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THE SUPPORT OF CERTAIN RIESZ PSEUDO-
NORMS A N D THE ORDER-BOUND TOPOLOGY 

G.J.H.M. Buskes 

A B S T R A C T . In this paper we characterize those Riesz 
spaces E with weak order unit e for which the topology in­
duced on E by the compact-open topology of {cp G R \<p(e) = 
1 and <p is a Riesz homomorphism} coincides with the order-
bound topology. 

Introduction. Suppose E is a Riesz space. The collection of all 
Riesz seminorms on E generates a locally solid topology on E, called 
the order-bound topology of E. The order-bound topology occurs very 
naturally in problems about Riesz spaces. However, to define the order-
bound topology is far from understanding its structure. In case E 
is a Banach lattice, Goffman proved that the order-bound topology 
coincides with the norm topology [7]. Though there is no doubt 
that it was known that the order-bound topology of C{X) coincides 
with the topology of uniform convergence on compact sets of the real 
compactification of X (see satz 4.10 of [16] combined with the results 
of [9] and [12]), Goffman's theorem seems to have been the only 
example of a concrete representation of the order-bound topology in 
the literature for a long time. It was only recently that the order-
bound topology for certain function lattices was given explicitly as the 
topology of uniform convergence on compact sets of the spectrum [4], 
and in [3] a similar theorem was proved for complete ordinary function 
systems. 

In this paper we give a unified approach to these problems. The main 
technique will be to define the notion of support for Riesz pseudonorms 
on a Riesz space with weak order unit. Implicitly this notion may 
be found in [4] and [12] and, explicitly for a special class of Riesz 
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seminorms on certain function lattices, in a fruitful paper by A.CM. 
van Rooij [15]. Our main theorem gives necessary and sufficient 
conditions for the order-bound topology on a Riesz space with weak 
order unit to coincide with the compact-open topology on its spectrum. 

In §1 we introduce the necessary preliminaries. The definition of 
support for Riesz pseudo-norms is given in §2 and in §3 we discuss how 
results in [3] and [4] may be derived from our main result. 

Our general reference for the theory of Riesz spaces will be [11]. 

1. Preliminaries. In this paper E will denote an Archimedean 
Riesz space with weak order unit e. We define E* = {/ G E\ there 
exists n G N such that | / | < ne} and A = {<p € R^ \<p is a Riesz 
homomorphism and (p(e) = 1}. Furthermore, Sp(i£) = {<p G R^lv? is 
a Riesz homomorphism and (p(e) = 1}. Sp(E) is called the spectrum 
of E. It is clear that A is the spectrum of E*. For all / G E+ and all 
<p G A, define f(<p) = supn <p{f V ne ) G [0, oo]. For all / G E*+ and 
all <p G A, f{(p) = <p{f). For any / G E* we define /(<£>) = <p(f)for all 
<pe A. 

Suppose g G E+. The sequence (/n)nGN of elements of E is said 
to converge relatively uniformly to f G E with respect to g (or g-
uniformly), if there exists a sequence of positive numbers (£n)neN 
with en —• 0 such that \fn — f\ < eng for all n G N. Sometimes 
this is denoted with fn —• f{g). The sequence (/n)nGN of elements 
of £" is said to converge relatively uniformly to f E E if there exists 
g G E+ such that / n —• f(g). Every relatively uniformly convergent 
sequence has a unique limit [11; Theorem 63.2]. In a similar way g-
uniform Cauchy sequences and relatively uniform Cauchy sequences are 
defined. E is said to be uniformly complete if, for every g G E+, every 
^-uniform Cauchy sequence has a ^-uniform limit. 

A pseudo-norm p on E is a function p : E —* R with 

(1) p(f) > 0, for all feE, 

(2) P{f + g)<p{f)+p(g), f o r a l l / , 0 G £ , 

(3) lim p{Xf) = 0, for all feE. 
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A pseudo-norm p on E is called a Riesz pseudo-norm if, in addition, 
p(f) < p(g) whenever | / | < \g\. A Riesz pseudo-norm p on E is called 
a Riesz seminorm if, for all / G E and all a G R ,p (a / ) = \a\p(f). 

2. Compactly supported Riesz pseudo-norms. E* has a 
natural norm, and, since A is a closed subset of the dual unit ball, it is 
weak*-closed and compact by Alaoglu's theorem. E* = {/|/ G E*} 
is a norm dense Riesz subspace of C(A). 

LEMMA 2.1. If A and B are disjoint closed subsets of A, then there 
exists f G [E* ) + such that f = 0 on A and / = 1 on B. 

PROOF. Suppose A and B are disjoint closed subsets of A. Then, by 
Urysohn's lemma, there exists g G C(A) such that g = — 1 on A and 
g = 2 on B. Because E* is a norm dense Riesz subspace of C(A) we 
can find h G E*~ such that ||Â--0||oo < 1- It follows that / = (ÄA1A)V0 

is as required. 

Suppose p : E —• R is any Riesz pseudo-norm. Define S C A to be 
a weak support for p if, for all / G E ,*+, / | s = 0 implies p(f) = 0. S 
is said to be a support for p if, for all / G 2£*+ , / |s = 0 if and only 
if p(/) = 0. Remark that Lemma 2.1 implies that if p has a compact 
support, this compact support is unique. In the following, p will be a 
Riesz pseudo-norm such that p(e) ^ 0. Denote yp = {S\S is a compact 
subset of A and S is a weak support for p}. As A G l/p, l/p is nonempty. 

It is not hard to see that if Si and S2 are elements of yp then 
Sx n S2 ^ 0: If Si PI S2 = 0, choose, by Lemma 2.1, / G £*+ such that 
/ = 0 on A and / = 1 on B and / < e; then p(e) < p(e - / ) + p(/) = 0 
which is a contradiction. However, Lemma 2.2 shows rather more, 
namely that Si n S2 G j / p if Si G yp and S2 G l/p. 

LEMMA 2.2. 1/p w dosed under finite intersection. 

PROOF. Suppose Si, S2 G yp and / G E*+ is such that / | s ins 2 = 0. 
Suppose e > 0. Then (/ — ee) + = 0 on an open subset U of 
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A containing «Si n S2. Choose, by Lemma 2.1, G G {E*~ ) + such 
that G\Slnu< = 0 and G\s2 > sup{(/ - ee)+" (2)|A G S2}. Because 
GA(f-ee)+~ = (f-ee)+\ on S2, we get p(GA(/-ec)+) = p( ( / -ee)+) 
and because G A (/ — £e)* = 0 on «Si, we get p(( / — £e)+) = 0. Using 
property (3) of Riesz pseudo-norms (listed above) and the fact that 
( / — ^e)+ —• / relatively uniformly, it is straightforward to show that 
p(f) = 0. Thus, Si fi S2 is a weak support for p. 

Since p{e) ^ 0, it follows that 0 ^ Z/p and SQO = DseypS is nonempty 
and compact by Lemma 2.2. We will show that SQO is the compact 
support for p. 

LEMMA 2.3. SQO is the compact support for p. 

PROOF. Suppose / € E*+ is such that f\Soo = 0. Let e > 0. 
( / — ee)+ = 0 on an open subset U containing So©. There exists a 
finite number of elements of l/p, say S i , . . . , Sn , such that njJ=iSfc C U. 
Since, by Lemma 2.2, Ci%=1Sk € ypi it follows that p((f - ee)+) = 0. 
Using (/ — ^ e ) + —• / relatively uniformly, combined with property (3) 
of Riesz pseudo-norms, leads to p(f) = 0. Thus, SQO is a weak sup­
port for p. Suppose / G ü?*+,a € SQO and f(a) = 1 while p(f) = 0. 
Define W = {x G A|/(x) > §}. If g G E*+ and ^|A\IV = 0, then 
9 < 2||è||oolw < Sll^lloo/ and thus p{g) = 0. Thus A\W is a weak sup­
port for p which is in contradiction with the fact that a G Soo- Thus, 
SQO is the compact support for p. 

All of the above results are about E*. To be able to say more, 
we need a stronger assumption on p. Suppose that p is a nonzero 
Riesz pseudo-norm on E such that, for every / G Ü7+, there exists 
n G N such that p((f — ne)+) = 0. It then follows that, for all 
/ G E+,p(f) = supp(/ A ne). Therefore, p(e) ^ 0 and Lemma 2.3 
applies. Suppose / G E+ and N G N. We remark that, by defini­
tion, for all <p G A, f(<p) = supn (p(f Ane). Hence (/ A 7V1A)(̂ >) = 
(supn <p(f A ne )) A N = supn <p((f A Ne ) A ne ) = ( / A Ne )A (ip) for all 
<peA. Hence, for all / G £ + and all N G N, ( / A iVlA) = (/ A N e ) \ 
This will be used in the following. 
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LEMMA 2.4. Suppose p is a Riesz pseudo-norm with the property that, 
for each f G E+, there exists n G N such that p((f - ne)+ ) = 0. Let 
Soo be the compact support for p. Then, for all f G E+, f is uniformly 
bounded on o<x>« 

PROOF. Suppose / G E+ and let p((f - ne)4*) = 0. Assume m>n. 
T h e n / - ( / A n e ) > ( / Ame) - ( / Ane) > ( ( / Ame) - n e ) + . For all 
m > n we have ( ( / A me ) — ne ) + G E* and p(((/ A me ) — ne )+) = 0. 
Lemma 2.3 yields that ( ( / A me) — ne)+~ (x) = 0 for all x G SQO, i.e., 
( / A me)*(a;) < n for all x G Soo- With the remark preceding this 
lemma we see that / is uniformly bounded on OQO« 

Define v(A) = {u G A|/(w) < oo for all / G E+}. We have proved 
that Soo is a subset of v(A). Of course, in case E = C(X),v(A) 
coincides with the realcompactification of X. From [3; Lemma 21, 
p. 97 and Lemma 5, p. 132], we know that, for every UJ G f (A) , / —• 
/(u;)(/ G J£+) can be extended to a Riesz homomorphism E —• R. We 
denote the image of / under this Riesz homomorphism with/(u>). Thus, 
there is a natural map i : v(A) —• Sp (E) defined by i(w){f) = f(u) for 
all u G v(A) and all / G E. Certainly i is injective. Moreover we will 
now show that i is surjective. Suppose 0 G Sp(ü7). Since (J)\E* G A, 
there exists A G A such that <p(f) = /(A) for all f e E*. One easily 
verifies that £>(/) = supn <p(f A ne ) for all / G i£+ , hence <£>(/) = /(A) 
for all feE. 

Since the weak topology determined by the elements of E on v(A) 
coincides with the restriction topology of A on v(A), we see that i is a 
homeomorphism, if we equip Sp (E) with the weak topology determined 
by E. 

It is well known that the existence of nonzero positive linear func-
tionals on E is equivalent to the existence of nonzero Riesz seminorms. 
As a corollary of the above we observe the following 

COROLLARY 2.5. There exists a nonzero Riesz pseudo-norm p on 
E such that, for every f G E*, there exists n G N such that 
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p( ( / -ne )+) = 0 if and onlyifSp(E) ^ 0. 

PROOF. Suppose Sp (E) ^ 0. Choose <p G Sp (E) and define p : E —• 
R by p(/) = p ( | / | ) ( / G E). For every / G E+ìP((f - p(e)/)+) = 
<p({f — <p(e)f)+) = 0. Conversely, suppose p is a nonzero Riesz pseudo-
norm on E such that, for every / G £ + , there exists an n G N such that 
p( ( / — ne )+) = 0. By Lemma 2.3, p has a compact nonempty support, 
and, by Lemma 2.4, this support is a subset of v(A). By the remarks 
made just before this corollary, every element of the compact support 
for p determines an element of Sp (E). In particular, Sp (E) / 0. 

For / G E and <p G Sp(£) , we define }(<p) = / ( i " 1 ( ^ ) ) (= <p(f)). We 
come to our main theorem. 

THEOREM 2.6. For every nonzero Riesz pseudo-norm p on E the 
following are equivalent. 

(1) For every f G E+ there exists n G N such that p((f — ne)+) = 0 . 

(2) TAere exists a compact nonempty set A C Sp(JB) swc/& £Aa£ 
p(/) = 0 i/ ancf on/y i/ / | A = 0 for all f G E+. 

PROOF. (2)=>(1) is obvious. Suppose (1). By Lemma 2.4 and the 
discussion following Lemma 2.4, we get a compact nonempty set A 
(namely 2*(5oo), where SQO is the compact support for p) such that, 
for all / G £**+,p(/) = 0 if and only if f\A = 0. Suppose f G E+ 
and p(/) = 0. Then, for all n G N , p ( / A ne) = 0; hence, for all 
n G N, (/ A ne } \ A = 0. It follows that f\A = 0. 
Conversely, suppose f\A = 0 . Then p ( / A ne) = 0 for all n G N, and 
by using (1) once again p(/) = 0. 

3. The order-bound topology. The collection of all Riesz 
seminorms on E generates a locally convex and locally solid (see 
[1]) topology on E. This topology is called the order-bound topol­
ogy. Unfortunately, at least four names are in use for this topology 
(see [2, 3, 4, 10, 14 and 16]). Every nonempty compact subset A 
of Sp (E) determines a nonzero Riesz seminorm pA on E defined by 
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PA{Î) = sup x € A | / (x) | . The locally convex and locally solid topology 
generated by { P A | ^ C Sp(J£),A is compact and nonempty} U {the 
zero Riesz seminorm} is called the compact-open topology on E. 

THEOREM 3.1. The compact-open topology on E coincides with the 
order bound topology on E if and only if, for every Riesz seminorm p 
and for every f G E+, there exists n G N such that p((f — ne)+) = 0. 

PROOF. Suppose that, for every Riesz seminorm p and for every 
f €. E+, there exists n G N such that p((f - ne )+) = 0. Of course, the 
order-bound topology on E is finer than the compact-open topology on 
E. If there is no nonzero Riesz seminorm, there is nothing to prove. 
Therefore, suppose p is a nonzero Riesz seminorm on E. Since, by 
assumption, it has property (1) of Theorem 2.6, there exists a nonempty 
compact set A c S p (E) such that p(f) = 0 if and only if J\A = 0 for 
all / G £ + . For every / G JE+, / < pA{f)e + (/ - P A ( . / » + and 
(/ - PA{f)e)+-\A = 0. Hence p(f) < p{e)pA{f) for all / G E and 
P<p{e)PA-

Conversely, suppose the compact-open topology on E coincides with 
the order-bound topology on E. If there exists no nonzero Riesz semi-
norm, again there is nothing to prove. Suppose p is a nonzero Riesz 
seminorm on E. Choose a compact nonempty set A C Sp (E) and a 
number C G R such that p < CpA> Suppose / G E+. There exists 
n G N (for instance the first natural number bigger than P A ( / ) ) such 
that p(( / - ne)+) < CpA({f - ne)+) = 0. 

In many concrete examples the condition of Theorem 3.1 on all Riesz 
seminorms is quite easily checked. Lemma 3.2 is a convenient reformu­
lation of this condition. Its proof is left to the reader. 

LEMMA 3.2. The following conditions are equivalent 

(1) For all f G E+ and all Riesz seminorms p on E, there exists 
n G N such that p((f - ne)+) = 0. 

(2) For all f G E+ and all sequences (An)n€N of real numbers 
{An(/ — ne)+ |n G N} is bounded for the order-bound topology. 
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In fact, in §4, we will only use the following corollary. 

COROLLARY 3.3. //, for all f G E+ and all sequences (An)n€N of 
real numbers with Xn î oo, {An(/ — ne) + | n G N} is order-bounded (i.e., 
is dominated by an element of E+), then the compact-open topology on 
E coincides with the order-bound topology on E. 

4. Examples and counterexamples. 

EXAMPLE 4.1. Suppose X is a completely regular topological space 
and E = C(X). For every / G E+ and every sequence (An)nGN of real 
numbers with An î oo, {An(/ — ne ) + | n G N} is order bounded. Sp (E) 
equals the realcompactification of X. From Corollary 3.3 it follows that 
the order-bound topology on E coincides with the topology of uniform 
convergence on compacta of the real compactification of X. 

In [3] the result of Example 4.1 was extended to a more general set­
ting. We will now show the relation with Theorem 3.1. 

EXAMPLE 4.2. Suppose X is a set and E c R x . We say that E is 
lx-uniformly closed if, for every sequence (/n)n€N of elements of E 
and for every / G R x such that fn —• f lx-uniformly, / G E. We 
say that E is closed under inversion if, for all / G E with f(x) > 0 
for all x G X, 1 / / G E. We assume that E is a Riesz subspace of 
R x , contains the constants, is lx-uniformly closed and is closed under 
inversion, (i.e., E is a complete ordinary function system). We can then 
prove the fact: / / / G E+ and LJ G C[0, oo)-1" is an increasing continu­
ous function, then UJ o / G E+. 

PROOF OF THE FACT. It suffices to show that (u + 1) o / G E+. 
So we may assume that a; is an increasing continuous function with 
values in (l,oo). By the inversion property, it suffices to prove that 
l/(u o / ) G E. For all n G N, we have / A n i x G £*, and E* is 
uniformly complete (and hence E* is Riesz isomorphic with C(A)). It 

i 
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follows that l/(w o ( / A nlx)) G E*. Let n G N. Then 

( l / (wo(/Anlx))- l / (wo/))(a;) = ( ? , , x ,,, , u , * fM T * w v v n / v ' " v ' ^l/w^n) - 1 / (CJO/ ) (X) i f / ( a ; ) > n , 

and if f(x) > n, then 

l/w(n) - l/(u; o /)(x) < l/w(n) - inf l/u(y). 
y>n 

So 

sup(l/(o;o(/Anlx))-l/(wo/))(a;) < ( l /a ; (n) - inf 1/CJ(J/)) -> 0 if n -^ oo 
Tex y>n 

and 
l / ( w o ( / A n l x ) ) ^ l / ( w o / ) 

lx-i*elatively uniformly, thus l/(u> o / ) G E. 

We remark that it was Hausdorff who called a sublattice E of R x , 
with the properties that we have used above, a complete ordinary 
function system. These systems were extensively studied by Mauldin 
in [13]. Of course, every C(X) is a complete ordinary function system. 
From Theorem 3.1 of [13] we know that, for every Riesz subspace E 
of R x containing the constants, the Baire functions of the first class, 
B1(E)i is a complete ordinary function system. 

If E is a complete ordinary function system, / G E+ and (An)n€N 
is a sequence of real numbers such that An ] oo, it follows that 
{An(/ ~ n lx ) + |w £ N} is order bounded by applying the above fact 
to uj : [0,oo) —• [0, oo), defined by u>(t) = supn Xn(t - n)+(£ G [0,oo)). 
Using Corollary 3.3 we see that the order-bound topology of a complete 
ordinary function system coincides with its compact-open topology. 

We mention here that it is possible to show that if E is a Riesz sub-
space of R x containing the constants, then the order-bound topology 
on Bf(E) coincides with the product topology induced by Sp (B1(E)). 
Prom there it is easy to show each positive linear functional on BX(E) is 
a finite linear combination of Riesz homomorphisms. However, this gen­
eralization of a theorem by C.T. Tucker [17] has already been proved in 
even greater generality by A.C.M. van Rooij [15]. We refer the reader 
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to the latter paper in which many other interesting facts can be found 
as well. 

In [4], the result of Example 4.1 was extended to another context. 
We will show again that a result in [4] is a consequence of Theorem 
3.1. 

EXAMPLE 4.3. Suppose E is a Riesz space with weak order unit 
e. E is said to be 2-universally complete if, for any 2-disjoint sub­
set {vn\n G N} (i.e., for each n ,v n A vm ^ 0 for at most two 
ra ^ n; see [4]) of E+ such that, for any <p G Sp(i2), there ex­
ists n G N with (p(vn) / 0, sup{vn|n G N} exists. Suppose E 
is a 2-universally complete Riesz space with weak order unit e such 
that there exists a separating family of real-valued Riesz homomor-
phisms on E. To show that the order-bound topology on E coincides 
with the compact-open topology on £*, take / G E+ and (An)neN 
a sequence of real numbers such that Àn Î oo. Define, for each 
n G N the following subsets of A = Sp (E*). An = {x G A|n - 1 < 
( / A (n-h l)eY{x) < n},Bn = {x G A|(/ Ane)A(x) < n - 5/4} and 
Cn = {x G A|(/ A (n + l)eY{x) > n 4- 1/4}. By Lemma 2.1 there 
exists, for each n G N, fn G (E*~ ) + such that / n U n = An(n -h 1) and 
/n |ß„ucn = 0- Because E is 2-universally complete, sup{/n |n G N} 
exists and, for each n G N, A n ( / - ne ) + < sup{/n |n G N}. Now apply 
Corollary 3.3. 

Example 4.4 will show that our result is in fact a proper extension of 
the results in [3] and [4]. 

EXAMPLE 4.4. Let Z be the set of integers. Define E to be the subset 
of R z consisting of those elements / G R z for which there exists an 
N G N such that / (n) = f{—n) for all n> N. E is a, Riesz subspace 
of R z and l z =: e is a weak order unit in E. Remark that Sp (E) = Z. 
Suppose / G E+. Then z —* supn A n( / — ne)+(^) is an element of E 
for all sequences of real positive numbers (An)n€N with An Î oo. It 
follows that the order-bound topology on E coincides with the prod­
uct topology. However, E is not 2-universally complete nor a complete 
ordinary function system. 
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EXAMPLE 4.5. In Example 3 of [4] a function on the reals is called 
ultimately a polynomial if it is continuous and if it is equal to a 
polynomial on the complement of [—n, n] for some n G N. Let E be the 
solid hull in C(R) of the functions which are ultimately polynomial. It 
is easy to check that E is a uniformly complete Riesz space. In [4] the 
authors show that E is not 2-universally complete. Considering the 
Riesz seminorm p : E —• R defined by p(f) = f ^ | / (£) | (e - t A e^dt we 
see that the order-bound topology does not coincide with the compact-
open topology o n ^ . 

Finally, we wish to mention that, also, Nachbin's result [12] can be 
seen as a corollary of Theorem 3.1 by using a theorem by Schaefer (satz 
4.5 of [16]). The details, however, we leave to the interested reader. 
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