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LINEAR COMBINATIONS OF 
HYPONORMAL OPERATORS 

JOHN B. CONWAY AND WACLAW SZYMANSKI 

1. Introduction. It is well known that if JVi and N2 are two normal 
operators such that their linear span consists of normal operators, then 
Ni and N2 commute [8]. This paper addresses the question whether 
this is true for hyponormal and subnormal operators. The answer is 
no. Two noncommuting hyponormal operators are given in this note 
such that their linear span consists entirely of hyponormal operators. 
What is true (Proposition 2.3)is that if A and B are two hyponormal 
operators and if AB* = B*A, then the linear span of A and B consists 
of hyponormal operators and both AB and BA are hyponormal. 

The linear span of two normal operators consists entirely of normal 
operators if and only if the operators commute. There are, however, 
examples of subnormal operators A and B such that AB = BA but 
neither A + B nor AB is hyponormal [7] (also see pages 23-24 of [5]). 
Since half of this result for normal operators fails to generalize to 
the hyponormal case it is not too surprising that the other half also 
fails to generalize. The counterexample demonstrating this (Example 
2.4) arises by constructing hyponormal operators A and B such that 
AB* = B*A, but AB ^ BA. In light of the result mentioned above, 
this shows that span {A, B} = {aA + bB : a, b G C} consists of 
hyponormal operators even though A and B do not commute. 

This leads to a consideration of the question, "If A and B are 
hyponormal operators and AB* = B*A, when does AB — BA"? That 
is, when is the converse of Fuglede's Theorem valid for hyponormal 
operators? It is well known that Fuglede's Theorem does not extend 
to hyponormal operators or even subnormal operators. Moreover, 
as mentioned above, the possible generalization of the converse of 
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the Fuglede Theorem to hyponormal operators, though previously 
overlooked, is also false. In §2 of this paper, conditions are given under 
which the linear span of two hyponormal operators consists of only 
hyponormal operators. Example 2.4 illustrates that the question raised 
at the beginning of this paper has a negative answer. Included in §2 is 
one necessary and sufficient condition (Proposition 2.5) which is used 
to show that if A is a hyponormal operator and N is a normal operator, 
then the linear span of A and N consists entirely of hyponormal 
operators if and only if AN = NA. A similar result is established for a 
subnormal operator A (Proposition 2.9). These results are far from the 
ultimate answer to this question and indicate the need for further work. 
In fact, this question is one more indication that our understanding of 
hyponormal and subnormal operators has much further to go. 

In §3 a number of situations will be given in which the converse of 
Fuglede's Theorem does hold. It will be shown that it often happens 
that if A and B are hyponormal and AB = BA and AB* = B*A, then 
either A or B is normal. In particular, this is the case when A is a 
finitely multicylic hyponormal operator. 

The remainder of the present section is devoted to setting the notation 
and some preliminaries. The notation and terminology used here will 
usually conform to that of [3] and [4]. For the convenience of the reader 
some terminology is recalled here. An operator A on a Hilbert space 
H is said to be hyponormal if A* A — A A* is a positive operator; A is 
cohyponormal if A* is hyponormal. 

In this paper B(H) denotes the algebra of bounded linear operators 
on the Hilbert space H. The basic facts concerning hyponormal and 
subnormal operators can be found in [3]. If X and Y belong to B{H), 
the commutator of X and Y is defined as [X, Y] = XY — YX. The 
s elf-commutator of an operator A is [A*, A]. 

Recall that, for 1 < n < oo^H^ denotes the Hilbert space formed 
by taking the direct sum of H with itself n times (a countable num­
ber of times if n = oo). Say that a set of operators is hyponormal 
(respectively, subnormal) if each operator in the set is hyponormal (re­
spectively, subnormal). 

2. The linear span of two hyponormal operators. This section 
will explore conditions under which span {A,B} is hyponormal. The 



HYPONORMAL OPERATORS 697 

proof of the next lemma is straightforward. 

LEMMA 2.1. If A and B belong to B(H), then span{A,B} is hy­
ponormal (respectively, subnormal) if and only if, for every a in C both 
A and aA-\- B are hyponormal (respectively, subnormal). 

Note that if w € C and T = wA + B, then 

(2.2) [T*,T] = \w\2[A*,A] + [B\B] + 2Re (w[B*, A]). 

PROPOSITION 2.3. / / A and B are hyponormal and AB* = B*A, 
then: 

(a) span {A, B} is hyponormal; 

(b) AB and BA are hyponormal. 

PROOF. Since AB* = B*A, [B*,A] = 0. The result (a) is now 
immediate from Lemma 2.1 and Equation 2.2. To prove (b) note 
that AB(AB)* = ABB*A* < AB*BA* = B*AA*B < B*A*AB = 
(AB)*AB; thus AB is hyponormal. Similarly, BA is also hyponormal. 
D 

The condition of Proposition 2.3 is not necessary for span {̂ 4, B} to 
be hyponormal Indeed, if A = B = the uniliateral shift of multiplicity 
one, then span {A, B} is hyponormal but AB* ^ B*A. 

The next example shows that it is possible for span {̂ 4, B} to be 
hyponormal without having AB = BA, thus answering the question 
posed at the beginning of this paper. 

EXAMPLE 2.4. If A is the unilateral shift of infinite multiplicity, 
then there is a hyponormal operator B such that AB* = B*A, and so 
span {A, B} is hyponormal, but AB / BA. 

Let U be the unilateral shift of multiplicity one and let /C be an 
infinite dimensional Hilbert space. Thus A = J/ç 0 U is a unilateral 
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shift of infinite multiplicity. Let B = X 0 1 + Y* 0 U* for some X and 
Y in B(K). Clearly AB* = B*A but AB # BA. Computing shows 
that 

B*B = X*X 0 1 + X*Y* 0 U* + YX 0 U + F F * 0 ÜT/*, 

55* = xx* 01 + xy 0 *7 + Y*X* 0 tr + F*r* 01 
Assume for the moment that X and F can be found such that XY = 
YX. Then 

[B\B] = (X*X - XX* - Y*Y) 0 1 + F F * 0 UU*. 

So in order to get B hyponormal and satisfying the other conditions 
stipulated in the example, it suffices to find operators X and Y such 
that XY = YX, Y ? 0, and X*X - XX* - Y*Y > 0. 

To do this let C be any Hilbert space of dimension at least 2 and put 
K = £(°°) (the direct sum of £ with itself countably many times). Thus 
operators on /C can be represented as infinite matrices with entries from 
B{C). Let P be a proper projection on C(P ^ 0 or 1) and define X 
and Y by 

X = 

r o o o 
P O O 
o l o Y = 

0 
0 
0 

1-P 0 
0 0 
0 0 

If follows that 

X*X = 

P 0 0 0 
0 1 0 0 
0 0 1 0 

XX* = 

0 0 0 0 
0 P 0 0 
0 0 1 0 

Y*Y 

0 0 
1 - P 0 

0 0 

Thus 

X*X -XX* -Y*Y = 

P 
0 
0 

0 0 
0 0 
0 0 
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and XY = YX = 0. This concludes the example. 

The next result is a necessary and sufficient condition for span {A, B} 
to be hyponormal, though in practice it is difficult to verify. Its main 
virtue is that it is the natural approach to obtain Corollary 2.8. 

PROPOSITION 2.5. / / A and B are hyponormal, then span{A, B) is 
hyponormal if and only if, for every h in H such that [J9*, A]h ^ 0, the 
inequality 

| ([B*,A)h,h) | 2 < ([A*,A]h,h)([B*,B)h,h) 

holds. 

Before proving this proposition, a lemma about complex numbers is 
necessary. 

LEMMA 2.6. / / a and b are non-negative real numbers and c is a 
non-zero complex number, then 

\z\2a + ò + 2Re (zc) > 0 

for all complex numbers z if and only if\c\2 < ab. 

PROOF. Suppose \z\2a + b + 2Re (zc) > 0 for all z in C. For an 
arbitrary real number £, if z = tc, then £2|c|2a H- b + 2t\c\2 > 0. An 
examination of the discriminant of this quadratic expression shows that 
|c|4 < \c\2ab. For the converse, if /i is any number in C with |/i| = 1, 
then Re (fie)2 < \c\2 < ab. Hence t2a + b + 2tRe (fie) > 0 for every t in 
R. Since every complex z can be written as tfi with t real and |/i| = 1, 
this completes the proof. D 

PROOF OF PROPOSITION 2.5. Let w be any complex number and 
put T = wA + B. It follows from Equation 2.2 that 

(pP, T)h, h) = a |H 2 + b + 2Re (cw), 
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where a = ([A* ,A)h,h),b = {[B*,B]h,h), and c = {[B*,A]h,h). The 
proposition is now immediate by Lemma 2.6. D 

COROLLARY 2.7. / / A and B are hyponormal, AB* ^ B*A, and 
span{A, B} is hyponormal, then neither A nor B is normal. 

PROOF. The preceding proposition implies that if either A or B is 
normal then ([B*, A]h, h) = 0 for all vectors h in H. But this is equiv­
alent to the condition that [B*, A] = 0, contradicting the hypothesis, o 

The next corollary completely answers the question raised at the be­
ginning of this paper in the case that one of the operators is normal. 

COROLLARY 2.8. / / A is a hyponormal operator and N is normal, 
then spa,n{A, N} is hyponormal if and only if AN = NA. 

PROOF. First assume that span {A, N} is hyponormal. It is imme­
diate from the preceding corollary that AN* = N*A. By Fuglede's 
Theorem, A and N commute. The converse is immediate by Fuglede's 
Theorem and Proposition 2.3. D 

There is a corresponding result for subnormal operators. Part of this 
next result is in the folklore of subnormal operator theory and is pre­
sented here for completeness. 

PROPOSITION 2.9. If S is a subnormal operator and N is a normal 

operator on H, then the following statements are equivalent. 

(a) S and N commute. 

(b) span{5, N} is subnormal. 

(c) A(S,N), the algebra generated by S and N, is subnormal. 

(d) S and N have commuting normal extensions. 
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PROOF. It is clear that (d) implies (c) and (c) implies (b). The 
fact that (b) implies (a) is an immediate consequence of Corollary 
2.8. It remains to show that (a) implies (d). To do this, a result 
of Ito (Theorem 1 of [6]) that generalizes the Halmos-Bram criterion 
to families of operators will be used. 

Let {hmn} be an arbitrary finite family of vectors in H. By Fuglede's 
Theorem 

n = J2 (SmNnhjk,S^Nkhmn) 
m}n,j,k 

= Y, {SmN*khjk,&N*nhmn). 
m,n,j,k 

lffj = 'EkN*khjk,then 

n = y£{smfj,s^fm) 

and so, by the subnormality of S and the Halmos-Bram condition, 
0 > 0. If now follows by the result of Ito referred to above that S and 
N have commuting normal extensions. 

3. The converse of Fuglede's Theorem. As seen in the preced­
ing section, there is a close relationship between the questions "When 
is span {A, B} hyponormal"? and "When does AB* = J5*A"? Atten­
tion will now be shifted to the latter question. To do this, some initial 
preparation is necessary. The proof of the first lemma in this process 
is left to the reader. 

LEMMA 3.1. Hilbert spaces H and K, assume that P G B(H),Q G 
B{K)j and C : K —• H is a bounded operator. If an operator X in 
BÇH 0 /C) is defined by the matrix 

X 
P C 
C* Q 

then the following statements hold: 

(a) The operator X is positive if and only if for all h in H and k in 
ic, 

{Ph, h) + (Qk, k) + 2Re (Ck, h) > 0. 
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(b) IfX > 0, then P > 0 and Q > 0. 

(c) If either P or Q is 0 and X is either positive or negative, then 
C = 0. 

LEMMA 3.2. For 1 < n < oo and A{j € B{H), for 1 < ij < n, let 
X = (Aij)eB(H^). 

(a) IfX>0, then AÜ > 0 for all i. 

(b) If X is either positive or negative and An = 0 for all i, then 
X = 0. 

PROOF. This follows by an application of the preceding lemma. D 

PROPOSITION 3.3. For 1 < n < oo and 1 < i,j < n, let Tij e B(H) 
and assume that T = (T^) is a bounded operator on H^n\ If each T^ 
is hyponormal and Tis cohyponormal, then T is normal. 

PROOF. Let X = T T - TT* = (Aió). It must be shown that X = 0. 
By assumption, X < 0. According to the preceding lemma, to show X 
is 0 it suffices to show that the diagonal entries of X are all 0. 

A computation shows that 

n 

Akk = ^{TkjTkj - TjkT*k). 

Since T is cohyponormal, Akk ^ 0 for all k. Thus, by rearranging the 
order of the terms in the sum, it follows that 

fc=i k=ij=i k=ij=i 

But, by hypothesis, each Tkj is hyponormal and so T^Tkj—TkjT^ > 0. 
Hence £ £ = 1 Akk > 0. This implies that £ £ = 1 Akk = 0. But Akk > 0 
for each k and so Akk — 0 for each k. By the preceding lemma, X = 0 
and T is normal. D 
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Note that the proof of the preceding proposition also shows that each 
Tij is normal since Akk = 0 for all k and each Tjk is hyponormal. 
Also the preceding proposition is false for infinite matrices of opera­
tors. In fact, for T = the backward unilateral shift of multiplicity 1, 
a cohyponormal operator that is not normal, the standard matrix rep­
resentation of T has as its entries non-negative operators on the one 
dimensional Hilbert space C. 

COROLLARY 3.4. Let A € B(7i) and assume its commutant, {A}', is 
hypernormal. If 1 < n < oo, In is the identity on an n dimensional 
Hilbert space Hn, and B is a hypernormal operator in B(H <8> Hn) sat­
isfying B*(A <g> In) = (A ® In)B*> then B(A ® In) = (A ® In)B and B 
is normal. 

PROOF. Because {A<8>InY consists of the n by n matrices with entries 
from {^4}', it is an immediate consequence of the preceding proposition 
that B* and hence JÖ, is normal. The remainder of the corollary follows 
from Fuglede's Theorem, o 

The preceding corollary shows that the construction in Example 2.4 
is not possible for a shift of finite multiplicity. The next result is an­
other instance where AB* = B* A implies that AB = BA. 

PROPOSITION 3.5. If A,B € B{H), A commutes with both B* and 
B*B, and B commutes with A* A, then AB = BA. In particular, if A 
and B are isometrics and AB* = B*A, then AB = BA. 

PROOF. Under the hypothesis, (AB-BA)*(AB-BA) = B*A*AB-
B*A*BA - A*B*AB + A*B*BA = 0. Thus AB - BA =.0. The state­
ment about isometries is immediate, since in this case 4̂*̂ 4 and B*B 
are the identity operator. D 

One might wonder whether the infinite multiplicity was essential in 
Example 2.4. If A is a hyponormal operator which is finitely multi-
cyclic and B is a hyponormal operator such that AB* = B*A, must it 
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be that AB = BAI Note that if this is true, then B is a hyponormal 
operator that commutes with both A and A*. Thus B 6 W*(A)f, the 
commutant of W*(A), the von Neumann algebra generated by A. As 
the next result shows, this implies that B would have had to be normal 
so that Fuglede's Theorem would have sufficed. 

PROPOSITION 3.6. If A is a pure essentially normal operator and A0 

is a normal operator of finite multiplicity, then the only hyponormal 
operators in W*(A 0 A$) are the normal ones. 

PROOF. It is known ([1], also see [3; p. 296]) that an essentially 
normal operator can be written as the direct sum of irreducible ones 
and a normal operator. Therefore, because A is pure, 

4 _ Am) /n 4(^2) ffi . . . 

where each Aj is irreducible and Ai and Aj are not unitarily equivalent 
for i Ï j . Note that [A*, A] = [J4J, Ai]<ni> 0 [AJ, A2)

{n2) 0 • • •. Since A 
is essentially normal, it follows that each Aj is essentially normal and 
that each n3-, < 00. 

Suppose that Aj acts on the Hilbert space Tij and Aç> acts on Ti'o. 
Since Aj is irreducible, W*(Aj) = B(Hj). It is a standard consequence 
of Schur's Lemma and the fact that each Uj is finite that the commutant 
of W* (Ao 0 A) is spatially isomorphic to 

W*(AoY 0 [Mni ® lHl] 0 [Mn2 ® lH2] 0 • • • , 

where Mn denotes the n by n matrices. If B is a hyponormal operator 
in the commutant of W*(A0 0 A), then B = B0 0 B\ 0 B2 0 • • •, where 
each Bj is hyponormal, Bo € W*(AQ)', and, for j > l,Bj corresponds 
to a hyponormal element of Mnj. Thus Bj is normal for all j > 1. 
Because of the finite multiplicity of Ao, multiplicity theory for normal 
operators (see, for example, [4, p. 307]) implies that Bo is the direct 
sum of finite matrices with entries from the L°° space of some measure 
supported on a compact subset of the plane. Thus the entries in these 
matrices are normal operators and so, by Proposition 3.3, Bo is a nor­
mal operator. Therefore B must be normal. D 
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COROLLARY 3.7. If A is a finitely multicyclic hyponormal operator 
and B is a hyponormal operator such that AB = BA and A*B = BA*, 
then B is normal. 

PROOF. This is an immediate consequence of the preceding result and 
the Berger-Shaw Theorem [2] which implies that A is essentially nor­
mal, o 
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