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DISTINGUISHING CONTRAGREDIENT
GALOIS REPRESENTATIONS
IN CHARACTERISTIC TWO

DARRIN DOUD

ABSTRACT. Recently, Ash, Pollack and Soares described
Galois representations with image isomorphic to GL3(F32),
and computationally demonstrated a connection to arithmetic
cohomology classes with predictable coefficient modules. In
some cases, they did not distinguish between contragredient
representations for which the predicted coefficient modules
are different. In this paper, we distinguish between these
representations, providing additional evidence for a conjecture
relating Galois representations to cohomology.

1. Introduction. In [3], Ash and Sinnott describe a conjecture
relating certain n-dimensional niveau one Galois representations to
Hecke eigenclasses in certain arithmetic cohomology groups. Their
conjecture also includes a method of determining the weight, level
and nebentype of the arithmetic cohomology groups attached to a
given representation. In [1] this conjecture is extended to apply to
Galois representations of arbitrary niveauz. In [2, 7], the conjecture is
refined slightly, to make more precise the prediction of which coefficient
modules yield an appropriate Hecke eigenclass. All four papers give
examples of Galois representations for which computational evidence
for the conjecture is obtained.

In [2], Ash, Pollack and Soares refine the conjecture of [1] in char-
acteristic two, give examples of Galois representations in characteristic
two and computationally test the refined conjecture for these represen-
tations. In characteristic two, the predictions of [1, 3] for the weight
claim only that there exist weights that should yield eigenclasses cor-
responding to certain Galois representations, but do not specify these
weights. For niveau one representations, both [2, 7] specify which
weights should work. The niveau one examples in [2] all support the
refined conjecture of [7]; however, for some of the examples, the authors
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of [2] do not distinguish between a representation and its contragredi-
ent, so that the refined conjecture of [7] is only checked up to duality.
In other words, in a set of weights which are predicted by [7] for one of
p and its contragredient, the appropriate eigenvalues are found to cor-
respond to one of p and its contragredient. The purpose of this paper is
to distinguish between these representations and their contragredients,
thus giving evidence for the refined conjecture of [7], based on certain
examples of [2]. This evidence is important because these representa-
tions are the first known examples of wildly ramified representations for
which the refined conjecture involves a mixture of two different types
(trés ramifiée and peu ramifiée) of wild ramification.

2. The conjecture. In characteristic two and niveau one, the
conjecture relating Galois representations and arithmetic cohomology
is particularly simple; we briefly review the necessary notation here
and refer to [1] for a more detailed version of the full conjecture. We
note that many of the definitions used here are specific to the case
of characteristic two representations; for full descriptions in arbitrary
characteristic, see [1].

2.1. Level. Let p : Gq — GL3(F2) be a Galois representation.
For each rational prime ¢, fix an embedding Gq, — Gq arising from
an embedding of Q into Q,. The images of the lower numbering
ramification groups in Gq, then yield a filtration of ramification groups
Geo O Go1 D -+ in Gq. Define g; = [p(Geyi)|, and let M = Fi be
acted on by Gy; via p. Set

Q

oo
=),
=0

L dim M/MCes,
0

N

This sum is easily seen to be finite, since p(Gy,;) is trivial for large
enough 7.

Definition 2.1. The level of p is

N(p) =[]

042
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Note that ny = 0 for unramified primes, so that the product defining
N(p) has only finitely many nontrivial factors.

2.2. Weight. The weights associated to a Galois representation
p as above will be a certain set of irreducible Fo[GL3(F3)]-modules.
There are exactly four of these modules, which we will denote by
F(0,0,0),F(1,0,0),F(1,1,0) and F(2,1,0). (The notation reflects the
parametrization of irreducible Fo[GL3(F2)]-modules by 2-restricted 3-
tuples described in [6].)

2.3. Attached eigenvectors. Let I'o(IV) be the subgroup of matri-
ces in SL3(Z) whose first row is congruent to (*,0,0) modulo N. Define
Sy to be the subsemigroup of integral matrices in GL3(Q) satisfying
the same congruence condition and having positive determinant rela-
tively prime to N. Denote by H(N) the Fa-algebra of double cosets
Lo (N)\Sn/To(N). Then H(N) is a commutative algebra that acts on
the cohomology of I'y(IN) with coefficients in any Fy[Sy]-module. For
0 < k < 3 and ¢ a prime not dividing N, let D(¢, k) be the diagonal
matrix with 1 on the diagonal 3 —k times, followed by ¢ on the diagonal
k times, and write T'(¢, k) for the double coset I'¢(N)D(¢, k)T'o(IV).

Definition 2.2. Let V be an H(2N)-module, and suppose that
v € V is a simultaneous eigenvector for all T'(¢, k) with £ f 2N and
0 < k < n. Denote the eigenvalue of T((,k) by a(f,k) € Fa, so
that T(¢,k)v = a(f,k)v. Let p : Gq — GL3(F2) be a representation
unramified outside 2V, and assume that

ia(ﬂ, k)X* = det(I — p(Frobs)X)

for all ¢ not dividing 2IN. Then we say that p is attached to v or that
v corresponds to p.

Remark 2.3. In our examples, we will take the module V' to be a
cohomology group H3(I'o(N),W), with W an irreducible GL3(F3)-
module. Our experimental confirmation that a Galois representation
is attached to an eigenvector will consist of computing all the a(, k)
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for £ < 50, and checking that they match the eigenvalues expected of
p. We make the following definition:

Definition 2.4. Let p be a three-dimensional irreducible Galois
representation in characteristic 2 with level N. We will say that a
coefficient module W yields eigenvalues attached to p if there is an

element
v e H3(Ty(N), W)

such that p is attached to v as in Definition 2.2.

2.4. Predictions. A Galois representation over F, is niveau one if
its restriction to inertia at p is upper triangularizable with powers of
the cyclotomic character on the diagonal. Since the mod 2 cyclotomic
character is trivial, a Galois representation p : Gq — GL3(F2) will be
niveau one exactly when the inertia group at 2 is a 2-group. In this
case, we will be able to conjugate p so that

p: GQ’O — GL3(F2)

has its image in the upper triangular matrices. We will assume that p
is conjugated in this way and define maps 1, ¥3 : G20 — Fa by

1 ¢1 (U) *
ple)=10 1 Pa(0) for o € Ga.
0 0 1

Now, for i = 1,2, we define p; : G2 9 — GL2(F2) by

I S
”i_[o 1}

and note that each p; is a homomorphism. Each p; can be either
unramified, trés ramifiée, or peu ramifiée, according to the definitions
of Serre [9]. We then make the following conjecture (which is just the
main conjecture of [7], in characteristic two):

Conjecture 2.5. Let p : Gq — GL3(F32) be an irreducible niveau
one Galois representation, with level N(p). Define py and ps as above.
Then we make the following predictions:
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(1) if neither py nor ps is trés ramifiée, then we predict that all four
weights will yield eigenvalues attached to p.

(2) if only py is trés ramifiée, then we predict that F(1,0,0) and
F(2,1,0) will yield eigenvalues attached to p.

(3) if only po is trés ramifide, then we predict that F(1,1,0) and
F(2,1,0) will yield eigenvalues attached to p,

(4) if both p1 and py are trés ramifide, then we predict that F'(2,1,0)
will yield eigenvalues attached to p.

Finally, we predict that any weight not predicted by the above for some
conjugate of p will not yield eigenvalues attached to p.

Note that if there are several ways to conjugate p so that inertia
has image in the upper triangular matrices, we may need to combine
several of the cases described in the theorem. This situation does not
occur in any of the examples found in [2]. Note also that, in certain
cases, the predictions of [2] will differ slightly from those given above
(for instance, the case where the image of inertia has order two, and
the corresponding quadratic extension is trés ramifiée). Unfortunately,
we have no computational examples of representations for which the
predicted weights differ.

Examples of cases (1) and (4) appear in [2] and will not be discussed
further here. In [2], cases (2) and (3) are not distinguished. Instead,
it is noted that if p falls into case (2), then the contragredient p* of
p (given by composing p with the outer automorphism of GL3(F32)
taking a matrix to its transpose-inverse) falls into case (3). Hence, in
their examples, the authors of [2] look for eigenvalues of either p or p*,
making no distinction between the two. The main goal of this paper is
to distinguish between these two representations and demonstrate that
the weights predicted by Conjecture 2.5 for p and p* yield eigenvalues
(for ¢ < 50) corresponding to p and p*, respectively. Note that all
four predictions for the weight in Conjecture 2.5 are specializations of
a specific formulation for the weight in arbitrary characteristic [7].

3. GL3(F2) as a permutation group. We begin by recording
several facts about GL3(F3) without proof. These facts are all either
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well known, or can be verified quickly by using the MAGMA [4]
computer algebra system.

Proposition 3.1. (1) GL3(F3) is a simple group of order 168.

(2) No proper subgroup of GL3(F3) has order divisible by 14.

(3) Any subgroup of GL3(F2) of order 24 is isomorphic to Ss.

(4) GL3(F2) has two conjugacy classes of subgroups isomorphic to Sy.
(5) GL3(F3) has a single conjugacy class of subgroups of order 8.

(6) GL3(F2) has two inequivalent irreducible three-dimensional rep-
resentations over Fs.
Now, by Proposition 3.1 (2), GL3(F3) is generated by the matrices
1 11 1 1 0
s=|(1 0 O and t=|0 1 0
1 1 0 0 01
of orders 7 and 2. Let

*
H:

*

x ok

* ok
0 01
and note that H is isomorphic to Sy. Then the cosets of H in GL3(F5)
are s*H with 1 < k < 7. Identifying each coset with the exponent of
s occurring in this representation, it is clear that s acts on the cosets
as the seven cycle 0 = (123456 7). One checks easily that ¢ acts on
the cosets as the permutation 7 = (1 2)(3 6). This gives a surjective
homomorphism ¢ : GL3(F2) — G, where G is the subgroup of Sy
generated by o and 7, and since GL3(F5) is simple, this homomorphism
must be an isomorphism.

Finally, we remark that H stabilizes the coset s"H = H, and is, in
fact, the full stabilizer of s"H in GL3(F32).

We will be interested in three important subgroups of H, namely

1
D = 0
0

O = *
— % %
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1 0
V1= 0 1 )
|10 0 1]
and
o 7
Vo = 010
|10 0 1]

Note that D is a dihedral group with 8 elements, each V; is a Klein
four group, and that Vi<H.

4. Number fields of interest. We are interested in the Galois
representations in [2] for which the predicted weights were not fully
determined. These Galois representations corresponded to GL3(F3)-
extensions K of Q in which 2 has inertia group Dg (the dihedral group
of order 8). Each of these number fields K is defined as the Galois
closure of a degree seven polynomial having Galois group GL;3(F32).
In fact, by Proposition 3.1 (3) and 3.1 (4), such a number field has
two distinct isomorphism classes of subfields of degree seven. These
subfields give rise to the “twin” polynomials described in [2]. We
will use defining polynomials for each of the two classes of subfields—in
cases where [2] did not give the “twin” polynomial, we have calculated
it using a resolvent computation. Hence, for each case (2) GL3(F2)-
extension K/Q given in [2] we have two polynomials, f; and fo, with
nonisomorphic root fields, both of which have splitting field K over
Q. These polynomials are given in Table 1. Each such number field
K corresponds to a pair of surjective Galois representations p and p*
from Gq to GL3(F2) having the same level; we have labeled each pair
of polynomials by the level of the related Galois representations. Note
that the choice of which polynomial is f; is arbitrary; we could have
switched the roles of fi; and f,. This choice does, however, affect our
choice of p in the next section: swapping f; and f would have the
effect of swapping p and its contragredient.

5. Explicit Galois representations. For each of the polynomials
f1 listed in Table 1, we have used MAGMA [4] to compute the Galois
group of f; as a permutation group on the roots. For each example,
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TABLE 1. Table of defining polynomials.

Level | Defining Polynomials
181 | f1 =27 — 5% 4+ 202® — 122% — 4823 + 17622 — 192z + 64
fo =7 4 3x% — 225 — 62* — 8023 + 20822 — 192z + 64
239 | f1 =a7 — 320 + 122% — 1523 — 722 + 242 — 8
fo=a7 — 425 — 8z* + 1323 + 422 — 10z — 4
307 | f1 = a7 4 620 + 825 + 48x* — 4823 + 9622 — 384x + 256
fo=a7 + 1828 4 12425 + 5682* 4 217623 + 332822 — 2560z + 1024
389 | f1 =a7 — 1228 — 162% + 384z* + 32023 — 537622 + 9216z — 4096
fo =a7 — 3628 4 40025 — 1088z* — 409623 4 819202 + 196608
421 | f1 = a7 — 628 + 172% — 30z* + 2423 — 24z + 16
f2 =a7 — 1826 + 1422% — 668x% + 211323 — 451422 + 5828z — 3368
443 | f1 =7 + 325 — 202® — 282* + 10823 — 11622 + 64z — 16
f2 = a7 4+ 928 — 1325 — 3332% — 70423 + 238422 + 10688z + 11072

MAGMA returned the result that the Galois group was the subgroup
of S; generated by the permutations

c=(1234567) and 7= (12)(36).

Of course this representation depends on the ordering of the roots. In
Table 2 we give the ordering of the roots of f; used by MAGMA and
denote the roots by ry,...,77 in the given order.

We are now able to explicitly construct the Galois representations
that we will study. We have a canonical projection 7 : Gq — Gal (f1),
and we have identified Gal(f;) with the subgroup G C S; generated
by o and 7. We also have an isomorphism ¢~! : G — GL3(F3). We
define

p=¢"'or:Gq — GL3(F2).

We remark that by defining F; = Q(r;) = K?H), we have that
Gal(K/F,) = ¢(H) = S;. Define L = K?P) and M; = K*Wo,
We see easily that M; is the Galois closure of L over Fj, and that
Gal (Ml/Fl) = Sg.
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TABLE 2. Details of the computations, including an ordering of the roots of fi,

the predicted weight of p and the trace of p(Froby) for the smallest prime ¢ having

inertial degree 7.

Level approximate roots of fi predicted weight Tr (p(Fry))
1.00 + 1.50¢, 1.00 — 1.50¢,
181 | 1.80 + 3.504, 0.900, F(1,0,0) 0
—2.10, 1.80 — 3.50%,
0.700
1.18 4+ 1.234, 1.18 — 1.23¢,
239 | 1.61 — 0.563i, 0.413, F(1,1,0) 1
—1.55, 1.61 + 0.5631
—1.46
0.014 + 2.564, 0.014 — 2.561,
307 | —0.936 — 2.23i, ~6.25, F(1,1,0) 1
0.854, —0.936 + 2.234,
1.24
1.89 + 0.425¢4, 1.89 — 0.425¢,
389 | —4.40 + 1.99i, 6.53, F(1,1,0) 0
9.75, —4.40 — 1.99¢
0.732
0.814 + 1.164, 0.814 — 1.163,
421 | 0.791 — 1.854, 2.74, F(1,0,0) 1
—0.823, 0.791 + 1.851,
0.869
0.358 + 0.567¢, 0.358 — 0.567¢,
443 | 0.748 — 0.1414, 3.35, F(1,1,0) 0
—3.91, 0.749 + 0.1414,
—4.65

6. Ramification at 2 in GL3(F2)-extensions. For the extensions
K/Q defined by polynomials in Table 1, Ash, Pollack and Soares [2]
have shown that the decomposition and inertia groups at primes above
2 are isomorphic to D. Since GL3(F2) contains only one conjugacy
class of groups of order 8, we may choose a prime 3 of K lying above 2
with decomposition and inertia groups equal to (D). Then L = K ¢(D)
is the inertia field of P|2, and we will define p = P N L. Note that p is
a prime of L lying over 2, with inertial degree and ramification index 1.
Hence, we may identify the completions Q2 and L,. In particular, we
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note that these completions have the same inertia group, which we can
identify with G2 in Gq.

Recall the definition of p; and py from subsection 2.4. Examining
p1 : Gag — GL2(F2), we see that it is a composition of p : Ga o —
GL3(F2) with amap 6 : D — GL2(F2) having kernel V3. Hence p; cuts
out a quadratic extension of L, inside Kg; defining p; = P N My, we
see that this quadratic extension is (M), /Ly. Hence, we may study
the ramification of p; by studying the ramification of py|p. Similarly,
letting po = P N My, we may study the ramification of ps by studying
the ramification of pa|p. In order to study this ramification, we factor
the polynomial f; over the field Fj.

Lemma 6.1. Let f; and f2 be defining polynomials for nonconjugate
degree seven subfields Fy and F> of K/Q, where Gal (K/Q) = GL3(F2).
Then, when considered as a polynomial in Fi[z], fo factors into an
irreducible cubic factor and an irreducible quartic factor.

Proof. Note that the splitting field of fo over Fj is the degree 24
extension K/F; and Gal (K/F;) = S4. Hence, any irreducible factors
of fo over F; have degree dividing 24. There can be no irreducible
factors of degree 1, since F> and Fj are nonconjugate fields, hence there
can be no irreducible factors of degree 6. Therefore, the only possible
degrees of irreducible factors are 2, 3 and 4. Since all the quadratic
and cubic extensions of F} inside K are contained in a common Sj
extension of F1, it cannot be the case that all of the degrees are less than
4. Hence, f; must factor as an irreducible cubic times an irreducible
quartic polynomial. o

We will denote the cubic factor of fo over Fy by f3 and the quartic
factor by f4. Note that the splitting fields of f3 and f, over F; are M;
and K, respectively.

Let q = P N Fy, and note that M;/F; is an S; extension, with
three primes lying over g, each having ramification index 2 and inertial
degree 1. We see that in L, the prime q factors as ps?. It is
clear that the ramification of s|q is of the same type as that of py|p.
In addition, the polynomial f5 factors in (Fi)q into a linear and a
quadratic factor, corresponding to p and s, respectively. We may
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compute the ramification of s|q by studying the quadratic factor: if
the g-adic valuation of its discriminant is odd, then s|q is trés ramifiée,
otherwise s|q is peu ramifiée, [7].

Note that f4 is g-adically irreducible, since a degree 4 extension of
Fy inside K must be totally ramified. Identifying (F})q with Q2, we
see that the g-adic quadratic factor of fs is in fact the unique 2-adic
quadratic factor of fo. Hence, we may determine the ramification type
of p; by determining the discriminant of the unique 2-adic quadratic
factor of fy. Ash, Pollack, and Soares have already shown that, for the
extensions K/Q defined by polynomials in Table 1, the representations
p1 and ps have opposite ramification types. We have then proven the
following theorem:

Theorem 6.2. Given fi1 and f2 as in Table 1, let p be the Galois
representation defined in Section 5.

(1) If the 2-adic valuation of the discriminant of the quadratic 2-adic
factor of fa is odd, then p satisfies case (2) of Conjecture 2.5, and the
predicted weights for p are F(1,0,0) and F(2,1,0).

(2) If the 2-adic valuation of the discriminant of the quadratic 2-adic
factor of fo is even, then p satisfies case (3) of Conjecture 2.5, and the
predicted weights for p are F(1,1,0) and F(2,1,0).

For each of the examples in which we are interested, we have 2-
adically factored fo (using GP/PARI [10]) and determined which of
F(1,0,0) and F(1,1,0) is predicted for p. This determination is
indicated in Table 2.

7. Computing Frobenius elements. A simple exercise using the
rational canonical form shows that GL3(F2) has two distinct conjugacy
classes of elements of order 7; one consists of elements of trace 1 and
the other consists of elements of trace 0. For a rational prime ¢ with
Frobenius of order seven in K, it will be necessary for us to determine
which conjugacy class contains the Frobenius. We do this using a
technique of Serre, mentioned by Buhler [5, page 53] and described
in detail by Roberts [8].



846 DARRIN DOUD

Proposition 7.1. Let f; € Z[z] be a monic degree T polynomial
with Galois group GL3(Fy), let r1,7a,... ,r7 be the set of roots of fi,
considered in a specific order, and let o € S; be a permutation of the
roots arising from an element of Gal (f1). Suppose that o has order 7.
Let ¢ > 2 be a rational prime such that the Frobenius of £ has order 7
in Gal (f1) and ¢t disc(f1). Define

D=D(o)= ][] (o'(r1) —o(r)).

1<i<ji<7

Then, since the Galois group is a subgroup of Az, D is an integer with
D? =disc(f). Let D € Fy be the reduction of D modulo ¢.

We note that fy is irreducible mod ¥, and set

d= H (mei —xej)

1<i<j<T

in Foz]/(f1). Then d € Fy, and d = D if and only if o is a Frobenius
at {.

Proof. If o is a Frobenius at ¢, then for some prime P of K lying over
2
oci(a)=a’ (mod P)

for all & € K. Hence, the reduction modulo B of D is equal to d, and
we see that d € Fy and D = d. If o is not a Frobenius at p, then o3
is. One notes that D(c) = —D(03), so that D(c) and D(o?) are not
congruent modulo . In particular, if o is not a Frobenius at ¢ so that
o2 is a Frobenius at ¢, then D = —d # d. o

For each of our examples, we have determined the primes ¢ which have
Frobenius of order 7 in K, checked that they do not divide disc (f;) and
determined whether 0 = (123 45 6 7) is a Frobenius at ¢, using the
ordering of the roots of f given in Table 2. If ¢ is a Frobenius, then the
trace of the image of the Frobenius under p is 1, otherwise the trace
is 0. Note that the trace of the image of the Frobenius under p* takes
exactly the opposite values. For each extension, the smallest values of
£ and the trace of the image of the Frobenius under p at this ¢ are given
in Table 2.
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Note that GL3(F2) has only one conjugacy class of elements of a
given order different than 7. For such conjugacy classes, the traces of p
and p* are equal. Hence, for primes ¢ with Frobenius of order different
from 7, the trace of the image of the Frobenius is easy to compute and
is the same for both p and p*.

8. Cohomology computations. For each of the levels N in
Table 1 and each of the four possible weights W, we have duplicated the
computations of [2] in computing the arithmetic cohomology. We note
that the programs that we use, which were developed for [1], compute
H3(To(N), W) by computing the space H3(I'g(IN), W) to which it is
naturally dual. Also, in characteristic two the techniques we use
actually compute the I'g(N)-invariants of H3(A, W) for A C T'g(N)
a subgroup of finite index in T'o(IN). For each weight we also computed
the action of the Hecke operators for prime 2 < £ < 50. For each level,
we found an eigenclass with the correct eigenvalues (for ¢ < 50) to
correspond to p exactly when W was one of the two weights predicted
for p by Conjecture 2.5. In addition, we found an eigenclass with the
correct eigenvalues (for £ < 50) to correspond to p* exactly when W
was one of the two weights predicted for p* by Conjecture 2.5.

For example, when NV = 181, the predicted weights for p are F(1,0,0)
and F(2,1,0) and the predicted weights for p* are F(1,1,0) and
F(2,1,0). Computations in the predicted weights for p yield eigenval-
ues (for ¢ < 50) corresponding to p (in particular, for ¢ = 3, a(¢,1) = 0).
Computations in the two weights F'(0,0,0) and F(1,0,0), on the other
hand, do not yield eigenvalues corresponding to p. Similarly, we note
that computations in weights F(1,1,0) and F(2,1,0) yield eigenval-
ues (for £ < 50) corresponding to p*, while computations in weights
F(0,0,0) and F(1,0,0) do not. Note that although computing eigen-
values for only small ¢ would suffice to distinguish between p and p*, we
have duplicated the work of [2] in computing all eigenvalues for ¢ < 50.
Similar computations were done for all the levels in Table 2.

In all cases, our computational data fully supports the refined con-
jecture of [7]. This is the first such evidence involving Galois represen-
tations p for which p; and p; have different ramification types.
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