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A CONSTRUCTIVE PROOF OF CONVERGENCE 
OF THE EVEN APPROXIMANTS 

OF POSITIVE PC-FRACTIONS 

WILLIAM B. JONES AND W.J. THRON 

ABSTRACT. Positive PC-fractions are closely related to 
the trigonometric moment problem, Szegö polynomials and 
Wiener filters used in digital signal processing. This paper 
describes constructive methods for proving convergence and 
sharp truncation error estimates of the even ordered approx­
imants of a positive PC-fraction. Connections with related 
problems are described briefly. 

1. Introduction. Continued fractions of the form 

2*> 1 ( 1 - N 2 ) z 1 (1 - N 2 ) z 
(1.1a) öo - — + =— + -z + =— + + • • • , 

1 0\Z 0\ 02Z 02 

where 

(1.16) <50>0, \Sj\<h « j ^ C , j = 1,2,3, . . . , 

called positive Perron-Carathéodory fractions (or FFC-fractions), were 
introduced in [4]. It was shown that the approximants of a PPC-
fraction are weak two-point Padé approximants for a pair (L0,£oc) of 
formal power series (f.p.s.) 

OC' OC 

(1.2) Lo := c<0V>>2*, Loc := - c ^ ^ w " , c, := c^+c^. 
k=l k=ì 

We denote by Pn(z) and Qn(z) the nth numerator and denominator, 
respectively, of (1.1). 

PPC-fractions have been used in [4, Theorem 3.3] to solve the 
trigonometric problem. For that purpose the even approximants 
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200 CONVERGENCE OF EVEN APPROXIMANTS 

fn(z) := P2n{z)/Q2n(z) were shown to converge to a normalized 
Carathéodory function f(z) (i.e., a function analytic in the open unit 
disk \z\ < 1, mapping this disk into the closed right-half plane Re(^) 
> 0, and normalized by /(0) G (0, oc)); conversely every normalized 
Carathéodory function is the limit of the even approximants of a PPC-
fraction [3, §3]. The odd-ordered denominators pn(z) := Q2n+i(z) are 
the monic Szegö polynomials, orthogonal on the unit circle with respect 
to the measure determined by the trigonometric moment problem. The 
transfer functions Gn(z) of Wiener filters associated with weakly sta­
tionary stochastic processes can be expressed by Gn(z) = z~npn(z); 
such filters are very useful in digital signal processing of speech and 
other phenomena (see, for example, [6, 8]). 

The proof of convergence of {P2n(z)/Q2n(z)} given in [4] is non-
constructive, since it is based on normal families and the Stieltjes-Vitali 
theorem. Moreover, no information is obtained about speed of conver­
gence or truncation error. In this paper we give a constructive proof of 
convergence that yields both a posteriori and a priori truncation error 
bounds and shows that the convergence is geometric (Theorem 3.1). 
The method consists of constructing best value regions (Lemma 3.2) 
and inclusion regions and then estimating the diameter of the latter. 
This approach has been used to develop much of continued fraction 
convergence theory [5, 4, 9]. The resulting a posteriori truncation er­
ror bounds are shown to be best. Similar results by different methods 
have been given by Geronimus [1, Theorem IV, p. 747]. In §2 we derive 
some results on the Szegö polynomials that are subsequently used. We 
conclude this introduction with a brief summary of known results on 
PPC-fractions that are employed. 

Associated with the double sequence of complex coefficients { Q } ^ . ^ 

in (1.2) are the Toeplitz determinants 7^m ) := det(cm_ / i + I /)^1
=o^ f o r 

m = 0 ,+ l ,+2 , . . . , f c = 1,2,3, . . . , and T0
(m) := 1. Of particular in­

terest are An := T ^ \ , 6 n := TtX) and $ n := T^\ n > 0, where 

A_i := — A_2 := 1. Jacobi's identities become 

(1.3) A 2 _ 1 = A n A n _ 2 H - e n * n , n = 1,2,3, . . . . 

By the difference equations for continued fractions [5, (2.1.6)] we obtain 
for a PPC-fraction (1.1), 

(1.4a) P0 = «o, Pi = -«o, Qo = Qi = 1, 
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<>•*> ( S : i : 8 ) -s" ( £ < : > ) + < * - ^ (£:i(<?>) • 
n=l,2,3, . . . . It follows from these that, for n > 1, P2n(2),<22n(z), 
^2n+i(z) and Q2n+i{z) are polynomials in z of degree at most n, with 
£?2n(0) = 1 and Q2n+i(z) = zn + h <5n. The proof of the following 
theorem given in [4, Theorems 2.1, 2.2, and 2.3] is based on constructive 
linear algebraic methods. The symbol 0(zr) is used to denote a fps in 
increasing powers of z starting with a power not less than r. If R 
is a rational function, then the symbols Ao(R) and A ^ R ) denote the 
Taylor and Laurent series expansions of R about 0 and oo, respectively. 

THEOREM 1.1. (A) Let (1.1) be a given PPC-fraction. Then there 
exists a unique pair (Lo, Loo) of fps (1.2) such that, for n = 0 ,1 ,2 , . . . , 

n 

(1.5a) Lo - Ao ( ^ ) = - 2 M n + 1 ]\{l - |«>| V + 1 + 0(z"+2) , 

(1.56) 
L~ - A~ ( fer ) = 2^n+i f[(i - N2)*-"-1 + °((;)n+2)' 

j = i 
and 

n 

(1.6a) Q2 nL0 - P2n = -2«o*n+i J ^ 1 " l*il V + 1 + 0 ( ^ n + 2 ) , 

(1.66) Q2 n ioc - P2n = -260 r j ( l - | ^ | 2 ) + O ( - ) , 

n 

(1.6c) Q2„+iLo - Pa»+i = 26o IJ (1 - | ^ | V + 0 ( 2 " + 1 ) , 
J'=l 
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n 1 2 

(1.6<2) Q2n+iLoc-P2n+i = 26o6n+1]J(l-\6J\
2)z-l+0^-) ) . 

Moreover, for n = 1 ,2,3, . . . , 

(1.7) A n > 0, c<0) = 4°°} > 0 and cn = c_n, 

i\ &\ x „(°) 1 A x ( - l ) n 8 n 

^ ^ n - 1 

(1-9) l - | * n | 2 = % ^ > 0 . 
^ n - 1 

(B) Conversely, let (L0>£oo) be a given pair of fps (1.2) such that 
(1.7) holds. Let {6n}^ be defined by (1.8). Then (1.9) holds (by the 
Jacobi identity (1.3), since $n = 0 n ) . Thus (1.1b) holds, and so (1.1a) 
is a P PC-fraction. Moreover, (1.1) corresponds to (LQ^L^) in the 
sense that (1.5) and (1.6) hold. 

We note that (1.6a,b) and (1.6c,d) imply that P2n/Q2n and 
^2n+i/Q2n+i are weak (n, n) two-point Padé approximants for (Lo, Loo) 
of order (n + 1, n) and (n, n + 1), respectively. For n = 1 ,2,3, . . . , we 
define the linear fractional transformations (l.f.t) 

s0(z, w) : = 60 + w, 52n(2, w) := = 
6nz -h w 

, x "2^0 , , (1 - l^n l 2 )^ 
1 + w on-\-w 

S0(z,w) : = s0(z,w), Sn(z,w) := S„_i(z, sn(z,w)), 

7*0(2, w) : = s o ° « i ( ^ w ) , r„(z,ti;) := 
S2nOS2n+l(z,W-1)' 

Ro(z,w) : = r0(2,w), Rn{z,w) := Än_i(2:,rn(z, w)), 

where composition o is taken with respect to w. Then, from continued 
fraction theory [8, (2.1.7)], for n = 1,2,3, . . . , 

c , x Pn(z)+wPn.l(z) 
Sn{z,w) = - p r , 
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and hence 

n m\ n ( \ a ( - i \ p2n+i(z)w + P2n(z) 
(1.10) *„(*,«,) = W * , « , )-Q2n+1(,)w + g 2 „ ( , ) 

and 
(1.11) 
F2n(^) 

- 5 2 n ( z , 0 ) = A n ( z , 0 ) , ^ 2 n + 1 S = S 2 n + 1 ( z , 0 ) = A n ( z , 0 0 ) . 
Q2n(*) ~ ' n v ~ ' " ' ~"v~ '~" <22n+i(z) 

It follows from the mapping properties of l.f.t.'s that, for n = 1 ,2 ,3 , . . . , 

P2n(z) , l + p2\^ 2p60 (1.12a) 

and 

(1.126) 

So: 
Q2n(z) Ul-P2 < 

i-r :, N < P < 1 , 

P2n+l(z) ^ + 11 < 2póo | . < n . , 

Q2n+l(2:) P 2 - 1 I P 2 - 1 

2. Deonominators of PPC-Fractions. In this section we derive 
some properties of the polynomial denominators Qn(z) of a PPC-
fraction (1.1) that will be used in §3. We begin with the following 
Christoffel-Darboux formula 

(2.1) 

where 

(2.2) 

YlK]Q2j.l(x)Q2j.1(y) 
i=o 

K2
n(Q2n{x)Q2n{y) - xyQ2n+1{x)Q2n+ï{y)) 

l-xy 

Kn := VA„_i /A„ > 0, n = 0 ,1 ,2 , . . . 

To prove (2.1) we note that, from the difference equations (1.4), it 
follows that 

(2.3a) Qo{z) = Qi(z) = 1 
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and for n = 1 ,2 ,3 , . . . , 
(2.36) 
< 2 2 n + l W = zQ2n-\(z)+ènQ2n-2{z), Q2n(z) = ÖnzQ2n-l(z)+Q2n-2(z). 

From this one e 

(2.4) 

From (1.9) and 

(2.5) Kl = 

:asily obtains, 

zQ2n-

Q2n- -2(Z) = 

for n = 1, 

_ Q2n+l{z) 

1 -

_ Q2n(z) -

1 -

(2.2) it follows that 

Kn-l 
IO 1 rrn /-• i 

2 , 3 , . . . , 

1 - SnQ2n(z) 

- K\2 

• ànQ2n+l(z) 

- \6n\2 

r i 5 T , n • = i,: 

By using (2.4) and (2.5) one can show that, for j = 0 ,1 ,2 , . . . , 

Kj-i(Q2j-2(x)Q2j-2(y) - xyQ2j-i(x)Q2j-i(v)) 
1-xy 

(2.6) + K2Q2j+1(x)Q2j+1(y) 

_ K]{Q2j(x)Q2j(y) - xyQ2j+ï(x)Q2j+1(y)) 

1-xy 

where we set K_i = 0 and Q-\(x) := Q_2(x) := 0. Summing both 
sides of (2.6) and cancelling like terms yields (2.1). By setting x = y = z 
in (2.1) we obtain the inequality 

Kl < £ *ilQ2i + l(*)|2 = _ ^ ( | Q 2 n ( ; , ) | 2 - |*Q2n+1(z)|2). 
j=o L \z\ 

Applying (2.5) to this yields, for n = 1 ,2 ,3, . . . , 

(2.7) \Q2n(z)\2 - \zQ2n+l(z)\2 > (1 - \z\2) f [ ( l - | ^ | 2 ) . 



W.B. JONES AND W.J. THRON 205 

3. Convergence of the even approximants. The main result of 
this paper is 

THEOREM 3.1. Let (1.1) be a given PPC-fraction and let fn(z) := 
P2n{z)/Q2n{z) denote its 2n th approximant. Then: (A) {fn(z)} con­
verges to a (normalized Carathéodory) function f(z), analytic for \z\ < 
1 and satisfying 

(3.1) /(0) = So > 0, Ref(z) > 0, \z\ < 1. 

The convergence is umform on every compact subset of\z\ < 1. 

(B) F o r n = 1,2,3, . . . , 

4*oIlLi(i-l*il2)Nn+1 

(3.2) \f(z)-fn{z)\ < J — -—^ (a posteriori bound). 

(C) Forn = l , 2 , 3 , . . . , 

(3.3) \f(z) - fn(z)\ < Q| (a priori bound). 

u - \z\ ) 
(D) The a posteriori bound (3.2) is best. 

Before proving Theorem 3.1 we give some basic lemmas and defini­
tions that are used. We denote by T+(z) the class of all PPC-fractions 
with z fixed, \z\ < 1. We say that a sequence of non-empty subsets 
{Ki}£Li of C is a sequence of value regions for {P2n(z)/Q2n(z)} with 
respect to T+(z) if 

(3.4) rn(z,0) e Vn, n > 0 and rn{z,Vn) Ç Vn-U n > 1. 

We denote by V(z) the family of all sequences of value regions for 
{P2n(z)/Q2n(z)} with respect to r+(z). It follows that 

(3.5) [0 G Vn-i and rn{z,Vn) C Vn-Un > 1] => {Vn} € V(z). 
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It is readily seen that if (3.5) holds, then 

(3.6) fn(z) : = § 4 4 = ß - ( Z ' ° ) e Rn(z,Vn) Ç Rn-l(z,Vn-l), 
Q2n{Z) 

n = 1,2,3, . . . . 

Hence {Rn{z, Ki)} is a nested sequence of subsets of C satisfying 

(3.7) fn+m(z) 6 Ä n ( z , K l ) , n = l , 2 , 3 , . . . , m = 0 , l , 2 , . . . a . 

It follows that 

(3.8) \Um(z)-fn{z)\<ài*mRn{z,Vn),
 U = *'***' " ' ' 

m = 0 ,1 ,2 , . . . , 

so that {fn{z)} is convergent if 

(3.9) lim diam#n(2, Vn) = 0. 
n—KX) 

For a fixed z with \z\ < 1 we define 

(3 10) ^ n ^ : = K + i ° V 2 o , , , ° V m ( ^ 0 ) : | 4 | < 1, 
n + 1 < A; < n + m, m = 1,2,3, . . . }, 

where composition o is with respect to w in rk{z,w). By a well known 
argument (see, for example, [5, Theorem 4.1]) it can be shown that 

(3.11) {Wn} e V(z) and [{Vn} € V(z) => Wn C Vn, n > 0]. 

In view of property (3.11), we call {Wn}i given by (3.10), the best 
sequence of value regions for {P2n(z)/Q2n(z)} with respect to T+(z). 

LEMMA 3.2. The best sequence {Wn} of value regions for {P2n(z) /Q2n(z)} 
with respect to A+(z) is given by 

(3.12) Wn = t/M := [u e C : |u| < |z|], n = 0 , 1 ,2 , . . . . 
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PROOF. Let R := \z\ < 1. By elementary properties of l.f.t.'s it can 
be shown that 

(3.13a) rn(z, UR) = {u:\u- Tn\ < p n } , n = 1 ,2 ,3, . . . , 

where 

mui r - **„(!-#) n ,_ R2(i-\6„\2) 
(i.LM) 1 n . _ j _ fi2)^|2 , pn .- 1_ fi2|^|2 . 

An immediate consequence of this is that, for n > 1, 

(3.14) rn{z,UR)ÇUR, 

if and only if 

(3.15) | r n | + p „ < Ä : = M . 

To verify (3.15) we substitute (3.13b), divide by fi, multiply by (1 — 
R2|<5n|

2), and rearrange terms to obtain the equivalent inequality 

R(l-\Sn\2)<(l-\Sn\) + R2\6n\(l-\6n\). 

Now, dividing this by (1 — \6n\) and rearranging terms, yields the 
equivalent inequality 

( 1 - Ä ) ( l - Ä | « n | ) > 0 

which clearly holds. This proves (3.15) and hence also (3.14). Since 
\z\ < 1 we have, for n > 0, 

(3.16) [rn + i(2,0) : | « n + 1 | < 1] = %+xz : | « n + 1 | < 1] = UR. 

Hence by (3.10), UR Ç Wnì n > 0. It suffices to show that 

(3.17) WnCUR, n = 0 , l , 2 , . . . . 

By (3.16) and (3.14), for n > 0, m > 1, 

, gv rn+1 o - - - o r n + m (z , 0) G r n + 1 o . . . r n + m (z , UR) 

Ç r n+i o - • - o r n + m _ i (z , UR) C • •. Ç rn+i(2, UR) C f/Ä. 

file://{u:/u-
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Therefore (3.17) follows from this and (3.10). o 

We now denote by PPC (z, {6n}) a given (fixed) PPC-fraction (1.1). 
It can be seen from (3.10) and (3.12) that, for n > 1, the set Rn(z, U\z\) 
consists of all (2n + 2ra) th approximants (with m > 0) of PPC-fractions 
for which the coefficients 6$, 6 — 1 , . . . , 6n are given (and fixed) and the 
other coefficients 6m, m > n, satisfy \6n\ < 1. Therefore following 
standard continued fraction terminology (see, for example, [2] and [5, 
p. 297]) we call the closed set 

c(Rn(z,Ulzi)) 

the best n t h inclusion region for PPC (z,{6n}). Here c(A) is used to 
denote the closure of a set A. It can be seen from (3.8) that the diameter 
of this set, diamJRn(z,f/|2|), is the best truncation errors bound for 
fn(z) := P2n(z)/Q2n(z). It follows from (3.14) and mapping properties 
of l.f.t.'s, that Rn(z,U\z\) is an open circular (bounded) disk. The 
following lemma gives the radius of this disk. 

LEMMA 3.3. For z fixed with \z\ < 1, and n = 1 ,2 ,3 , . . . , 

(3.19) Kn:=™dRn(z,U\A) = 2^n?=i(i-fe-i2)Nw+1 

\Q2n(z)\2-\zQ2n^(zW 

PROOF. Let wn denote the point inside U\z\ such that Rn(ziwn) is 
the center of the disk Rn{z,U\z\). Let gn := Q2n{z)/Q2n+i{z). Then 
Rn(z,-gn) = oo. Since Rn(z,wn) and Rn(z,-gn) — oo are inverses 
of each other with respect to the circle dRn(z, U\z\), and since inverses 
are preserved under the l.f.t. R~l(z, w), it follows that wn and -gn are 
inverses of each other with respect to the circle dU\z\. Hence 

(3.20) rn := Arg(u;n) = Arg(-^ n ) and |ti;n| • \gn\ = \z\2. 

Therefore we can write 

(3.21) vn := \z\eiT» and wn = \wn\e
iT". 
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It follows from (1.10) and the determinant formula [5, (2.1.9)] that 
(3.22) 

I n , v D / x, I WnP2n+l + P2n ^n^2n+l + P^ix 
«n = \Rn{z,Wn) ~ Rn(z,Vn)\ = 

I WnQ2n+l + Q2n VnQ2n+l + Q2n 

= 2gpn^i(l-|gjl2)Nw-K-t;nl 

|Q2n+l|2 ' |«>n + 0 n | ' |t>n + £n | 

From (3.20) and (3.21) one has 

(3.23) \wn + gn\ = \gn\ - \wn\ and \vn + #n | = \gn\ - \z\. 

Using \wn — vn\ = \z\ — \wn\ — \z\ — \z2\/\gn\, we conclude that (3.19) 
follows from (3.22) and (3.23). DO 

PROOF OF THEOREM 3.1. It follows from (3.8) and Lemma 3.3 that, 
for n > 1, m > 0, 

4«on?-i(i-i*ji)2Nn+1 

(3.24) \fn+rn(z) - fn(z)\ < 2nn = | Q 7T2 ÌO M,2-
\Q2n\Z)r - \zQ2n+\\Z)r 

From (2.7) and (3.24) we obtain 
(3.25) 

4&ilzln+1 

| / n + m W - / n W I < 1 _ ,2 , n = 1,2,3, . . . , m = 0 ,1 ,2 , . . . . 

It follows that {fn(z)} converges uniformly on every compact subset 
of \z\ < 1 to a function f(z) analytic for \z\ < 1. That Ref(z) > 0 
for \z\ < 1 follows from (1.12a). The normalization /(0) = 6o > 0 
follows from (1.4a,b), since /n(0) = / n_i(0) = /o(0) = <5(b n> 1. This 
proves (A). (B) follows from (3.24) and (C) from (3.25). (D): The best 
a posteriori truncation error bound for fn(z) is given by (3.2) since 
c{Rn{z, U\z\)) is the best n t n inclusion region for PPC (z, {èn}). Q 

REMARK. It can be shown that the corresponding fps Lo in (1.2) is 
the Taylor series for f(z) at z = 0 [4, Theorem 3.2(A)]. However, we 
do not yet have a constructive proof of this. 
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