia’s sense of the value
of f differs from the usual sense. For example, if we view a € M as
a constant function in R%(K,e), then the usual notion of value would
have a(z) = a. As we shall see, a[z] need not be a. Moreover, in
some of the examples to follow, we will identify M as a set of complex-
valued functions. In this case for a fixed zp € p,(S), f(z0) is a complex
number, while f[z¢] is a function.

The proof of Lemma 2.6 is based on the decomposition of g =
(N —2I)71f as g1 + g2 € R?*(K,e) ® R*(K,e)- where N is the
minimal normal extension of S. In order to better understand this
decomposition we will include the proof.

Proof of Lemma 2.6 (Ezistence). Let N be the minimal normal
extension of S and decompose g = (N — 2I)71f as g1 + g» from
R?(K,e)® R*(K,e)*. Using the matrix decomposition of Theorem 2.3
to re-express the action of IV on the two subspaces, we find that

f=WN—-2l)gi+ (N —z2I)gs
=((§ =z g1+ ((S" +A)—zI) g
= ((S—2I) g1 + Agz) + (5 — 2I)ga.

Since f € R?(K,e), the component from R?(K,e)* must be 0. Apply-
ing the analytic definitions of S, S™ and A from (2.11) and (2.13) of
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Theorem 2.3, we see that

f=(§=Dgr+ A= (()-2)a + [ (Wl =N eldw g W)
and

0= (8" = 21)ga = (() = 2) 92 ~ [ (ul = A)e (du) g2 ().
If we set f[z] = [(ul — A)e(du)gz(u), then
f=r

QQ@-TT%ézmeR%K&)ami(gMz—meRﬂKmf.

(Uniqueness). If a € M is a vector satisfying

—f—a 2 e) an a4
(2.21) G R e and 5T

then subtraction of each of the corresponding components in (2.20) and
(2.21) produces

flzl—a € R?(K,e)N R (K,e)" ={0}.

()=
Hence, f[z] = a.

(iv) Substituting g2 = ((-) — 2) 7! f[2] from (2.20) in the definition of
f[#] and moving the scalar, we see that

€ R?(K,e)",

£l = [l A)e (@) g ()
— [ = N e(aw) fl = p ) £ [,

(v) Suppose that b € M. Then ((*)I — A*)b € R?(K,e)*. Hence,

0= (L LEL @ 1-ap) = ([ =L@ 7w 112D.).

u—=z
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Thus,

o=/“I*Ae(du)(f<u>ff[zD

u—=z

(i) and (iii) are immediate consequences of (v).

(ii) Since [(A—2z) "1 f[z]]/[(-) — 2] is a scalar multiple of f[z]/[(-)—z] €
R%*(K,e)*, we see that (A — z) "1 f(z) satisfies the second condition to
be the value of (\I — S)~1f at z. To verify the first condition, note
that

M =8)""f-A-2)""f[]

()->
CE0) R it

(0=
A=) T FEDH (A=) == ) £
- ()=
—o- a0t e- a7

—or-o (5 oo 1),

This last expression is in R?(K, e) since both terms in the right factor
are in R%(K,e) and (\I — (-))™! = (AT - S)~L. O

Since f € R%*(K,e) and K U p,(S) = C, it is tempting to conclude
from (v) that f[-] is analytic on all of C. This, however, is certainly not
the case as (iv) insures that f[-] is zero on the unbounded component
of the complement of K.
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That pu(z) = 0 on C\K together with (iv) of Lemma 2.6 suggests
that u(z) exhibits projection-like behavior. Indeed u(z) and I — pu(z)
act as parallel projections of M onto the spaces

M, = {b eM:(()—2) tbeR? (K,e)}
and

M., = {b eM:(()—z2)tbeR? (K,e)L}.

By viewing a € M as a constant function in R%(K,e), we see that
a[z], the value of a at z, is that unique vector in M satisfying

a—alz] € M, and alz] € M.

Moreover, by factoring the constant function a out of the integral
in (v) of Lemma 2.6 we see that a[z] = p(z)a. We conclude that
M =M, + M, M,N M), = {0}, and that x(z) and I — pu(z) serve as
parallel projections from M onto M’ and M., respectively. We can
now identify M/ as the space of values of the constant functions in
R?(K,e). By (iv) of Lemma 2.6 we see that M’ also can be identified
as the space of values for all functions in R%(K,e).

These facts are recorded in the following theorem.

Theorem 2.7 [53, Theorem 3|. If p is the mosaic for the pure
subnormal S in analytic form and if z € p,(S), then

(1) u(z) = n(2)?%
(ii) p(z)M = M_,
(iii) (I — p(2))M = M.,
(iv) when a € M is viewed as a constant function in R?(K,e), u(z)a
is alz], the value of a at z, and

(v) ML ={f[2] : f € R*(K,e)}. In other words, M

", is the space of
all values at z.

If one begins instead with the decomposition of g = (N* —zI)~1f as
g1+ g2 from R?(K,e) @ R?(K,e)t, then Lemma 2.6 and Theorem 2.7
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become Lemmas 2.8 and 2.9. The proofs of Lemmas 2.8 and 2.9 follow
the same lines as the proofs of Lemma 2.6 and Theorem 2.7 and are
omitted.

Lemma 2.8 [53, Lemma 4]. If z € p,(S), then for every f €
R?(K,e)* there is a unique vector f*[z] € M such that
O=NU=LED o,

and

O=DVH o,

Lemma 2.9 [53, Lemma 5]. If z € p,(S), then the operators p(z)*
and I — p(2)* are projections from M onto

M ={beM:(()—2) ()~ A)be R (K e)}
and

M ={peM: ()2 1O A e R (94,
respectively.

Note that the use of N* instead of IV results in the introduction of
the factor ((*) — A*) as well as the reversals of the roles of R?(K,e) and
R%*(K,e)* and of the roles of u(z) and I — pu(z).

The mosaic can be used to identify several special subsets of o(.S) and
p(S). The mosaic tags the resolvent set of NV in a manner similar to that
of the Fredholm index. Of course, a pure subnormal operator has no
point spectrum, but S* and $"* may have point spectrum. Additionally,
they can be associated with other sets of points with special properties.
Let

7, (§) = {z €C: (S —2I)R*(K,e)" N M #£ o}
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and

v () ={2€C:(S—2I)R*(K,e)n M #0}.
It is easy to see that both 7,(S’) and v,(S) contain p(S). The next

series of theorems shows how the mosaic can be used to identify these
sets as well as the eigenspaces of S* and S'*.

Theorem 2.10 [53, Theorem 4]. If S is a pure subnormal operator
in analytic form with mosaic u, then

op ($")\on (87) = {Z € pn (§7) : p(2) # O}
and
7 () \on (8*) ={Z € pn (§7) : (2) # I}.
Moreover, if we define
R:=(()=2) "(OI-A)p(x)" M
and
R =(()-2) (OI-A)(I-p@=)" )M,
then R} is the eigenspace of S* corresponding to zZ € o,(S*)\o(N*),

1

(2.22) RY= (S —z) ' M

and
R;®R; =(N*"—zI) ' M.
The corresponding facts for S’* are recorded in Theorem 2.11. The

statement of the theorem involves the notation K* which denotes the
set K* ={z € C:z¢€ K} where K is a subset of C.
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Theorem 2.11 [53, Theorem 5]. With the same assumptions as
Theorem 2.10 if S is the dual of S, then

op (8") \on (8) = {2 € pn () : p(2) # 0}

=0y (§)" \ow ()
and
vp (S)\on (S) ={2 € p(N) : n(2) # I}
=Tp (Sl)* \on (S)-
If
R.=(()—2) 'T-pu)M
and

R.=(()=2)" n(z)M,
then R., is the eigenspace of S™* corresponding to z,
R.=(S—zI)"' M,
and
R.®R.,=(N—-zI)"' M.

Corollary 2.12 [53, Corollary 5]. Under the assumptions of Theo-
rem 2.10,

dim ker (S* — z) = rank (p(2)"),
and
dim ker (8" — 2z) = rank (u(2)).

These results allow a clear characterization of the resolvent and
spectrum of S.
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Corollary 2.13 [53, Corollary 6]. Under the assumptions of Theo-
rem 2.10,

(2.23) p(8)={z€pn(S):pn(z) =0},
(2.24) o(S)=0,(S)Uap (S*)"

and

(2.25) a(§™)=0(9).

Corollary 2.14 [53, Corollary 7]. Under the assumptions of Theo-
rem 2.10, 0,(S) contains the boundary of o(S).

As we have seen, the mosaic captures significant information about
a subnormal operator. Moreover, the mosaic is a unitary invariant. If
S1 and S; are two subnormal operators on the spaces H; and Hy with
minimal normal extensions N; and Ny on K; and Ky and there is a
unitary operator U : K; — Ky satisfying

Sy =US1U Yy, and No=UN U,

then the operator V' = Ul is a unitary mapping from M; =
[ST,S1]H1 onto My = [S5, S2|Ha. Moreover,

po (2) =Vur (2) V1 for z € p(Ny).

This fact has a partial converse which gives sufficient conditions under
which the mosaic forms a complete unitary invariant.

Theorem 2.15 [53, Theorem 6]. Let Sy and Sy be subnormal
operators on the spaces Hi and Hs with minimal normal extensions
N; and Ny on K1 and Ko and mosaics py and ps. Suppose that
v = o(N1) = o(N2) has zero area measure. If there is a unitary
operator V' from My = [S§,S1]|H1 onto Mo = [S3,S2|Hza such that
pa(z) = Vpi(2)V=! for = € C\v, then there is a unitary operator
U : Ky — Kq satisfying

Sy =US1U gy, and Np=UNU™'.
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The key to the proof of the theorem is that, when ~ has zero area
measure, the continuous functions on v are uniformly approximated by
rational functions with poles off 7. This allows the unitary equivalence
on pu(z) = [(u—z)"'(ul — A)e(du) to be extended to any operator of
the form

/ £ (w) (ul — A)e(du)

where f is continuous on K. The unitary equivalence is then extended
to S by means of the determining function S(-,-) of (2.7).

The requirement that v have zero area measure is not as onerous as
it might first appear. The reason for this will become more clear as
we consider the general analytic model for a subnormal of finite type
which we will study in Section 3.

2.5. Notes and open problems. In [56] Daoxing Xia also created
an analytic model for a subnormal tuple of operators. It would be useful
to have an exposition of this work similar to the present exposition of
the single variable case. Other papers dealing with the analytic model
of subnormal tuples include [24, 34, 58, 59, 61]. In this extended
analytic model the mosaic is a matrix of operators and, instead of a
single determining function, we have a set of determining functions.

3. Subnormal operators of finite type. A pure subnormal
operator, S, is said to be of finite type if the self-commutator, [S*, 5],
has finite rank. The most common example of an operator in this class
is the unilateral shift which has a rank 1 self-commutator. One of the
reasons that we restrict ourselves to this class of subnormal operators
is that, for subnormal operators of finite type, the normal spectrum
is thin, consisting of an analytic curve along with a finite number of
isolated points. This enables us to relate the subnormal operators to
certain regions in the complex plane.

One of the best results to date along these lines is the work of Mc-
Carthy and Yang, [30]. This work creates a classification of rationally
cyclic subnormal operators of finite type by classifying them according
to their associated domains called quadrature domains.

An alternate strategy would be to classify the subnormal operators
of finite type according to the possibilities for the Xia invariants A and
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C. In the following we exhibit all of the possibilities for A and C for
rationally cyclic subnormal operators whose self-commutator is rank 1
or 2.

Following this complete discussion of the special cases when the self-
commutator has rank one or two, we discuss the work of Yakubovich
which moves toward a general classification. Finally, we discuss a
complete classification of the subnormal operators in terms of simple
operators and isolated points of the spectrum by Yakubovich as found
in [63].

3.1. Quadrature domains and subnormal operators. A do-
main 2 in C is called a quadrature domain if there exists a distribution
u with finite support in Q such that

/Q fdA = u(f)

for every integrable analytic function f in © where dA is the area
measure in C. The standard first example of a quadrature domain is
the unit disk. By Cauchy’s theorem,

/DfdA:/Ol/:wf(rew)rder
|

:/ — dzdr
0 271 |z|=r z

1

0

The connection between quadrature domains and subnormal operators
was studied by McCarthy and Yang in [30] where they prove the
following theorem.

Theorem 3.1 [30, Theorem 1.12]. Let S be a rationally cyclic
subnormal operator with spectrum K. Since any rationally cyclic
subnormal operator is unitarily equivalent to some S, we can assume
S is multiplication by the coordinate function of some R*(K,v). Let
Q be the interior of K. Then S, is irreducible and has finite rank
self-commutator if and only if the following conditions are satisfied:
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(i) K
(ii) Q is a quadrature domain.

(iil) v|aq is absolutely continuous with respect to harmonic measure
for Q, which we will denote by w, and

dv
/ log < ) dw > —oo0.
a0 dw

(iv) v|q is either zero or a finite sum of point masses.

It would be useful to know more about quadrature domains and
their basic properties. A few of the most important and best known
properties are identified in the following lemmas.

Lemma 3.2. Let Q be a bounded open set in C. Q is a quadrature
domain if and only if there is a function R meromorphic in Q and
continuously extendable to each point of O so that R(z) = Z on the
boundary of Q. This function ts called the Schwarz function of ).

For two distinct proofs of this theorem, the reader is referred to [1,
Lemma 2.3] and [14, page 154].

Lemma 3.3 [1, Theorem 3]. The boundary of Q is an irreducible
algebraic curve, except for possibly finitely many points.

Lemma 3.4 [25]. The Schwarz function R(z) = Z has at most finitely
many solutions inside €.

Lemma 3.5 [1, Theorem 1]. A bounded simply connected domain is
a quadrature domain if and only if it is the conformal image of the unit
disk under a rational function.

For more information on quadrature domains and the Schwarz func-
tion the reader is referred to [1, 14].
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3.2. A study of the one-dimensional case. In order to gain
some basic intuition into the analytic model and the mosaic, we will
investigate the model when M = C. In this case, the operators C
and A are scalars (which we will denote by ¢ and ) and e(-) is a
positive, scalar-valued measure. Note that ¢ > 0. The condition
that e(y) = Iy = 1 implies that e(-) is a probability measure. Now
condition (2.2) requires that, for every Borel set F' contained in ~,

Oz/F((ﬂff\)(uf/\)fc)e(du)

:/F<|u—)\|2—c)e(du).

Hence |u — A| = y/c almost everywhere e(-). This implies that -, the
support of e(-), is contained in the circle of radius y/c centered at .
In fact, v must be the circle of radius +/c centered at A. If it were not,
then C\7v would counsist of a single unbounded component on which
p(z) = 0. Then Corollary 2.13 would imply that K = o(S) = v. But
then we would have R%(K,e) = L%(e) and S would be normal.

Given this information, we can determine the mosaic.

Any z € C satisfying |z — A| > 4/c is in the unbounded component of
C\v and so

uU— A
= du) = 0.
pe) = [ et
For |z—\| < /¢, we cannot have u(z) identically 0 or else we would have
K = v and S would be normal. Since u(2)?> = u(z) by Theorem 2.7,
we can conclude that

u—=z

u(z):/u_)\e(du)zlfor z— Al <+

It is instructive to also determine u(z) by considering its properties
as a projection onto M’ = {b € M : ((-) — 2)7'b € R*(K,e)*}. Since
alz] = u(z)a for a € C and p(z) must be either 0 or 1, we know that
alz] = a or a[z] = 0. Hence, one of

a—alz] and

()—= ()—z
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will be 0 and the other will be a/((-) —z). Moreover, this cannot change
on a component of C\7v since a[z] is analytic on C\7.

When z is in the unbounded component of C\7,

a
—~—— € R*(K,e)
()—=
so that a[z] = 0 and u(z) = 0. When z is inside the circle |u — \| = /¢,

we must have “

()—=
or else R%(K,e) would contain all of C(y) and S would be normal.
Hence for z inside the circle, a[z] = a and p(z) = 1.

Finally, note that when A = 0 and ¢ = 1, we have R?>(D, e) = P%(D,e)
which produces the analytic model of the standard unilateral shift U.
All the other possible analytic models when M = C are obtained by
scaling and translating the model on D. Thus, we have established
Morrel’s theorem [32] that any pure subnormal operator with rank
one self-commutator [S*,S] is unitarily equivalent to aU + B3I where
aeR* and B € C.

€ R*(K,e)"

3.3. A study of the two-dimensional case. We now turn our
attention to the case that [S*,.S] is rank 2.

We begin by considering the case when the subnormal operator is
reducible. In this case, the subnormal operator with rank 2 self-
commutator is the direct sum of two subnormal operators with rank 1
self-commutators. From our study of the one-dimensional case above,
S =51®S52 on Hi ®Ha where S; = o;U + 5, U is the unilateral shift,
B; € C, and a; > 0 for j = 1,2. Thus, we can write A and C as

_ (B0 (a2 0
A—(O 8, and C = 0 a2
and o(S) is the union of the two circles with radius a; and center ;.
We also see from the one-dimensional case that

— [ X{lz—pil<van} (20) 0 >
Zi =
# (20) < 0 X{|z~B:<vaz} (20)

where X 4 is the characteristic function of the set A.
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From now on we will assume that S is an irreducible, rationally cyclic,
pure subnormal operator. From the following well-known lemma we
know that the spectrum of S is connected.

Lemma 3.6. If S is a subnormal operator and o(S) is disconnected,
then S is reducible.

Letting M = [S*, S|H, we can write A and C as 2 X 2 matrices. With
the appropriate shift we may assume that 0 is in the spectrum of A so

that
A= (0 0> and C = <C“ C”)
A n Ci2 C22
for some A, n, and c¢;2 in C and some c¢;; and cyy positive real numbers.

Moreover, {0,n} C o(S) since o(A) C o(S5), as was established in the
proof of (2.8).

Note that equation (2.5) is equivalent to
(3.1) det (C— (@l — A*)(ul —A)) =0

for all u € 6,,(S). When u is not in o(A), equation (3.1) is equivalent
to

(3.2) det (C(ul —A)™' +A* —ul) =0

which, after taking the determinant, becomes
(3.3)

A Nz A
2 pgom) (S _g) = (2 ( 2222 )
u—rn u  u(u—mn) u—n u  u(u—n)

If S is rationally cyclic then we know from [31] that o(S) is a quadra-
ture domain. Therefore, there is a Schwarz function, ¢, associated to
o(S), that is meromorphic on int (o(5)), extends continuously to all
of o(S) and satisfies ¢(z) = z on the boundary of o(S). Since S is
rationally cyclic and the corresponding quadrature domain is simply
connected, o(S) is the image of the unit disk under a rational function
1 with poles outside of D. By pre-composing 1 with an appropriate
linear fractional transformation, we may assume that ¥ sends 0 to a
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point of our choosing from int (¢(S)). If we define the function ¢ on
the complement of the unit disk by

(3.4 =s(v(2)),

then {Z is analytic on the complement of the unit disk sending |z| > 1 to
p(S). Note that ¥(z) = ¥(z) on OD since 1) maps D to the boundary
of o(S) on which ¢(z) = z. Hence, 9 is the analytic extension of .

We will use the analytic model to determine the possibilities for ¢ and
hence for 9.

Since the normal spectrum contains the boundary of ¢(S) we can
substitute ¢(u) for @ (3.3) and find that

C22 _ C11 Acia
(u—n o ¢(u)> ( u " ulu—n) ¢(u)>
()@ )
u—n u  u(u—n)
on the boundary of o(S), a set large enough to determine the essential

character of ¢. Comparing the poles on either side of the equality, we
find that ¢ satisfies one of the following descriptions:

(i) ¢ is an entire function,
(ii) ¢ only has a simple pole at 0,
(iii) ¢ only has a simple pole at 7,
(iv) ¢ has a simple pole at 0 and a simple pole at 7, or
(v) n =0 and ¢ has a double pole at 0.

If ¢ is an entire analytic function then it is constant and ¢(S) = ¢,,(5)
is a point. In this case, S is normal which contradicts our assumption
that S was pure.

For each of the remaining options we will determine the character
of the corresponding v and provide an example of a pure subnormal
operator with rank 2 self-commutator for which we will determine M,
A, C and pu(z).



XIA’S ANALYTIC MODEL 877

If ¢ has only one simple pole in int (0(S)) (cases (ii) and (iii)),
we select ¥ to send 0 to that simple pole. When % is analytically
extended to C by (3.4) it has one simple pole located at co. Therefore,
Y(z) = bz + c for some b € C\ {0} and ¢ € C. Hence, o(S) is a
disk centered at ¢ with radius |b|. By scaling and translating, we may
assume that o(S) = D.

From the discussion [31, page 68] we know that the degree of the
rational function plus the number of point masses is equal to the rank of
the self-commutator. Since the circle is given by an algebraic function
of degree 1, we know that there must be a single point mass in the
interior of the disk in order for the self-commutator to have rank 2.
Therefore, we know that S is unitarily equivalent to multiplication by
z on P2()\) where ) is the harmonic measure on the boundary of the
disk with a point mass in the interior of the disk.

This brings us to the following example.

Example 3.7. Let T, = 0DU{a} where |a| < 1. Let A be a measure

on T, such that ’
. d

X (e) = —

() = 5

and A({a}) = v. Let S = U, where U, is multiplication by z
on PZ()\), the Closure of the polynomials under the inner product

= [op [(2)9(2) dA(2) = 1/(2mi) [5p, f(2)9(2)(dz/2) + v f(a)g(a).

If a = 0, then {(1/\/1 +v), 2z} is an orthonormal basis for M relative
to which

A= (1/\/2+—u g)’

o= (0 )

and

. 1/(1+v) Zo/\/H—V
)= (it Sien) )

for zp € o(S) \ on(S). It is easy to verify that tr (u(zp)) = 1 and that
w(20)? = u(zo) for 29 € o(S) \ 0, (S).
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If a # 0, then M is spanned by the orthogonal basis {fi, fo} where
f2(2) = az/(1 — @z) and f; = (1+vp?) —vfy with p? = |a|?/(1 — |a|?).
Relative to the normalization of this basis,

0 0
A= ((a (1=1aP))/dlal y/1+ v = lal*) ) |
1-v(1-aP)’ <1+u|a\27|a|2) _ vjal(1—lal?)

1+v—|af? (1+v]al>~|al?)y/1+v—al?

C=1 vl (1= o) (Rdeels) |
(1+vla®~lal*)y/1+v—a|® 14+v—|al?
and
(20) :
z2n) =
Bz (14 vp?) (1 —az) (a— zp)
vz —lal? zovla|?+z0a vp?)(a—z
(1+vp*) (1 —az) (a— 2) + fﬁpzlJr‘,,) - l\;r ZO(I(J:JF 2’;); )
1% vpl+4v
ua(l—\a\2)+u|a\2(1+1/p2+1/)(a—20) _Vzo(l—\a\z)
Vo2 (1vp?+v)? Ltvp?tv

for zop € D. While verifying that u(z9)? = u(zo) is quite tedious, it is

easy to see that for zp € D, tr (u(z0)) = 1.

Next consider case (v) when ¢ has a double pole at 0. Let 9 be a
conformal map from the unit disk onto the spectrum of the subnormal
operator so that 1(0) = 0. When we analytically extend ¢ to include
|z] > 1 via (3.4) we find that ¢ has a double pole at co. Therefore,
¥(z) = bz(z + a) + ¢ for some b, € C\ {0}, ¢ € C. Note that o # 0
since we are assuming the subnormal operator is irreducible. Since 1
is a degree 2 polynomial we know that there are no point masses in
the interior of the spectrum. Hence S is a multiple and shift of the
following operator.

Example 3.8. If S = U(U + «) where U is the unilateral shift, then
M has {1, z} as an orthonormal basis. Relative to this basis,

1+ ]a)? « ({0 0
C_<a 1)’ A_aO’
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and
OM 1< "720 |7
zo_ , - z_o ;
K (ZO) = PYZOZSPY—ZEWZOZO) :00—0:;:, ‘PYZO | <1< |’Y;0 |’
2, (v20—7%0) Yoo (Y20 —7)
Inm Ll <1,

where 7., and 7. are the two roots of z(z + a) — 2o labeled so that
|’720‘ < |’Y;0" One can verify that 229 — AYzo = V2o (720 - '7;0) from
which it will follow, in the middle case, that tr (u(z¢)) = 1 and that
w(zp) is a projection. It is clear from this formulation that tr (u(zo))
is measuring the multiplicity of preimages of zy that lie inside the unit
disk.

We now turn to the case that the Schwarz function, ¢, has a simple
pole at 1 and a simple pole at 0. As before we let ¢/ be the conformal
map from the unit disk onto the subnormal spectrum that takes 0 to
0. Using the same analysis as above, we see that ¥ has a simple pole
at 0o and a simple pole at 1/6 for some ¢ in the unit disk. Since %
has rational degree 2 we conclude that the subnormal is a dilation and
translation of the following operator.

Example 3.9. Consider S = aU +6U(I —6U)~! where a € C\ {0},
0 < |0] < 1, and U is the unilateral shift.

Then {1,(1/p)(6z/1 —62)} is an orthonormal basis for M where
|612/(1 — |§]2). Relative to this basis,

A— < 0 0 >
T\ (ad+pY)p ab+p?)’
C:<|a|2+a5+a6+p2 a6p+p3>
adp + p? p* ’
and, letting ., and 7/ be the two roots of adz? — (a + 4 + zd)z + 2o
labeled so that |7.,| < |7, |, we have u(zo) = 0if 1 < |y, ],
1(%0)
—20(1=67z) —Z0
6724 (120 7% ) ap(vz0—=7%)
(ald>+8p%)vL, +0p%207., —p%20  @dp® ('Yzo +(720)2) —(a+1)p*vL —1812p%20
pa?7Ly (120 —7%y ) (3-7%,) P2adrly (120 =%y ) (3-7%0)
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if |7z| <1 <7, and
w(z0) = Iaa if |72, < 1.

We have proven the following theorem.

Theorem 3.10. If S is a pure rationally cyclic subnormal operator
with rank 2 self-commautator [S*, S|, then S is unitarily equivalent to a
dilation and shift of one of the following operators:

(i) S=51®S2 on Hi @ Hy where Sj = ;U + B; with B; € C and
aj >0 forj=1,2,

(ii) S = Uy,

(i) S =U(U + «a) for some o € C\ {0},

(iv) S = aU + 0U(I — 6U)~! where a € C\ {0} and 0 < |§] < 1.

where Uy s the operator from Example 3.7 above and U is the unilateral

shift.

To further understand this characterization of S in terms of A and
C, we will examine the operator S = (1 —§U) 2 in the example below.
This example is motivated by the fact that the image of the unit
disk under ¢(z) = (1 — 62)~2 produces a quadrature domain whose
associated distribution involves point evaluation of the derivative.

Example 3.11. If $ = (1 — 6U) 2 with 0 < |§] < 1, then it is the
rational image of degree 2 of the unilateral shift and so has a rank 2 self-
commutator, but it is not immediately apparent that S is included in
the list of operators in Theorem 3.10. The corresponding computations
reveal that M = V{(1/1 — 62),(1/(1 — 62)?)} and that relative to the
normalization of this orthogonal basis

a= s ()

(1)

Uy G
- .
(1 _ ‘5|2> 216] 19

and
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If we let T = (1 [8]2)2/]62S — 1/|6]2I, then

(3 8) e (0 )

Thus, we see that S is unitarily equivalent to a dilation and shift of the
operator U(U + (2/]6])I) from Example 3.8.

3.4. Restrictions on A and C. We know that A and C form a
complete unitary invariant for a subnormal operator S. We also know
that, given A and C corresponding to a subnormal operator S, we can
reconstruct S. Consequently, it would be useful to have a complete
description of the possible operators, A and C, that corresponds to a
subnormal operator. In the case that A and C operate on a finite-
dimensional Hilbert space, Yakubovich has discovered such a descrip-
tion based on a topological property of an algebraic curve. We will give
a brief exposition of this description in the following. For the proofs of
the results the reader is referred to the paper, [64].

Let C > 0 and A be operators on a finite-dimensional Hilbert space
M. We associate to C' and A a polynomial

T(z,w) = det (C — (w— A")(z — A))
and the algebraic curve
A = {(z,w) € C*: 7(z,w) = 0},

which is called the discriminant curve of S. Each point of the dis-
criminant curve will be denoted by § = (z, w) with z(d) being the first
coordinate of § and w(d) being the second.

If we decompose 7 into irreducible factors 7; so that

T
7(z,w) = [] iz, 0)%,
j=1

then we are also able to decompose A as

T
A:UAj

Jj=1
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where A; = {(2,w) : 7j(2,w) = 0}. A point § € A will be called regular
if it belongs to only one A; and either

orj

o (6) #0 or %(6) # 0.

0 is called singular if it is not regular. The set of all singular points of
A will be denoted by A,.

Since there are only finitely many points in Ay we remove these points
from A to create Ag = A\A,. From A we can create a unique abstract

compact Riemann surface, A, that consists of exactly 7" compact,
connected components, Aj;, where each component is obtained by
adding a finite number of points to Aj; N Ag.

A component, ﬁj, will be called degenerate if either z or w is constant
on the component and nondegenerate if it is not degenerate. Let Aqeg
be the union of all of the nondegenerate components of A.

The functions § — z(d) and § — w(d) extend to meromorphic
functions on A, and the function

dz

WZ—E,

initially defined on regular points of ﬁndeg, can be extended to a
meromorphic function on all of A.

Let
AL = {0 € Anaeg : n(8)] < 1} and A_ = {6 € Apaeg : [7(6)] > 1}

Furthermore, if
AR = {(5 € Andeg 10 = (5*}

is the set of real points of 3, then the algebraic curve A is called
separated if for any nondegenerate component of Ay of A, the set
AR N Ay separates Ay into at least two connected components.

For every square matrix, A, and every A € o(A), define

I\ (A4) = xa(4),
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by means of the Reisz-Dunford functional calculus for an analytic
function X, where X,(A) =1 and X, =0 on o(A4) \ {A}, a finite set of
isolated points. For z not in o(A), a point (2, w) is in A if and only if
w belongs to o(C(z — A)~! + A*). Recalling that z(-) is the coordinate
function, for (z,w) € Ag\z71(c(A)) we can define

P(z,w) =11, (C(zI — A) " + A¥).

Then P is a nonzero parallel projection in M.

Theorem 3.12 [64, Theorem 1]. Let M be a finite-dimensional
Hilbert space, let C > 0 and A be operators on M, and let

v={ue€ C|det (C — (ul — A*)(ul — A)) =0}.
Define A, ﬁi, and P as above. Let
wu(z) = Z P(z,w), z€C\(c(A)UryUz(Ay)).
w:(z,w)ez_,_

There exists a subnormal operator S associated to A and C' if and only
if the following conditions hold:
(i) A is separated.

(ii) There exists a positive B(M)-valued measure e(-) such that

3:5) (A=) (- u2) = [ ) e o\ (o) Uy U(A)
and
(3.6) (C = (al — A*)(ul — A)) e(du) = 0.

If both conditions (3.5) and (3.6) hold, then the measure, e(-), is the
compressed spectral measure of S and p is the Xia mosaic.

3.5. Classification of subnormal operators of finite type.
Another path of research is to classify all of the subnormal operators
of finite type. An example of this type of classification is that every
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rationally cyclic subnormal operator is unitarily equivalent to multi-
plication by the independent variable on R?(K,v) for some measure
v and compact set K whose interior is a quadrature domain. In the
paper, [63], Yakubovich gives a classification of all subnormal opera-
tors of finite type as multiplication by the independent variable on a
vector-valued R? space over a quadrature Riemann surface with some
possible additional point masses.

As before, we let A be the discriminant surface of a subnormal S
of finite type on a Hilbert space H such that the spectral measure of
the minimal normal extension N has no point masses. In this case
we can define an H*°(A,) functional calculus for N. The operator S
is called simple if it admits the H> (34_) functional calculus, that is,
FINYH C H for all f € H®(A,).

For each pure subnormal operator of finite type, we are able to
construct a corresponding simple subnormal operator of finite type
in the following canonical way. Since the minimal normal extension,
N € B(K), of S is unitarily equivalent to the operator of multiplication
by z on L%(e), S has no point masses if and only if e(-) is absolutely
continuous with respect to arc length measure. Decompose e(-) into
ea(-)+es(-) where e, is absolutely continuous with respect to arc length
measure and e, is a finite sum of point masses. Similarly, decompose
K and N as

K =K.@PK,, and N = N, P N..

Now let Ho be the intersection of I, with #H, and let L be the projection
onto Hy. Then the operator Sy := LSL* is a pure subnormal operator
without point masses.

Define ﬁo to be the linear manifold
Ho := span {f(N)HO 1 fe H°°(3+)}

Then ﬁo is a closed invariant subspace of IV containing H,, dim(ﬁo ©
Ho) is finite, and Sy := N |ﬁ0 is a simple subnormal operator. We

call §0 the canonical simple subnormal operator that corresponds to S.
With these definitions we are able to state the main theorem of [63].

Theorem 3.13 [63, Theorem 12.3]. Let S be a subnormal operator
of finite type. If Sy is the operator obtained from S by eliminating
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point masses, and if go acting on ’ﬁo is the canonical simple operator
corresponding to Sy, then

(i) There exist eigenvalues A\, 1 < k < r of ga‘ and corresponding

Jordan chains {@Z}Ak Tk, of generalized eigenvectors:

(S5 = Mr)ul, =0, (85— Mel)wd, =o' =1,
such that Sy = §0|7{0, where
Hoz{me}to (ml/))‘)—O 1<k<r, 0<]<mk}

(the Ar’s are not necessarily distinct).
(ii) There is a finite set {u;} and operators L; : Hy — C%, t; € N,

1 <j <m, with (S5 — ;)L; = 0 such that the operator S comczdes
with Sy, acting on the renormed space (Ho, || - [|1), where

m
2l = llel|® + D 1L

j=1

Conversely, if Sy is any simple subnormal operator of finite type and
if S is obtained from Sy by applying the above procedure, where {1/)] }
and {L;} are arbitrary finite families with the above properties, then S
s a pure subnormal of finite type.

3.6. Notes and open problems. With the results of Yakubovich
we see that it may be possible to find a better description of which
operators A and C can be associated with a subnormal operator.
However, from the examples of rank 2 self-commutators, we see that
this is not going to be simple.

A modest step in this direction can be found in Theorems 1 and 2 of
[46]. These theorems address the special case when o(S) = D. In this

case,
On (S) =0DU {al,aQ, . ,an}

with {ay,as,...,a,} C D. If we define Q = C — [A*, A], then
(i) @ is a nonzero orthogonal projection,
(ii) Qe({a;}) =0,i=1,2,...,n, so Q is supported on ran (e(0D)),
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(i) AQ = 0,
(iv) A*e({a;}) = @ie({ai}), and
(v) C=T— AN =330, (1= Jail*)e({ai})-

Moreover, these conditions are sufficient for A and C to define a
subnormal operator.

Note that, in general, Q2 is the operator C; from Putinar’s model
of a subnormal operator found in the proof of Corollary 2.4. When
0, (S) is the boundary of the disk together with a finite number of
points inside the disk, the Stewart-Xia theorems imply that C; = @
and that A partially decomposes relative to QM. This does not happen
in general. In particular, @ = C — [A*, A] need not be an orthogonal
projection as can be seen by considering example Example 3.8 above.
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