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TANGENT BALL EMBEDDINGS OF SETS IN E* 

L. D. LOVELAND 

R. H. Bing [3] and M. K. Fort, Jr. [18] asked if a 2-sphere in E* would 
be tamely embedded in £ 3 if it were known to have double tangent balls 
on opposite sides at each of its points. A 2-sphere 2 in E3 is said to have 
double tangent balls at a point p of 2 if there exist two round 3-cells B 
and B' such that B Ç] B' = {/?} = 2 f| (B U B'). The balls B and B' are 
on opposite sides of 2 if they lie, except for /?, in different components of 
E3 — 2. Appearing shortly after publication of Bing's 1-ULC character­
ization of tame surfaces [1] and about the same time as his Side Approxi­
mation Theorem [2] the question, whose answer depended upon these 
famous theorems, led to many related embedding facts. In this note I will 
summarize the evolution of "tangent ball theory" as it developed from the 
Bing/Fort Question. The account is historical with no proofs given, but 
some of the facts related here hav€ not appeared elsewhere. 

In both [3] and [18] the double tangent ball question arose in the context 
of piercing wild spheres with geometrically nice objects. Since Bing [3] 
and Fort [18] produced examples of wild 2-spheres that could be pierced 
with segments, it was natural to ask whether more general geometrical 
piercing sets such as balls and cones would be sufficient to insure the 
tameness of a surface. It is doubtful that either researcher was trying to 
produce a geometric analogue to smoothness as mildly suggested in [15] 
and [16]. Still it seems appropriate to give some examples to show there 
is no direct relation between the existence of double tangent balls and the 
surface having continuously differentiate defining functions. Let f(x) 
be a function much like x2 sin l/x except adjusted slightly, if necessary, 
so that its graph in E2 has double tangent disks at every point. The surface 
21, obtained by rotating this graph about the z-axis, is not continuously 
differentiate at the origin, yet 2\ has double tangent balls at each of its 
points. On the other hand let 22 be the surface obtained by rotating the 
graph of g(x) = x3/2(0 <L x £ I) about the z-axis. This surface has con­
tinuously differentiable coordinate functions but, with some effort, one 
can show there do not exist double tangent balls to 22 at the origin. How­
ever a surface will have double tangent balls if it has sufficiently smooth 
coordinate functions [27]. 
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Even though double tangent ball surfaces need not be smooth, they 
have tangent planes at each point. Each tangent ball pair defines a unique 
plane tangent to the two balls at their common point. This plane is also 
tangent to the surface, in a loose way, so surfaces with double tangent 
balls also have tangent planes. However, the existence of a family of these 
tangent planes is not enough to insure the flatness of the surface ; the Fox-
Artin wild sphere can be constructed with such a family. In this connec­
tion one should mention Question 12 of the Scottish Book (see [8]) which 
is attributed to Banach. Apparently realizing in approximately 1935 that 
there were wild 2-spheres in Ez with such a tangent plane at each point, he 
added continuity to the family of tangent planes and asked if this ruled 
out wildness. Burgess became aware of this question during the conference 
in Denton, Texas, in 1979 and answered it negatively by showing that the 
Fox-Artin wild 2-sphere can also be adjusted so that it has a continuous 
family of tangent planes [8]. Such an embedding is illustrated in Figure 1 
where the Fox-Artin sphere is tangent to the pictured plane at its Wild 
point which is the point of intersection of the two round balls. By relating 
families of tangent planes to families of double cones, I [24] generalized 
some of Burgess' examples and gave one with continuous tangent planes 
where the wild set contained a simple closed curve. In such examples the 
wild set cannot be connected unless it is a single point [23] ; in fact, a con­
tinuum in the wild set must be a limiting set of point components of the 
wild set. However, these tangent plane examples and theorems were 
mostly generated at least ten years after the Bing/Fort tangent ball ques­
tion was resolved. 

The first progress on the tangent ball question was Griffith's [20] partial 

FIGUGE l. 
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answer published in 1968. He proved that a 2-sphere 2 in E3 is tamely 
embedded if there is a positive number d such that, for each point/? of 2, 
there exist double tangent balls each of radius ô lying on opposite sides 
of 2 and touching only at/?. Bing's Question was stated in [3] immediately 
after he had mentioned John Hempel's theorem on piercing a surface with 
a continuous family of segments. In this context the additional "uniform" 
or "continuous" hypothesis on the double tangent balls was a natural 
one. Griffith's technique was to show 2 was locally spanned in both 
complementary domains because Burgess [7] showed this implied Bing's 
1-ULC condition. The dependence upon the 1-ULC characterization of 
flatness at first restricted generalization of Griffith's Theorem to (n — 1)-
spheres in En with n ^ 4; however, this dependence was later removed 
[15], so Griffith's Theorem is known for all n. 

Working independently, H. G. Bothe [5] and I [21] resolved the Bing/ 
Fort question by proving that a 2-sphere in E3 must be tamely embedded 
when it has double tangent balls on opposite sides. Bothe's theorem was a 
little more general because he used double cones with sufficiently large 
cone angle in place of the double tangent balls. However my paper per­
petuated the subject by stating several related questions in addition to the 
implicit one about generalizations to higher dimensions. Both proofs 
depended upon Bing's 1-ULC characterization of tameness. 

The first question in [21] asked if a 2-sphere 2 would be tame from its 
exterior if, for each/? e 2, there exists a round ball Bp such that Bp f| 2 = 
{/?} and Bp — {/?} c: Int 2. (The ball Bp is called a tangent ball even 
though its existence does not imply that 2 has a tangent plane at /?.) At 
about this time and perhaps during the year or two preceding my write-
up, J. W. Cannon was developing his *-taming set theory [10], [11]. An 
easy consequence of his powerful theorems was an affirmative answer to 
my question and to Bing's question about the tameness of a 2-sphere that 
is touched at each of its points by two cones, one on each side of 2. (See 
[3] and [4] for Bing's question on cones and [11] for Cannon's answer.) 

It was clear that the existence of tangent balls on the interior of 2 
would not make 2 U Int 2 a 3-cell, because, for example, the Fox-Artin 
wild sphere has these tangent balls from its wild side. Thus my second 
question in [21] asked if 2 would be tame from its interior if it had uniform 
tangent balls from its interior; that is, if there exists a ô > 0 such that 
for each point p in 2 there exists a round ball Bp of radius ô such that 
Bp — {/?} c: Int 2 and /? e Bp. Although J. W. Cannon resolved three 
of the four questions that were asked in [21], see [11] and [12, §5], this 
one remained open for about ten years, until Bob Daverman and I [16] 
answered it in the affirmative in 1979. We felt the answer would be found 
once we decided whether or not the Fox-Artin sphere could be arranged 
to have these uniform tangent balls on its wild side. In fact our first 
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success was to use the main result of [22] to reduce the wildness of spheres 
with uniform interior tangent balls to a finite set. Convinced that the 
Fox-Artin sphere could not have these uniform balls we then established 
the result through some long and detailed lemmas mostly involving plane 
geometry. It turned out that there was no need to require that all the 
uniform balls tangent to 2 be found in Int 2 [16, Theorem 2.14], so this 
result can be viewed as a substantial generalization of Griffith's theorem 
on uniform-sized double tangent balls where, instead of two tangent balls 
at each point, only one is required and it need not lie on a specified side of 
2. 

Very recently I showed that there are not many regular solids that can 
substitute for the round ball in the Daverman-Loveland theorem. Perhaps 
next to the solid sphere in symmetry and beauty are the five convex regular 
polyhedral solids, the ones Plato regarded as symbolizing the four elements 
earth, fire, air, and water together with the dodecahedron which to Plato 
symbolized in some way the entire universe [13, p. 149]. None of the first 
four of these Platonic solids tames a crumpled cube in the same sense as 
the solid round sphere. To see this one first embeds the Fox-Artin arc on 
the pages of a 3-page book as described in [22], then, after rotating the 
pages to be exactly 120° apart (see Figure 2), one "indents" the book 
along the arc with the tip of a pencil to convert the arc to the Fox-Artin 
2-sphere. This indenting or etching process is illustrated in Figure 3. It 
turns out that the resulting wild sphere can be touched at each of its points 

FIGURE. 2. 
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by the vertex of a cone (the pencil) that lies, except for its vertex, in the 
exterior of the sphere. The construction can be carried out as long as the 
cone angle is less than 120°. By calculating angles in the five Platonic 
solids one finds that each of the first four, the tetrahedron, cube, octahe­
dron, and the icosahedron, lies in a cone whose cone angle is less than 
120° with a vertex of the solid at the vertex of the cone. The icosahedron 
is pictured in such a cone in Figure 4. Thus the Fox-Artin 2-sphere de­
scribed in this way, can be touched at each of its points by the vertex of a 
Platonic solid from a family of congruent solids each of which is either a 
cube, tetrahedron, octahedron, or an icosahedron. The dodecahedron is 
naturally more troublesome since it "envelops the whole universe" [13]. 
It cannot be constructed to lie in a cone with cone angle 120° (it requires 
almost 139°), in fact, one finds the angle between one edge and its non-
adjacent face, the one with which the edge shares a vertex, is more than 
121°. This prevents the same use of the dodecahedron as the uniform 
etching or indenting tool in place of the cone or pencil in the reconstruc­
tion of the Fox-Artin sphere from the 120° three-page book. These 
examples are meant to point out the sharpness of the Daverman-Loveland 
theorem. 

Extending vivid descriptions of an earlier theorem given by Benny 
Rushing, I like to call this result the Rattle Theorem. In this sense the 
crumpled cube is the baby's rattle and the rattler inside is a marble or ball. 
If the rattler touches every point of the boundary of the rattle when it is 
shaken, then the rattle is a 3-cell. Except for rattlers which themselves are 
touched from their interiors by marbles, the marble is the only rattler I 
know that tames the rattle. A natural guess is that a sufficiently fine poly­
hedral approximation to a round ball would work just as well in taming 
a rattle. Working in this direction I [26] proved that a 2-sphere must be 
locally tame except possibly at finite number of points if it is touched from 
its interior at each of its points by the vertex of a cone from a family of 
congruent cones with sufficiently large cone angle. I suspect the same 
conclusion is true when the dodecahedron is used as the rattler. Of course 
Cannon's work [11] implies the rattle would be a tame 3-cell if, at each 
of its points, its boundary is touched from each side by a dodecahedron 
or by any polyhedral 3-cell. 

The higher dimensional analogue of the Bing/Fort Question led to 
results that were surprising to me. In 1978 Daverman and I [15] con­
structed, for each n ^ 4, an (n — l)-sphere 2 in En such that 2 was local­
ly polyhedral modulo a Cantor set X, 2 was wild at each point of X, and 
2 had uniform-sized double tangent balls on opposite sides of 2 at each 
point of X. Later David Wright and I [27] showed how to construct a 
similar example where 2 — X was "smoothed out" enough so that 2 had 
double tangent balls (but certainly not uniform-sized ones) on opposite 
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FIGURE 5 

sides at each of its points. Thus the Bing/Fort Question has an affirmative 
answer in E3 and a negative answer in En for « ^ 4 . 

Using the inflation technque developed by Daverman [14], he and I 
[16] constructed an example of a 3-sphere 2 in 2s4 such that 2 was wildly 
embedded in ZT4, yet 2 had uniform-sized exterior tangent balls at every 
point. However the wildness of 2 was from Int 2 so the question of 
generalizing the Daverman-Loveland Rattle Theorem to higher dimen­
sions remains unanswered. 

With the Bing/Fort Question and the one on uniform one-sided tangent 
balls settled, I extended my focus from 2-spheres to arbitrary subsets of 
E3. The Fox-Artin arc can be embedded so as to have uniform (single) 
tangent balls at each of its points (see Figure 5) or to have double (non­
uniform) tangent balls everywhere [23], so the natural condition to impose 
on arbitrary subsets to make them tamely embedded was the general­
ization of Griffith's uniform double tangent balls. In [23] I showed that 
an arbitrary subset X of E* must locally lie on a flat 2-sphere if there is a 
positive number ö such that for each pe X there are two three-dimen­
sional balls B and B', each with radius 5, such that {p} = B f| B' = (B \J 
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B') H X. Notice that when X is taken to be a 2-sphere this slightly gen­
eralizes Griffith's Theorem [20] because the double tangent balls are not 
required to lie on opposite sides of the 2-sphere. Burgess and I [9] studied 
2-spheres having these "indiscrete" (but not uniform) double tangent 
balls, giving wild examples and finally proving that the wild set W of a 
2-sphere 2 having indiscrete double tangent balls over W cannot be con­
nected unless it is a single point. The proof of this theorem [9, Corollary 
3.4] depended upon Theorem 3.1 of [22]. Strictly interpreted (in a way that 
was not intended), the question credited to Bing in 1965 [4, Question 3c] 
has a negative answer because there was no stated requirement that the 
tangent balls be on opposite sides of the sphere. In a sense the Burgess-
Loveland paper [9] gave limits on the examples supporting a negative 
answer to this question. 

Tangent ball theorems are closely related to questions about f-bound-
aries. If X is a subset of a metric space (F, d) and f > 0, the £ -boundary, 
9(f, X), of A- in Y is {y e Y\ d(X, y) = £}. Many authors, including 
Brown [6] and Ferry [17], have studied ^-boundaries. Ferry showed [17] 
that the f-boundary of a subset X of E3 is almost always a 2-manifold. 
When 3(£, X) is a 2-manifold one can easily see that it would have one­
sided tangent balls of radius £, so it would be tamely embedded in E3 

[16, Theorem 4.1]. This answered a question raised by Weill [28]. Curious 
about an arc when it is realized as the f-boundary of some subset of E3, 
I showed that a 1-dimensional subset of E3 must also locally lie on a flat 
2-sphere when it is the ^-boundary of another set [25]. As far as I know, 
the analogous ^-boundary results in dimensions greater than 3 have not 
been established. 

In summary, uniform-sized double tangent balls locally tame all sub­
sets of E3 and flatten (n — l)-spheres in En for each n. Double tangent 
balls (with no size restriction) tame a 2-sphere 2 in E3 provided the ball 
pairs lie on opposite sides of 2, but such pairs of tangent balls do not 
locally tame arcs in E3 or flatten (n — l)-spheres in En when n > 3. 
Single, uniform-sized, tangent balls tame a 2-sphere in E3, even with no 
requirement that they lie on the same side of 2, but they fail to locally 
tame arbitrary subsets of E3 and fail to flatten (n — l)-spheres in En when 
n > 3. As a corollary it follows that ^-boundaries in E3 are locally tame 
wherever they are locally 2-manifolds. More recently, 1-dimensional 
subsets of E3 were proven locally tame when they can be realized as £-
boundaries. 

On the other hand there are some interesting questions in this area that 
are not yet answered. 

1. Is there a Rattle Theorem for n > 3 ? 
2. Are ^-boundaries in En(n > 3) locally flat from one side wherever 

they are locally known to be manifolds? 
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3. For n > 3 do uniform double tangent balls tame subsets other than 
(n - l)-manifolds? Wright [29] has proven that a compactum X in En 

is tamely embedded if each point of X can be touched by the tip of a 
cone from En — A'and if X has dimension n — 3 or less. 

4. Is there a wild 2-sphere in E3 that is touched at each point from its 
interior by the vertex of a cone from a family of congruent cones with 
cone angles 120°? What is the greatest lower bound of the cone angles in 
such examples? 

REFERENCES 

I. R. H. Bing, A surface is tame if its complement is Ì-ULC, Trans. Amer. Math. 
Soc. 101 (1961), 294-305. 

2. -, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145— 
192. 

3. 9 Spheres in E\ Amer. Math. Monthly 71 (1964), 354-364. 
4. 9 Additional questions on 3-manifolds, Topology Seminar (Wisconsin, 1965), 

Ann. of Math. Studies, no. 69, Princeton Univ. Press, Princeton, N. J., 1966, 81-82. 
5. H. G. Bothe, Differenzierbare Flachen sind zahm, Math. Nachr. 43 (1970), 161-180. 
6. M. Brown, Sets of constant distance from a planar set, Michigan Math. J. 19 (1972), 

321-323. 
7. C. E. Burgess, Characterizations of tame surfaces in E3, Trans, Amer. Math. Soc. 

114 (1965), 80-97. 
8. f Spheres with a continuous family of tangent planes in: R. Daniel Mauldin, 

ed., Mathematics from the Scottish Cafe (Birkhauser, Boston, Basel, Stuttgart, 1982), 
78-83. 

9. and L. D. Loveland, Wild double tangent ball embeddings of spheres in En, 
Topology Appi. 15 (1983), 231-237. 

10. J. W. Cannon, *-taming sets for crumpled cubes. I. Basic properties, Trans. Amer. 
Math. Soc. 161 (1971), 429-440. 

II. 1 *-taming sets for crumpled cubes. II. Horizontal sections in closed sets, 
Trans. Amer. Math. Soc. 161 (1971), 441-446. 

12. , ULC properties in neighborhoods of embedded surfaces and curves in E3, 
Can. J. Math. 25 (1973), 31-73. 

13. H. M. S. Coxeter, Introduction to Geometry (New York and London, John Wiley 
and Sons, Inc., 1961). 

14. R. J. Daverman, Sewings of closed n-cell complements, manuscript. 
15. and L. D. Loveland, Wildness and flatness of codimension one spheres hav­

ing double tangent balls, Rocky Mountain J. Math 11 (1981), 113-121. 
16. 1 Any 2-sphere in E3 with uniform interior tangent balls is flat, Can. J. Math. 

33(1981), 150-167, 
17. S. Ferry, When e-boundaries are manifolds, Fund. Math. 90 (1976), 199-210. 
18. M. K. Fort, Jr., A wild sphere which can be pierced at each point by a straight line 

segment, Proc. Amer. Math Soc. 14 (1963), 994-995. 
19. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, 

Ann. of Math. (2) 49 (1948), 970-990. 
20. H. G. Griffith, Spheres uniformly wedged between balls are tame in E3, Amer. 

Math. Monthly 75 (1968), 767. 
21. L. D. Loveland, A surface is tame if it has round tangent balls, Trans. Amer. Math. 

Soc. 152 (1970), 389-397. 



150 L. D. LOVELAND 

22. , Unions of cells with applications to visibility, Pro. Amer. Math. Soc. 
78 (1980), 580-584. 

23. , Double tangent bail embeddings of curves in E3, Pacific J. Math. 104 (1983), 
391-399. 

24. , Spheres with continuous tangent planes, Rocky Mountain J. Math., 
to appear. 

25. , Boundary sets in E3 that locally lie on flat spheres, Mich. Math. J. 33 
(1986), 37-46. 

26. , Generalizing the Rattle Theorem, Topology Appi., to appear. 
27. and D. G. Wright, Codimension one spheres in Rn with double tangent 

balls, Topology Appi. 23 (1982), 311-320. 
28. L. R. Weill, A new characterization of tame 2-spheres in E3, Trans. Amer. Math. 

Soc 190 (1974), 243-252. 
29. David G. Wright, Geometric taming of compacta in En, Proc. Amer. Math. Soc. 

86 (1982), 641-645. 

UTAH STATE UNIVERSITY LOGAN, UTAH 84322 


