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RESIDUACITY OF PRIMES
RONALD EVANS

ABSTRACT. Let g,p be distinct primes with p = ef + 1.
A variant of the Kummer-Dedekind theorem is proved for
Gaussian periods, which shows in particular that ¢ is an e-th
power (mod p) if and only if the Gaussian period polynomial of
degree e has e (not necessarily distinct) linear factors (mod g).
This is applied to give a simple criterion in terms of the
parameters in the partitions p = 8f+1 = X24Y? = C?42D?
for an odd prime ¢ to be an octic residue (modp). Some
consequences and a generalization of an analogous quartic
residuacity law (proved by E. Lehmer in 1958) are also given.

1. Introduction. Throughout, let p and ¢ be distinct primes with
p=-ef + 1. In [8], E. Lehmer gave elegant criteria for an odd prime g
to be an e-th power residue (mod p), for e = 3,4. The result given for
e = 4 was essentially the following theorem.

THEOREM 1.1. Let p be a prime = 1(mod 4) and write
(1.1) p=X24+Y? X =1 (mod4).
Then an odd prime q # p is quartic (mod p) if and only if
2 X
(19 (%ﬂ) LY, or (%) .

where s is any integer satisfying p = s*(modgq), and (2/p) is the
Legendre symbol.

In view of the congruence (p+Ys)(2p+2Xs) = (p+Xs+Ys)?(mod q),
one can replace (1.2) by the equivalent condition

13) (<2_/>) — LgX, or (u__zu) R

AMS Subject classification: Primary 11A15, 11T21; Secondary 11T06.
Received by the editors on January 22, 1987.

Copyright ]%169989 Rocky Mountain Mathematics Consortium



1070 R. EVANS

In §2, we apply Theorem 1.1 to answer some questions posed in [10]
and to extend some results given in [6, 9]. In §3, we prove an extension
of Theorem 1.1 which also slightly generalizes a result of Williams,
Hardy, and Friesen [14]. Our proof in §3 is considerably shorter than
that in [14], at the expense of being less elementary.

The main results of this paper are Theorems 4.1 and 5.1. Theorem
5.1 is the counterpart of Theorem 1.1 for e = 8. It gives a simple
criterion in terms of the parameters in the partitions p = 8f + 1 =
X2 +Y? = C? + 2D? for an odd prime q # p to be an octic residue
(mod p). Special cases have been given by von Lienen [11]. The proof
of Theorem 5.1 is based on the fact that a prime ¢ # p is an e-th power
(mod p) if and only if the Gaussian period polynomial of degree e has
e (not necessarily distinct) linear factors over GF(q). This fact is a
special case of Theorem 4.1.

2. Applications of Theorem 1.1. Throughout this section, p is a
prime = 1 (mod 4) such that (1.1) holds, ¢ is an odd prime # p, and s
is an integer such that p = s?(mod q). If, further, p = 1(mod 8), write

(2.1) p=C?+2D? C =1(mod4).

In [10, p. 478], E. Lehmer asks for a characterization of the (odd prime)
divisors of C and D which are quartic (modp). This is given in the
following theorem.

THEOREM 2.1. Suppose that p = 1(mod 8). If q|D, then q is quartic
(mod p) if and only if

(2.2) q|Y or (2—’%—;2(2> =1.

If q|C, then q is quartic (mod p) if and only if

(2.3) qlY or (M) =1,
q

where /2 denotes any square root of 2(modgq) (which ezists since
p = 2D?%(mod q)).
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PROOF. Choose s to be C or Dv/2 according to whether ¢|D or ¢|C,
and use (1.2). 0

A direct proof of the following theorem was solicited by E. Lehmer
in [10, p. 478].

THEOREM 2.2. Suppose that p = 1(mod 8) and q divides C* —p +* or
4D* — pY?2. Then q is quartic (mod p).

PROOF. All congruences in this proof are (modgq). If ¢|Y, then ¢
is quartic by (1.2), so let ¢ + Y. Suppose that ¢|X. If q|C* — pX?),
then ¢|C and Y2 = p = 2D? so that (2/¢) = 1. If ¢|(4D* — pY?), then
4D* = Y* so that Y2 = £2D?. If the plus sign is valid, then (2/¢) = 1,
otherwise Y2 = —2D? = C2 — p = C? — Y? so that 2Y? = C?, and
again (2/q) = 1. Therefore, if ¢|X, then (2/q) = 1, so ¢ is quartic by
(1.3). It remains to consider the case ¢X + Y.

Suppose first that ¢|(4D* — pY?). If q|C, then p?> = 4D* = pY?
and so ¢|X. Thus ¢ + C. For some choice of s = \/p,sY = —2D?, so
p+sY = C? £ 0. Thus g is quartic by (1.3).

Finally, suppose that ¢|(C* — pX?). If ¢|D, then p? = C* = pX2,
giving g|Y. Thus ¢ + D. For some choice of s = \/p,sX = —C?, and
then 2p + 2sX = 4D? = 0. Thus q is quartic by (1.2). 0

Special cases of the next two theorems were given by the Lehmers.
D.H. and E. Lehmer [6] obtained the special cases t = 1,k = 1,-3
of Theorem 2.3 by looking at cyclotomic resultants. E. Lehmer [9]
obtained the special case t = 0,k = 3 of Theorem 2.4.

THEOREM 2.3. Suppose that ¢ + Y and (£ + k*p — 2(2/p)p)? =
4p(X — kt)?(mod q) for some integers k,t. Then q is quartic (mod p).

PROOF. For some choice of s = /p(mod q),

25(2/p)(X — kt) = —2(2/p)p + t* + k’p(mod g).
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Thus
(2/p)(2p + 25X) = 2(2/p)skt + t* + k%p = (ks + t(2/p))*(mod q).

The members of this congruence are nonzero (mod q), otherwise 0 =
(2p + 25X)(2p — 2sX) = 4pY?(mod q). Thus q is quartic by (1.2). o

THEOREM 2.4. Suppose that ¢ + X and (t* + k?p — (2/p)p)? =
p(Y — 2kt)?(mod q) for some integers k,t. Then q is quartic (mod p).

PROOF. For some choice of s = ,/p(mod g),
s(2/p)(Y — 2kt) = —(2/p)p + t* + k?p(mod q).
Thus,
(2/p)(p+ 5Y) = 2(2/p)skt + £ + k2p = (ks + £(2/p))*(mod q).

The members of the above congruence are nonzero (mod ¢q), otherwise
0= (p+sY)(p—sY)=pX?(modgq). Thus q is quartic by (1.3). O

3. Extension of Theorem 1.1. Throughout this section, let ¢ be
an odd prime and let ¢ = (—1)(9~V/2, Let m be a squarefree positive
integer # 0(mod q) such that s = \/m exists (mod q), and let M denote
the largest odd factor of m. Let A, B, C be pairwise relatively prime
integers such that A > 0,q + ABC,2 + B, and A? = m(B? + C?).
Observe that any odd prime p dividing A satisfies p = 1(mod 4), since
B? + C? = A%2/m = 0(mod p). Thus M = 1(mod 4).

Let z,y, and z denote the number of primes p dividing M for which
¢'P~V/4 = C/B,-C/B, and —1(mod p), respectively. In the case that
every prime factor of m is a square (mod gq), we have r = y = 0 and
Theorem 3.1 below reduces to the result [14, p. 257] of Williams, Hardy,
and Friesen. Taking m = p,A =p,B=X,C =Y, with p,X,Y as in
(1.1), we see that Theorem 3.1 implies Theorem 1.1 in the case g + XY.

THEOREM 3.1. We have

<2A_+2_Cs_) _ <A + Bs) = (—1)BeHaz—dy+(a-1)(M+q)+(m—1)(g-€))/8,

q q
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Our proof of Theorem 3.1 depends on the well-known properties (3.1)-
(3.4) listed below for the quartic residue symbol x,(3) defined as in [4,
p. 122] for a, 3 € Z[i] with (,28) = 1, + 1.

(3.1) Xa(B)xa(B) =1 [4, p. 122];

(3.2) Xa(B) =1, ifa,B€2Z [4, p. 122];
(3.3) Xq(1+1) =3979/% (4, p. 136);

(3.4) x3(@) = xa(B)(=1)*4 ifa,bc,d € Z are

chosen such that a = a + bi and 8 = ¢ + di are primary.

(Recall that @ = a + bi is primary is a is odd, b is even, and
a + b = 1(mod4).) Formula (3.4) is a version of the law of quartic
reciprocity [4, p. 123].

To facilitate the proof of Theorem 3.1, we prove the following lemma.

LEMMA 3.2. For a,b € Z,Xg(a + b)) = (ﬁz—qﬂf—)

PROOF. If ¢ = —1(mod 4), then g is prime in Z[i], so

(g—-1)/2
X3(a+bi) = (a+bi)T V2 = ((a+bi)(a +bi)) !

2, 12
ﬂ-)(modq)

= ((a — bi)(a + bi))9~V/2 = (

and the result follows. If ¢ = 1(mod 4), then ¢ = aa for some primary
a,a € Zl[i, so, by (3.1),

X2(a +bi) = x2(a + bi)xE(a + bi) = x5 (a + bi)x; (a — bi)

2 p2
=x2(a® +b%) = (a® + b7) " V/2 = (—a :b )(moda),

and the result follows.
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PROOF OF THEOREM 3.1. Since
2(A + Bs)(A + Cs) = (A + Bs + Cs)? # 0(mod q),

the first equality is proved.

Without loss of generality, we now fix the signs of B and C so that
B+ C =1 (mod4) or B= C = 1(mod4) according to whether C is
even or odd. Define

_ [(B+iC, if 2|C,
U (B+iC)/(1+1), if2+C.

Then « is primary and
(3.6) a@ = MA?/m? = 1(mod 2).
Let p be any odd prime divisor of A. Write p = =7 for distinct

primary primes 7,7 € Z[:]. We may suppose that w|a (otherwise
interchange 7 and 7).

We proceed by evaluating x4(a) in two different ways. First, by (3.6),

(3.7) Xq(a) = HqIM(Xq(ﬂ’)) . np"HA/m(Xq(Wzk)).
By Lemma 3.2,
_ p\* _(A/m\ (A
B = T (2) = (42) (2,

since A > 0. By (3.4), for each p|M,
Xq(ﬂ') = Xq£(7r) = x=(qe),
since ge is primary. Since
0 (X (€)) = eMD/4 = (—1)la=DM=1)/8,
(3.7) becomes

68 (2)x(@) = (CDOIN DL (00 o)



RESIDUACITY OF PRIMES 1075

For each p|M, xr(q) = ¢» V/4(modx). Since 7|(B + iC),i =
C/B(modr); thus x.(¢g) = i,—i,—1, or 1 depending on whether
¢'P~V/4 = C/B,-C/B, -1 or 1(mod p). Thus (3.8) becomes

(39) (2)xala) = (1) D000y
Next, since A2 = m(B? + C?),
0 =2(As + Bm)(B +iC) — (A + sB + 5iC)?*(mod q).
Thus, by (3.2),
Xq(B +1iC) = xg(A + sB + siC).

Then, by Lemma 3.2,

(3.10) Xo(B +iC) = (%;—‘)(AJ;BS).

Since M = 1 (mod 4), we have m = 1 or 2(mod 4) depending on whether
C is even or odd. Thus, by (3.3) and (3.5),

(3.11) Xo(B +iC) = xq(a)it™~Va=e)/4,

Combining (3.9)-(3.11), we obtain

(A + BS) _ (_2_)i(m—-l)(q—s)/4(_1)(q—~1)(M~1)/8i1—-y(_1)2’
q q

and the result follows. O

4. Splitting of the period polynomial over GF(g). Let n be
a squarefree positive integer, and write (, = exp(2wi/n). Let G be
the group of ¢(n) reduced residues (modn) and let H be an arbitrary
subgroup of index e in G. Thus, if n is prime, then H is the group of
e-th power residues (modn). For ¢ € G, define o, € Gal (Q(¢.)/Q)
by o.(¢x) = (5. We sometimes identify G with the Galois group, as in
(4.3) below.



1076 R. EVANS

By [1, p. 218], the generalized Gaussian period

(4.1) n=Y_ on(Cn)

heH

is nonzero (since n is squarefree), and in fact n has degree e = |G/H|
over Q. Thus, for c € G,

(4.2) o.(n) =7 if and only if c € H.
The minimal polynomial of n over Q, viz.

(4.3) ¥(z) = Mreg/n(z —7(n),

is called the period polynomial of 7, and its discriminant is denoted by
D(v).

Let ¢ be a rational prime with ¢ » n (g is not required to be odd in
this section). Then q is unramified in Q((,). Often ¢ is viewed as an
element of G; for example, ¢ € H means ¢ = h(mod n) for some h € H.
In view of (4.2), the Frobenius automorphism o, is trivial on Q(n) if
and only if ¢ € H. Thus [5, p. 100]

(4.4) q splits completely in Q(n) if and only if ¢ € H.

It follows immediately from (4.4) and the Kummer-Dedekind factor-
ization theorem [5, pp. 32, 33] that if ¢ + D(¢), then g € H if and only if
¥(z)(mod q) has e distinct linear factors. The following theorem shows
that, whether ¢|D(v) or not, ¢ € H if and only if ¢)(z)(mod q) has e
(not necessarily distinct) linear factors. For example, if n = 73, e =
4, ¢ = 2, then q divides D(3)) = 256X732,q is in the set H of 4-th
power residues (mod 73), and ¥(z) = z(z + 1)3(mod q) [1, (4.3), (4.4)].
(Please replace the misprint —2p + (—=1)f(3 — p) by —2p(-1)f +3 - p
in [1, (4.3)].) On the other hand, if n = 37,e = 4,q = 3, then ¢ divides
D(y) = 373X441,q is not in the set H of 4-th powers (mod 37), and
Y(x) = (z — 1)%(z? + 1)(mod q), so ¥(x) has only two linear factors
(mod q).

THEOREM 4.1. Let n be squarefree and let q be a prime with q + n. Let
H be a subgroup of indez e in the group G of reduced residues (modn).
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Define y(x) as in (4.3). Let F denote the smallest positive integer for
which qF € H. Then F equals the least common multiple of the degrees
of the irreducible factors of Y(z)(modq). In particular, ¢ € H if and
only if ¥(x)(mod q) has e linear factors.

PROOF. Let Rk denote the ring of integers in K = Q(7). Let Q be
a prime ideal dividing ¢ in Rx. View Z/qZ as a subfield of Rg/Q.
By [13, p. 247], F = |Rk/Q : Z/9Z|. By (4.3), Rx/Q contains the
splitting field of ¥/(r)(mod Q) (so the degree of each irreducible factor
of ¥(r)(mod q) divides F'), and it remains to show that Ry /Q equals
this splitting field.

Since n is squarefree, the elements 0.((,)(c € G) form a Z-basis for
Q(¢n). Taking the traces of these basis elements from Q((,) down to
K, we see [5, p.165] that 71(n),...,Te(n) form a Z-basis for K, where

T,-..,Te denote a complete set of coset representatives for G/H. In
particular,
(4.5) Rk =Z[n(n),...,7(n)].

This proves that Rg /@ is the splitting field of ¥(z)(mod Q). 0

It would be interesting to determine the extent to which (4.5) holds
for general integers n.

5. Criterion for octic residuacity. In this section we will apply
Theorem 4.1 with e = 8 and n a prime p = 1(mod 8). Thus H is the
group of octic residues (mod p). Write

(5.1) p=8f+1=X2+Y2=C?+2D? C =X =1(mod4).

It is well-known that 2 is octic (mod p) if and only if Y = 8f(mod 16)
(3, p. 111], [12]. In Theorem 5.1 below, we give a criterion for an odd
prime g # p to be octic (mod p). Corollaries 5.2, 5.3, and 5.4 illustrate
the special cases ¢ = 3, ¢ = 5, ¢ = 7, respectively. These and further
cases (q < 41) are considered by von Lienen [11, p. 114]. Corollary 5.5
shows that the result on octic residuacity in (7] can also be deduced
from Theorem 5.1.
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THEOREM 5.1. Let p be a prime satisfying (5.1) and let q be an odd
prime # p. Define E = (—=1)f. If q|Y, then q is octic (mod p) if and
only if

2ZEX(X +C)\ _ EX(X -C)\ _
(5.2) (——q————) =1 or( - ) =1

If g+ Y, then q is octic (mod p) if and only if
(5.3)

s? = p(mod q),7? = 2p — 2sX(mod q), and (

2E(s - C)(2s + r)) 1
q

for some s,r € Z.

PROOF. From (2, p. 390], the eight zeros of ¥(x) in Q(n) are
(-1+S+R+VU)/8, (-1+S—-R+VV)/8,
(-1-S+ R, +U,)/8, (-1-S—-Ry+/V1)/8,
where S = /p,R = /2p - 25X, R, = V/2p+ 25X,

U =2E(S — C)(2S + ENR), U, = 2E(S + C)(2S — ENRy),
V = 2E(S - C)(25 — ENR), Vi = 2E(S + C)(25 + ENR)),

with N = 1 or —1 according to whether 2 is quartic or not (mod p).
Therefore, by Theorem 4.1, g is octic (mod p) if and only if there exist
integers s, r, 7, such that

(5.4) s =p(modq), r2 = 2p — 25X (mod q), 2 = 2p + 25X (mod g),
(£)20 ()20 (2) 20 (%) 20

u=2E(s—C)(2s+ ENr), u1 =2E(s+C)(2s — ENmy),
=2E(s—C)(2s— ENr), vy =2E(s+ C)(2s + ENTy).

where

(5.5)

Case 1. q|Y. First, (5.2) is equivalent to

(556) (Eﬂ;ﬁﬂ) > 0 and (@) >,
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because ¢ + 2EX and
2(X + C)(X - C) =2(X? - C?) = 2(p — C?) = (2D)*(mod g),

Thus we must show that (5.4) and (5.6) are equivalent. By (5.1), the
three congruences in (5.4) automatically hold with s = —X,r = 2X
and r; = 0. With this choice of s,r,7;, (5.5) yields ©« = 4EX
(X +C)1 - EN), v = 4EX(X + C)(1 + EN), and v; = u; =
4EX(X — C). Thus (5.6) holds if and only if

(5.7) (g) >0, (%) >0, (2) >0, and (’;—‘) > 0.

Case 2. q + Y. Here we must show that (5.3) and (5.4) are equivalent.
Assume that (5.4) holds. We have r?r? = 4pY? # 0(mod gq). Clearly
g cannot divide both s — C and s + C. Assume without loss of
generality that ¢ + (s — C); otherwise, replace s by —s, which has
the effect of interchanging r and r;,u and u;, and v and v;. Then,
since uv = 4(s — C)?r? # 0(modq), we have (uv/q) = 1; by (5.4),
(u/q) = (v/q) = 1. This proves

2E(s — C)(2s + r)) _1,

(5.8) ( -

so (5.3) follows.

Conversely, suppose that (5.3) holds. To prove (5.4), we must show
that there exists an integer 7, such that (5.7) holds and

(5.9) r? = 2p + 25X (mod q).
Choose 7, = 2sY/r(mod q). Since
(5.10) (2p + 25X )r? = 4pY? = r¥r? # 0(mod q),

(5.9) holds. It remains to prove (5.7). There are two subcases.

Subcases 2A. q|D. Here s> = p = C?(modq), so s = +C(modg).
By (5.8), s = —C(modg). Thus, u; = v; = 0(modg). By (5.10),
uv = 4(s — C)%r? # 0(mod g), so (uv/q) = 1. By (5.8), at least one of
(u/q),(v/q) equals 1, so (u/q) = (v/q) = 1. This proves (5.7).
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Subcase 2B. ¢ + D. Here (s — C)(s + C) = 2D? # 0(modq), so
by (5.10), uv = 4(s — C)?r? # 0(mod q) and uyv; = 4(s + C)*r? #
0(mod q). Moreover, 0 # uu; = 4D?(r — r; + 2ENs)?. Thus

()= () - (59 .

1, and so (u/q) = (v/q) = (wm/q) =

By (5.8), (u/q) = 1 or (v/q) =
(v1/q) = 1. This proves (5.7). O

COROLLARY 5.2. Let p be a prime satisfying (5.1). Then 3 is octic
(mod p) if and only if 3|Y and C = EX(mod 3), where E = (—1).

COROLLARY 5.3. Let p be a prime satisfying (5.1). Then 5 is octic
(mod p) if and only if 5|Y and C = X or 3X(mod 5).

COROLLARY 5.4. Let p be a prime satisfying (5.1). Then 7 is octic
(mod p) if and only if either 7|C,7|Y,E =1 or 7|C,7|X,E = —1 or
71X,C = +(2+3E)Y(mod7) or 7|Y,C = £(2 — 3E) X (mod 7), where
E = (-1)/.

COROLLARY 5.5. ([7, Theorem 4]). Let p be a prime satisfying (5.1)
with E = —1,X = —3C. Then any odd divisor q of Tp + C? is octic
(mod p).

PROOF. It suffices to consider the case when ¢ is an odd prime # p.
If q|Y, then q divides 7X2 + C? = 64C?, so q divides —3C = X. Thus
g + Y. Since 4C? = —7D?(mod q), there exists an integer ¢ such that
t2 = —7 (mod q). Thus there exists an integer s such that s* = p(mod q)
and C = —st(modgq). Define r = s(t — 3), so 72 = 2p — 25X (mod q).
Then

2E(s — C)(2s + 1) = —2(s + st)(st — s) = (4s)? # 0(mod q),

so q is octic (mod p) by Theorem 5.1.
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