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R E S I D U A C I T Y O F P R I M E S 

RONALD EVANS 

ABSTRACT. Let q,p be distinct primes with p — ef + 1. 
A variant of the Kummer-Dedekind theorem is proved for 
Gaussian periods, which shows in particular that q is an e-th 
power (modp) if and only if the Gaussian period polynomial of 
degree e has e (not necessarily distinct) linear factors (modg). 
This is applied to give a simple criterion in terms of the 
parameters in the partitions p = 8 / + 1 = X 2 + Y 2 = C 2 + 2 D 2 

for an odd prime q to be an octic residue (modp). Some 
consequences and a generalization of an analogous quartic 
residuacity law (proved by E. Lehmer in 1958) are also given. 

1. In t roduct ion . Throughout, let p and q be distinct primes with 
p — ef + 1. In [8], E. Lehmer gave elegant criteria for an odd prime q 
to be an e-th power residue (modp), for e = 3,4. The result given for 
e = 4 was essentially the following theorem. 

THEOREM 1.1. Let p be a prime = l(mod4) and write 

(1.1) p = X 2 + Y 2 , X = l (mod4) . 

Then an odd prime q ̂  p is quartic (modp) if and only if 

(1.2, ( g M ^ M Y , o r ( 2 ( 2 M , + Xs)j = 1 qiY 

where s is any integer satisfying p = s2(modq), and (2/p) is the 
Legendre symbol. 

In view of the congruence (p+Ys)(2p-|-2Xs) = (p-f-Xs+Ys)2(modg), 
one can replace (1.2) by the equivalent condition 

(1.3) ^ ) = 1,,|X,o,(i«M)=1,,,X. 
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In §2, we apply Theorem 1.1 to answer some questions posed in [10] 
and to extend some results given in [6, 9]. In §3, we prove an extension 
of Theorem 1.1 which also slightly generalizes a result of Williams, 
Hardy, and Friesen [14]. Our proof in §3 is considerably shorter than 
that in [14], at the expense of being less elementary. 

The main results of this paper are Theorems 4.1 and 5.1. Theorem 
5.1 is the counterpart of Theorem 1.1 for e = 8. It gives a simple 
criterion in terms of the parameters in the partitions p = 8 / + 1 = 
X2 4- Y 2 = C 2 + 2D2 for an odd prime q / p to be an octic residue 
(modp). Special cases have been given by von Lienen [11]. The proof 
of Theorem 5.1 is based on the fact that a prime q ^ p is an e-th power 
(modp) if and only if the Gaussian period polynomial of degree e has 
e (not necessarily distinct) linear factors over GF(q). This fact is a 
special case of Theorem 4.1. 

2. Applications of Theorem 1.1. Throughout this section, p is a 
prime = 1 (mod 4) such that (1.1) holds, q is an odd prime ^ p, and s 
is an integer such that p = s2(modq). If, further, p = l(mod8), write 

(2.1) p = C 2 + 2D2 , C = l(mod4). 

In [10, p. 478], E. Lehmer asks for a characterization of the (odd prime) 
divisors of C and D which are quartic (modp). This is given in the 
following theorem. 

THEOREM 2.1. Suppose that p = l(mod8). If q\D, then q is quartic 
(modp) if and only if 

(2 2, , | Y o r p u ± i ï Ç ) = 1 . 

If q\Cj then q is quartic (modp) if and only if 

(2.3) ,|Yorp£±^l)=l, 

where v2 denotes any square root of 2(mod^) (which exists since 
p = 2B2(modq)). 
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PROOF. Choose s to be C or D\/2 according to whether q\T> or <?|C, 
and use (1.2). D 

A direct proof of the following theorem was solicited by E. Lehmer 
in [10, p. 478]. 

THEOREM 2.2. Suppose that p = l(mod8) and q divides C 4 -p +2 or 
4D4 — pY2 . Then q is quartic (modp). 

PROOF. All congruences in this proof are (modg). If g|Y, then q 
is quartic by (1.2), so let q * Y. Suppose that q\X. If q\C4 - pX2), 
then q\C and Y 2 = p = 2D2 so that (2/q) = 1. If q\(4B4 - p Y 2 ) , then 
4D4 = Y 4 so that Y 2 = ±2D 2 . If the plus sign is valid, then (2/q) = 1, 
otherwise Y 2 = - 2 D 2 = C 2 - p = C 2 - Y 2 so that 2Y2 = C2 , and 
again (2/q) — 1. Therefore, if g|X, then (2/q) = 1, so q is quartic by 
(1.3). It remains to consider the case qX + Y. 

Suppose first that <?|(4D4 - pY2). If q\C, then p2 = 4D4 = pY2 

and so g|X. Thus q * C. For some choice of s = y/p,sY = —2D2, so 
p -h sY = C2 jà 0. Thus q is quartic by (1.3). 

Finally, suppose that q\(C4 - pX2). If g|D, then p2 = C4 = pX2, 
giving ç|Y. Thus g + D. For some choice of s = ^/p, sX = — C2 , and 
then 2p -f 2sX = 4D2 = 0. Thus q is quartic by (1.2). D 

Special cases of the next two theorems were given by the Lehmers. 
D.H. and E. Lehmer [6] obtained the special cases t = l,fc = 1,-3 
of Theorem 2.3 by looking at cyclotomic resultants. E. Lehmer [9] 
obtained the special case t = 0, k — 3 of Theorem 2.4. 

THEOREM 2.3. Suppose that q + Y and (t2 + k2p - 2(2/p)p)2 = 
4p(X — kt)2(moàq) for some integers k,t. Then q is quartic (modp). 

PROOF. For some choice of s = yfp(modq), 

2s(2/p)(X - kt) = -2(2/p)p + t2 + A;2p(mod<7). 
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Thus 

(2/p)(2p + 2sX) = 2{2/p)skt + t2 + fc2p = (Ars + *(2/p))2(mod<?). 

The members of this congruence are nonzero (modç), otherwise 0 = 

(2p + 2sX)(2p - 2sX) = 4pY2(modq). Thus q is quartic by (1.2). a 

THEOREM 2.4. Suppose that q * X and (t2 + k2p - (2/p)p)2 = 
p(Y — 2kt)2(modq) for some integers k,t. Then q is quartic (modp). 

PROOF. For some choice of s = ^ ( m o d g ) , 

s(2/p)(Y - 2fct) = -{2/p)p + t2 + fc2p(modç). 

Thus, 

(2/p)(p + sY) = 2{2/p)skt + t2 -f fc2p = (fcs + t(2/p))2(mod9). 

The members of the above congruence are nonzero (mod(?), otherwise 
0 = (p -f sY)(p — sY) = pX2(modç). Thus ç is quartic by (1.3). D 

3. Extension of Theorem 1.1. Throughout this section, let q be 
an odd prime and let e — ( — l ) ^ - 1 ) / 2 . Let m be a squarefree positive 
integer =£ O(modç) such that s = y/m exists (modç), and let M denote 
the largest odd factor of m. Let A , B , C be pairwise relatively prime 
integers such that A > 0,ç + ABC, 2 + B, and A2 = ra(B2 + C2). 
Observe that any odd prime p dividing A satisfies p = l(mod4), since 
B 2 + C 2 = A 2 /m = 0(modp). Thus M = l(mod4). 

Let x, y, and z denote the number of primes p dividing M for which 
g(p-i)/4 = C / B , —C/B, and — l(modp), respectively. In the case that 
every prime factor of m is a square (modg), we have x = y = 0 and 
Theorem 3.1 below reduces to the result [14, p. 257] of Williams, Hardy, 
and Friesen. Taking m = p, A = p, B = X, C = Y, with p, X, Y as in 
(1.1), we see that Theorem 3.1 implies Theorem 1.1 in the case q * XY. 

THEOREM 3.1. We have 

l \ ( 8 s + 4 x - 4 y + ( g - l ) ( M + g ) + ( m - l ) ( 9 - e ) ) / 8 2A + 2Cs 
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Our proof of Theorem 3.1 depends on the well-known properties (3.1)-
(3.4) listed below for the quartic residue symbol Xa(ß) defined as in [4, 
p. 122] for a,0 G Z[z] with (a, 2ß) = l , a + 1. 

(3.1) Xa(ß)Xä(ß) = l [4, p. 122]; 

(3.2) Xa{ß) = h Ha,ßeZ [4, p. 122]; 

(3.3) xg(l + 0 = i ( 9" c ) / 4 [4, P. 136]; 

(3.4) X/3(a) = X«(/3)(-l)M / 4 , if a, 6, c,d € Z are 

chosen such that a = a -f bi and ß — c-\- di are primary. 

(Recall that a = a + bi is primary is a is odd, b is even, and 
a + b = l(mod4).) Formula (3.4) is a version of the law of quartic 
reciprocity [4, p. 123]. 

To facilitate the proof of Theorem 3.1, we prove the following lemma. 

LEMMA 3.2. For a, 6 G Z,x*(a + W) = ( ^ ^ ) . 

PROOF. If q — - l (mod4) , then q is prime in Z[z], so 

X2
q(a + W) = (a + òz)(<?2-1)/2 = ((a + W)9(a + W)) ^ 2 

= ( (o -6 i ) (a + b i ) ) ( " - I ) / 2 = ( a + )(modq) 

and the result follows. If q = l(mod4), then q = a a for some primary 
a,äe Z[i], so, by (3.1), 

*2(a + bi) = *2 (a + W)x|(a + W) = X2 (a + bi)xl(a ~ bi) 

= ^ ( a 2
 + 6 2 ) ^ ( a 2 + 6 2 ) C - 1 ) / 2 ^ ( ^ ± ^ ) ( m o d a ) , 

and the result follows. 
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P R O O F OF THEOREM 3.1. Since 

2(A 4- B Ä ) ( A + Cs) = (A + Bs + Cs)2 £ 0(mod<?), 

the first equality is proved. 

Without loss of generality, we now fix the signs of B and C so that 
B + C = 1 (mod4) or B = C = l(mod4) according to whether C is 
even or odd. Define 

/ B + tC, if 2|C, 
a~ \ ( B + i C ) / ( l + i ) , if2 + C. 

Then a is primary and 

(3.6) QÛ - M.42/™2 = l(mod2). 

Let p be any odd prime divisor of A. Write p = TTTT for distinct 
primary primes 7T,7T G Z[i]. We may suppose that 7r|a (otherwise 
interchange 7r and 7r). 

We proceed by evaluating Xq(a) in two different ways. First, by (3.6), 

(3.7) xq(<*) = ng|M(x«W) • nP»\\A/m(xq(n
2k))-

By Lemma 3.2, 

npk|M/m(xf M) = npt|l,/m(^)fc = ( ^ ) = (4), 

since v4 > 0. By (3.4), for each p|M, 

X<?(*") = Xqe(n) = X*(q£), 

since <?£ is primary. Since 

nH M(x^)) = e(M-1)/4 H-i) ( 9 - 1 ) ( M - 1 ) / 8 , 

(3.7) becomes 

(3-8) ( - ) x , ( a ) = ( - l ) ( 9 - 1 ) ( M - 1 ) / 8 n p |M(x . (9 ) ) . 
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For each p|M, \AQ) = 9(p~1)/4(mod7r). Since ir\(B + iC),i = 
C/J3(mod7r); thus Xn(q) — *, —i, —1, or 1 depending on whether 
g(p-D/4 = c/B, -C/B, - 1 or l(modp). Thus (3.8) becomes 

(3.9) ( f )*«(") = (-l)(<?-1)(M-1)/8i^(-l)2. 

Next, since A2 = m(B2 + C2), 

0 = 2{As + Bm)(B + iC) - (^ + sB + siC)2{modq). 

Thus, by (3.2), 

Xq(B + iC) = x2
q(A + 8B + siC)-

Then, by Lemma 3.2, 

(MO) *<„ + «;>_ ( M ) ( ± t * ) . 

Since M = 1 (mod 4), we have m = 1 or 2(mod 4) depending on whether 
C is even or odd. Thus, by (3.3) and (3.5), 

(3.11) XQ(B + iC) = Xq(c*)i{rn-l){q-£)/4. 

Combining (3.9)-(3.11), we obtain 

and the result follows. D 

4. Splitting of the period polynomial over GF(<?). Let n be 
a squarefree positive integer, and write Çn = exp(27rz/n). Let G be 
the group of (j){n) reduced residues (mod n) and let H be an arbitrary 
subgroup of index e in G. Thus, if n is prime, then H is the group of 
e-th power residues (modn). For c € G, define oc G Gal(Q(Çn)/Q) 
by crc(Cn) = C- We sometimes identify G with the Galois group, as in 
(4.3) below. 
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By [1, p. 218], the generalized Gaussian period 

(4.1) * 7 = l > * ( C n ) 

is nonzero (since n is squarefree), and in fact r\ has degree e = \G/H\ 
over Q. Thus, for e E G, 

(4.2) Gei7)) = T/ if and only if c G if. 

The minimal polynomial of rj over Q, viz. 

(4.3) 1>(x) = nreG/H{x-T(ri)), 

is called the period polynomial of 77, and its discriminant is denoted by 
D(ip). 

Let g be a rational prime with q * n (ç is not required to be odd in 
this section). Then q is unramified in Q(Cn)- Often q is viewed as an 
element of G; for example, q € H means q = /i(modn) for some h e H. 
In view of (4.2), the Frobenius automorphism oq is trivial on Q(r/) if 
and only if q € H. Thus [5, p. 100] 

(4.4) q splits completely in Q(rj) if and only if q £ H. 

It follows immediately from (4.4) and the Kummer-Dedekind factor­
ization theorem [5, pp. 32, 33] that if q * D(ip), then q G H if and only if 
ip(x)(modq) has e distinct linear factors. The following theorem shows 
that, whether q\D(ip) or not, q £ H if and only if i^(x)(modq) has e 
(not necessarily distinct) linear factors. For example, if n = 73, e = 
4, q = 2, then g divides D(^) = 256X732,<7 is in the set H of 4-th 
power residues (mod73), and ip(x) = x(x + l)3(mod<7) [li (4.3), (4.4)]. 
(Please replace the misprint —2p + ( — 1)^(3 — p) by — 2p( — l)f -f 3 — p 
in [1, (4.3)].) On the other hand, if n = 37, e = 4, q = 3, then <? divides 
£>(</,) = 373X441,g is not in the set # of 4-th powers (mod37), and 
ip(x) = (x — l)2(x2 + l)(modg), so ip(x) has only two linear factors 
(mod*/). 

THEOREM 4.1. Let n be squarefree and let q be a prime with q + n. Let 
H be a subgroup of index e in the group G of reduced residues (modn). 
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Define ip(x) as in (4.3). Let F denote the smallest positive integer for 
which qF E H. Then F equals the least common multiple of the degrees 
of the irreducible factors of ip(x) (mod q). In particular, q £ H if and 
only if ifr(x)(mod q) has e linear factors. 

PROOF. Let RK denote the ring of integers in K = Q(r/). Let Q be 
a prime ideal dividing q in RK- View Z/qZ as a subfield of RK/Q-
By [13, p. 247], F = \RK/Q - Z/qZ\. By (4.3), RK/Q contains the 
splitting field of ^(x)(modQ) (so the degree of each irreducible factor 
of ^(x)(modg) divides F), and it remains to show that RK/Q equals 
this splitting field. 

Since n is squarefree, the elements ac(Çn)(c G G) form a Z-basis for 
Q(Cn)- Taking the traces of these basis elements from Q(Cn) down to 
K, we see [5, p.165] that 7-1(77),... ,Te(n) form a Z-basis for K, where 
r i , . . . , r e denote a complete set of coset representatives for G/H. In 
particular, 

(4.5) Ä * = Z [ T 1 ( T / ) , . . . , T C ( I / ) ] . 

This proves that RK/Q is the splitting field of V;(x)(modQ). D 

It would be interesting to determine the extent to which (4.5) holds 
for general integers n. 

5. Criterion for octic residuacity. In this section we will apply 
Theorem 4.1 with e = 8 and n a prime p = l(mod8). Thus H is the 
group of octic residues (modp). Write 

(5.1) p = 8f + l = X2 + Y2 = C2 + 2D2, C = X = l(mod4). 

It is well-known that 2 is octic (modp) if and only if Y = 8/(mod 16) 
[3, p. I l l ] , [12]. In Theorem 5.1 below, we give a criterion for an odd 
prime q 7̂  p to be octic (modp). Corollaries 5.2, 5.3, and 5.4 illustrate 
the special cases 9 = 3, q — 5, q = 7, respectively. These and further 
cases (q < 41) are considered by von Lienen [11, p. 114]. Corollary 5.5 
shows that the result on octic residuacity in [7] can also be deduced 
from Theorem 5.1. 
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THEOREM 5.1. Let p be a prime satisfying (5.1) and let q be an odd 
prime / p. Define E = ( —1)^. If q\Y', then q is octic (modp) if and 
only if 

( 5 2 ) fEXjX + Qj = x or ^X(X-C)^ = L 

If q * Y, then q is octic (modp) if and only if 
(5.3) 

s2 EEp(mod<7),r2 = 2p - 2sX(modq), and ^E(s ' C)(2s + r)^ = x 

for some s,r € Z. 

PROOF. From [2, p. 390], the eight zeros of ip(x) in Q(r/) are 

{-l + S + R±VÜ)/8, {-l + S-R±VV)/8, 

( - 1 - S + Rx ± y/U[)ßy ( - 1 - S - Rl ± y/VÎ)/8, 

where 5 = y/p,R = ^2p - 25X, Äi = v/2p + 2SX, 

£/ = 2E(S - C)(2S + ENR), Ux = 2E(S + C)(2S - EATi^), 

1/ = 2E(S - C)(2S - ENR), Vx = 2E(S + C)(2S + ENRX), 

with N = 1 or — 1 according to whether 2 is quartic or not (modp). 
Therefore, by Theorem 4.1, q is octic (modp) if and only if there exist 
integers 5, r, r\ such that 

(5.4) s2 =p(mod<?), r2 = 2p - 2sX(mod<?), r\ = 2p -f 2sX(modg), 

( ^ 0 , ( ^ , 0 , ( ^ 0 , a „ d ( ^ ) S 0 , 

where 

u = 2E{s-C){2s + ENr), Ul=2E(s + C){2s-ENn), 

^ ' ' v = 2E(s - C)(2s - ENr), Vl = 2E(s + C){2s + ENn). 

Case 1. q\Y. First, (5.2) is equivalent to 

(5.6) (™*(X + C)\ > 0 a n d (BW-Q\ > 0 | 
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because q + 2EX and 

2(X + C)(X -C) = 2(X2 - C2) = 2{p - C2) = (2D)2(modq), 

Thus we must show that (5.4) and (5.6) are equivalent. By (5.1), the 
three congruences in (5.4) automatically hold with s = —X,r = 2X, 
and 7*1 = 0. With this choice of s,r, n , (5.5) yields u = 4EX 
(X + C)(\ - EN), v = 4EX(X + C)(l + £7V), and vi = m = 
4EX(X - C). Thus (5.6) holds if and only if 

<") (;)** ( ? ) * * ( ; ) * * - ( * ) * * 
Case 2. q k Y. Here we must show that (5.3) and (5.4) are equivalent. 

Assume that (5.4) holds. We have r2r\ = 4pY2 ^ O(modç). Clearly 
q cannot divide both s — C and s + C. Assume without loss of 
generality that q * (s - C); otherwise, replace s by - s , which has 
the effect of interchanging r and rY,u and u\, and v and v\. Then, 
since uv = 4(s - C)2r\ ^ O(mod^), we have (uv/q) — 1; by (5.4), 
(u/q) = (v/q) = 1. This proves 

(5.8) ( 2 f i ( , - C ) ( 2 . + r)) = ^ 

so (5.3) follows. 

Conversely, suppose that (5.3) holds. To prove (5.4), we must show 
that there exists an integer r\ such that (5.7) holds and 

(5.9) r\ = 2p + 2sX{moà q). 

Choose r\ = 2sY/r(modq). Since 

(5.10) (2p + 2sX)r2 = 4pY2 = r\r2 ^ O(modç), 

(5.9) holds. It remains to prove (5.7). There are two subcases. 

Subcases 2A. q\D. Here s2 = p = C2(modç), so s = ±C(modq). 
By (5.8), s = -C(modq). Thus, ux = vx = O(modç). By (5.10), 
uv = 4(5 - C)2r\ ^ 0(modg), so (uv/q) — 1. By (5.8), at least one of 
(u/q), (v/q) equals 1, so (u/q) = (v/q) — 1. This proves (5.7). 
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Subcase 2B. q * D. Here (s - C)(s + C) = 2D2 £ 0(mod<?), so 
by (5.10), uv = 4(s - C)2r2 ^ 0(mod<7) and uivi = 4(s + C)2r2 ^ 
0(modg). Moreover, 0 ^ uux = 4D2(r - rx + 2ENs)2. Thus 

( s ) . ( ÏU. ) „ ( = . ) . , 

By (5.8), (V?) = 1 or (v/q) = 1, and so (ix/g) = (v/g) = (ui/q) = 
(vi/q) = 1. This proves (5.7). D 

COROLLARY 5.2. Let p be a prime satisfying (5.1). Then 3 is oc£zc 
(modp) if and only if 3\Y and C = EX (mod 3), where E = ( —1)^. 

COROLLARY 5.3. Let p be a prime satisfying (5.1). Then 5 is octic 
(modp) if and only if 5\Y and C = X or 3X(mod5). 

COROLLARY 5.4. Let p be a prime satisfying (5.1). Then 7 is octic 
(modp) if and only if either 7|C, 7|F, E — 1 or 7\C,7\X,E = —1 or 
7|X, C = ±(2 -f 3E)Y(mod 7) or 7|F, C = ±(2 - 3£)X(mod 7), where 
E=(-l)f. 

COROLLARY 5.5. ([7, Theorem 4]). Let p be a prime satisfying (5.1) 
with E = —1,X — — 3C. Then any odd divisor q of Ip + C2 zs octac 
(modp). 

PROOF. It suffices to consider the case when q is an odd prime / p. 
If q\Y, then q divides IX2 + C2 = 64C2, so ç divides - 3 C = X. Thus 
q * Y. Since 4C2 = —7D2(modç), there exists an integer £ such that 
t2 = — 7 (mod q). Thus there exists an integer s such that s2 = p(mod q) 
and C = —s£(mod</). Define r = s(£ — 3), so r2 = 2p — 2sX(modq). 
Then 

2£(s - C){2s + r) = -2(« + «*)(** " s ) = ( 4 s ) 2 ^ 0(mod<?), 

so 7 is octic (modp) by Theorem 5.1. 
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