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TILING, PACKING, AND COVERING BY CLUSTERS 

SHERMAN STEIN 

The theory of packing, covering, and tiling by translates of a convex 
set or by a star body grew mainly out of Minkowski's work in the geome­
try of numbers. More recently, Bambah, Davenport, Mahler, Mordell, 
Rogers, and others have pursued questions in this area for their intrinsic 
geometric interest. (See Gruber's survey [16] for a review of the results 
and open problems.) Sometimes a star body which is of no particular 
intrinsic interest is ingeniously constructed to provide an example con­
firming or refuting a conjecture. One of the objectives of this survey is 
to present a family of star bodies which in the past twenty years have been 
the object of varied investigations on their own right, have suggested new 
geometric, algebraic, and combinatorial questions and provided a rich 
and convenient source of examples. 

These star bodies are the cross and semicross. For a nonnegative real 
number k and a positive integer n, the (k, /z)-cross in Euclidean «-space, 

(l,2)-semicross (2,3)-cross 
FIGURE 1 
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Rw, consists of a unit cube together with In arms of length k attached at 
each of the In facets. (Its volume is 2kn + 1.) The (k, «)-semicross is 
formed similarly ; it consists of a unit cube together with n arms of length 
k attached at non-opposite facets. In R3 it forms a tripod. Figure 1 shows 
the (1, 2)-semicross and the (2, 3)-cross. 

Because of their simplicity, especially when k is an integer, the cross 
and semicross are accessible by various approaches. The following three 
theorems illustrate some of the significant results already obtained. (The 
terms "tiles", "lattice", "packing", and "covering" are defined in §1.) 

1. The (4, I0)-cross tiles R10 but not in a lattice manner. 

This is the first star body with this property found in any dimension. 
See [44] and the review by Bambah [2]. Later, Szabó in [51] showed that 
the (3/2, 5)-cross has the same property. 

2. Translates of the (2, 2)-cross cover the plane less densely than does any 
lattice family of its translates. 

It is easy to construct a non-lattice covering of the plane by translates 
of the (2,2)-cross with density 9/8. (Loomis in [28] showed that the covering 
constant of the (2, 2)-cross is in fact 9/8.) However, Rooney [40] has shown 
that any lattice covering by translates of the (2, 2)-cross has density at 
least 9/7. This example may be contrasted with the star body constructed 
in [3], which has the same property but is much more complicated. 

3. When k is large, arbitrary translates of the (k, 3)-semicross pack R3 

much more densely than does any lattice-family of translates. 

More precisely, 

I« lattice packing density of (k, 3)-semicross _ 0 

*->oo packing density of (/c, 3)-semicross 

(The corresponding limit for the (k, 3)-cross is 1.) This contrasts with the 
theorem of Rogers [38] which asserts that, for a plane convex body, the 
lattice-packing density equals the packing density. It will be compared in 
§IV to an example of Davenport and Rogers [7], as interpreted by Groe-
mer [15], which concerns the relation of a star body to lattices and to 
general point sets. 

These three results suggest that in questions about star bodies the cross 
and semicross should be kept well in mind. 

This survey is devoted mainly to known results due to Everett, Galovich, 
Hamaker, Hickerson, Loomis, Newman, Stein, and Szabó. It also in­
cludes some unpublished work of Hickerson and some questions and 
results that suggest lines of further investigation. Some of these questions 
might be quite easy, but some, such as 1-3, we expect will offer a substantial 
challenge. 
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We begin with a discussion of objects called "clusters", which are 
unions of a finite number of cubes from the standard lattice of cubes, 
and then, as the outline indicates, consider the cross and semicross, which 
are special clusters and which motivate the remaining sections. §11 is 
geometric and §111, §1V, and §V are algebraic. 
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I. Clusters. We begin with a few definitions, present some theorems 
about families of clusters, and conclude with a discussion of what is known 
about clusters in R1, the real line. 

A. Definitions. Let Z denote the set of integers as well as the ring and 
additive group of integers. Let n be a positive integer. With each element 
(xi, x2, . . . , xn) e Zn associate a unit cube in Rn with edges parallel to the 
coordinate axes, namely the cube, {(j^, y2, . . . , yn)\yt-eR, xt- ^ yt- ^ 
xt: + 1}. The cube is therefore recorded by its vertex with smallest co­
ordinates. If the x{ are integers, it is called a standard cube. A cluster K 
is the finite union of some of these cubes. 

Let A be a discrete set of points in Rn, that is, a set without limit points. 
For convenience we will also speak of the points in A as vectors. For 
v G A, let v + K = {v + x\x e K}, which is called a translate of K by the 
vector v. If the union of the sets v 4- K, for v e A, is Rw, we say that the 
family of translates covers Rn. Note that the coordinates of the vectors 
v need not be integers. 

Let int K denote the interior of K. Let A again be a discrete set of 
vectors. If, for any pair of distinct elements v and v' in A, (v + int K) f| 
(V + int K) = 0 , then the family of translates {v + K\v e A} is called a 



280 S. STEIN 

packing of Rn. A family of translates that is both a covering and a pack­
ing is called a tiling of Rw. If there is such a family, K is said to tile Rw. 

Observe that we are considering only translates of K. For this reason 
we will not include recent work, such as that of Barnes [5, 6], which permits 
more general motions. 

The density of a discrete set A is defined as follows. For a positive real 
number s, let Q(s) be the cube {(xx, x2, . . . , xn) | | xt | ^ s}9 which has 
volume (2s)n. Let I(s) be the number of elements of A that lie in Q(s). If 

exists, it is called the density of A. If AT is a cluster with volume v(K) and 
A has density d, the family of translates {v + K\v e A] is said to have 
density dv{K). In the case of a packing this can be thought of as the frac­
tion of space occupied by the translates. In the case of a covering this 
quantity is at least 1 and records the average number of times a typical 
point in space is covered by translates of AT. 

The packing constant of K, denoted d(K), is defined as the supremum 
of the densities of all packings by K that have densities. ("Packing by AT" 
is short for "packing by translates of K".) It is not hard to show that there 
is a packing by K which has the density ò(K). The covering constant of 
K, denoted d(K), is defined as the infimum of the densities of all coverings 
by K that have densities. There is a covering with density 6{K). 

It follows by a technique introduced in [29] that if K consists of k cubes, 
then d(K) g 1 + 1/2 + • • • + 1/A:, hence is at most 1 + log k. (See also 
[33], [46], [21], [22].) This estimate is asymptotically the best possible 
result, as shown in [33]. 

Let vl5 v2,. . . , v„ be n linearly independent vectors in Rn. The set 

A = {xiVi + x2v2 + • • • + xnvn\x{ e Z} 

is called a lattice. A set S ç Rn is a lattice if and only if it is a discrete 
subgroup of Rn and does not lie in any (n — l)-dimensional plane. The 
vectors vl5 v2, . . . , vn are the edges of a fundamental parallelepiped of 
A with volume equal to |det(vl5 v2, . . . , vw)|. This volume, which is posi­
tive, is the same for all choices of bases for the lattice and is called the 
determinant of the lattice, denoted det(yj). The cube Q(s) mentioned 
earlier contains, when s is large, approximately (2s)n/det(A) points of A. 
In other words, the density of A is the same as the reciprocal of its deter­
minant. Thus the density of a family of translates of AT by yd is 

volume of K 
det(/l) * 

In case the family of translates of K by A is a packing we call it a lattice 
packing. Similarly, we speak of a lattice covering and a lattice tiling. 
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Minkowski noticed that a lattice packing by K can be described in 
quite a different manner. Assume that the family {v + K\ve A} forms a 
packing. Then if 

n + h = v2 4- k2, vh v2 e A, kv, k2 e int K, 
we have 

Vi = v2 and ^ = k2. 

Thus vx - v2 = fc2 - &! implies that vt - v2 = 0. Introduce the difference 
body of the interior of AT, (denoted "int K"), 

int tf - int K = {A:2 - kx\k2, k\ e int £} 

(If K is convex and centrally symmetric, K - K = 2AT, which is homo-
thetic to K. This is not the case when K is just a star body.) Thus the 
translates of K by the lattice A form a packing if and only if the intersec­
tion of A with int K — int K consists only of the origin. Such a lattice is 
called an admissible lattice for int K — int K. The problem of determining 
how dense a lattice packing by K can be is equivalent, therefore, to deter­
mining how small the determinant of an admissible lattice of int K — 
int K can be. 

The notion of an admissible lattice generalizes to sets that are not neces­
sarily difference bodies. If S is a star body containing the origin in its 
interior, a lattice A is admissible for S if the origin is the only point of 
A that lies in the interior of S. Since A is centrally symmetric, it is no 
loss of generality to assume that S is as well. (Otherwise, replace S by 
5 U ( - S ) . For a set X in R", - X is {- x\x e X}.) The minimal determi­
nant of admissible lattices for S is called the critical number of S. 

The notion of an admissible lattice generalizes to that of an admissible 
set. A set C is admissible for the star body S containing the origin in its 
interior if, for each e e C, the interior of the translate c + S contains no 
other element of C than c. In particular, it is easy to show that a set C is 
admissible for a difference body K — K if and only if the family of trans­
lates of K by C is a packing. 

Packing families can be looked at another way. Again, let S be a star 
body. Assume that the family (v + 5.|v e C} is a packing. Then the inte­
rior of any translate of 5, x 4- S, contains at most one member of — C. 
For if x + Si = -c*! and x + s2 = —c2, it follows that c2 + s2 = cx + Si, 
and therefore ci = c2. The converse holds. Let C be a set such that each 
translate of int K contains at most one element of - C Assume that 
(c\ + int S) fi (c2 + int S) ^ 0 . Then there are si, s2 e int S and cl5 c2 e C 
such that cx 4- ^ = c2 + s2 or cx = c2 + s2 — S\. The translate of int S 
by c2 — si contains both c\ and c2, in violation of the assumption on C. 

Covering families can also be described in terms of "blocking sets". A 
set B in Rn is a blocking set for the set K if every translate of K contains 
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at least one element of B. It is easy to check that this is equivalent to the 
assertion that the set of translates of — K by B is a covering. How sparse 
a blocking set K can have determines how sparsely translates of K can 
cover. 

For a cluster K the lattice-packing constant öA(K) and the lattice-cover­
ing constant dA(K) are defined as follows. 

The lattice-packing constant is 

Ä (v\ c n n volume of K 
8ÀK) = SUP d e l ^ * 

for all lattices A such that translates of Kby A form a packing. The lattice-
covering constant is 

* volume of K 
6A{K) = inf-! 

detyl 

for all lattices A such that the translates of K by A form a covering. It is 
known that, for each compact star body K, the bounds òA(K) and dA(K) 
are assumed by some lattices. 

In [58] vonWolff constructed a star body in R2 for which its densest 
admissible set is denser than its densest admissible lattice. Groemer [15] 
observed that a construction of Davenport and Rogers [7], made for 
another purpose, can be used to answer a more demanding question. 
For each positive integer m is there a star body S(m) such that 

,y j x density of densest admissible point set for S(m) 1 
density of densest admissible lattice for S(m) m 

The rather complicated example to show that the answer is "yes" is 
constructed in R2. A much simpler example, in R3, can be based on the 
(k, 3)-semicross. Let sk be the (£, 3)-semicross and Kk its difference body, 
sk — sk. Kk is composed of six rectangular parallelepipeds (of sides 2 by 
k + 1 by k + 1) that intersect in a cube of width 2, as shown in Figure 
1-1. It was shown in [47] that 

l i m # ^ L = 0. 
*^03 Ö(Sk) 

Hence, Kk, for k suitably large, will serve as an S(m) in (1-1). 
Up to this point the coordinates of the translating vectors have been 

any real numbers. We will consider cases where all these coordinates are 
rational or all are integers. If they are all rational, we will speak of a 
Q-packing, Q-covering, or Q-tiling. If, furthermore, the vectors form a 
lattice, we will speak of a Q-lattice packing, etc. In case they are integers, 
we will speak of a Z-packing, or Z-lattice packing, and so on. 
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A 
7 

Difference body of semicross, sk — sk 

FIGURE 1-1 

A set of translating vectors may exhibit a periodicity without necessarily 
forming a lattice. Let A be a lattice and let hi, h2,..., hr be a finite number 
of vectors in Rn such that ht- + A and hj + ./I are disjoint if / ^ 7. The 
union of the sets, hi + A, h2 + A, . . . 9 hr + A is called a periodic set. 
(It has also been called a "lattice with a base" by Zassenhaus [59] and 
others. See also [45, p. 455].) Rogers [39, p. 25] used the same term, "peri­
odic", but restricted A to be a lattice generated by the special vectors 
(s, 0, . . . , 0), (0, s, . . . , 0), . . . , (0, . . . , 0, s), for some positive real 
number s. 

Consider a family of translates of K that pack with density d(K). Let 
£ be a positive number. Select a large cube Q(s) such that the set of trans­
lates of K that lie in that cube pack at least 5(K) — e times the volume of 
cube. From this fact it follows readily that there is a periodic packing by 
KWxth density at least d(K) — e. This implies that the supremum of pack­
ing densities by translates of K by periodic families is equal to 5{K). It is 
no surprise that the constructions of packings that are denser than any 
lattice packing use periodic packings. 

Multiple packings, multiple coverings, or multiple tilings can also be 
defined. However, the only cluster for which any of these have been ex­
amined is the unit cube. Multiple tilings by the cube were studied by 
Hajós [17], Robinson [37], and Szabó [52] in a series of papers growing 
out of the affirmative answer to a conjecture of Minkowski; i.e., in a 
lattice tiling of Rn by a unit cube, some two of the translates share a 
complete n — 1 dimensional facet. (Hence the tiling is a union of infinite 
tubes.) 
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We shall not consider multiple tilings, except to observe that, for a 
cluster that consists of k units cubes, there is a k-îo\d tiling, consisting of 
all the translates by vectors with integer coordinates. 

We restrict our attention to translates of a single cluster. It turns out 
that the problem of determining whether translates of a finite set of clus­
ters tile the plane is recursively unsolvable. (See [1] or [36] for instance.) 
Whether this is true for the family of congruent copies of a single cluster 
is not known. 

B. The shift theorem. Hajós [17], in his work on lattice tiling by cubes, 
replaced a lattice tiling by a Q-lattice tiling. This reduction works for 
clusters as well, and we will sketch the argument behind it. 

THEOREM 1-1. If there is a lattice tiling by the cluster K, then there is a 
Q-lattice tiling by K. 

The reasoning goes as follows. Consider a coordinate axis, say the 
first, JCI, for which not all of the vectors in the lattice A have a rational 
entry. On A introduce the equivalence relation v ~ v' if the first coordinate 
of v — v' is rational. Let W be the equivalence class containing the origin, 
that is, the elements of A with rational first coordinate. W is a discrete 
subgroup of A. Observe that the union, B, of the family {w 4- K\w e W) 
is a cylinder with the x raxis as generator. 

Let v 1̂,vv2,. . . , wr be a basis for W in the sense that each element in W 
is a unique linear combination zxwi + z2vv2 + • • • + zrwr, z,- e Z. Extend 
H>X, w2, . . . , wr to a basis for A. This is possible, since any element v of A 
that lies in the vector space spanned by w1? w2, . . . , wr is already in W. 
(Otherwise, since the ^-coordinate of v is irrational, the elements v, 2v, 
3v, . . . are incongruent modulo W. Each is equivalent to a unique element 
in the fundamental parallelepiped determined by wl5 w2, . . . , wr, and 
these elements are distinct from each other. This contradicts the assump­
tion that the set A has no limit points.) 

Let wu vv2, . . . , Hv, Hv+i, . . . , wn, be this new basis of A. The first 
coordinate of wr+x is irrational. Let er+i be the vector (0, . . . 0, 1 ,0 . . . , 
0), 0's everywhere except at the (r + l)st coordinate. Let wr

r+1 = 
wr + ter+1, where t is any real number chosen to make the (r + l)st coor­
dinate of w'r+l rational. Let A' be the lattice with basis wl5 . . . , wr, w'r+1, 
wr+2, . . . , wn. Because the translates of K by W form a prism parallel to 
x\ axis, it follows that the translates of K by A' still form a tiling. 

This procedure may be repeated step by step with the remaining vectors 
wr+2, . . . , wn to produce a basis for a lattice A" in which all vectors have 
a rational jq-coordinate and translates of K by A" tile. 

Beginning with this lattice, treat the .^-coordinate in the same manner, 
then the jc3-coordinate, and so on, finally producing a lattice with only 
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rational coordinates and such that translates of K by vectors in this lattice 
still tile. This completes the argument. 

It is not the case that a cluster that Q-lattice tiles necessarily Z-lattice 
tiles. As Hickerson pointed out in [23], the cluster consisting of two squares 
in the plane, separated horizontally by one square, Q-lattice tiles the plane 
by the lattice with basis (1, 1/2) and (4, 0) buts does not Z-lattice tile the 
plane. 

However, Everett and Hickerson in [8] showed that, for some purposes, 
there is no loss of generality in assuming that the translation vectors of a 
cluster have only integer coordinates. Their shift theorem asserts that if 
you move each cube in each cluster of a packing slightly to coincide with 
a standard cube, the new set of translates still forms a packing. The shift 
amounts to the «-dimensional analog of "rounding down to the nearest 
integer". In the following statement of the shift theorem, [_x] denotes the 
greatest integer less than or equal to x. 

THEOREM 1-2. (The Shift Theorem). Let K be a cluster and A be a dis­
crete set of vectors in Rn. For each vector v = (xi, x2, . . . , xn) e A let 

v* = (L*iJ, L*2j, • • •, L*»J)- Let A* = (v*lv 6 -**}• Then> if the family of 
translates of K by A is a packing {covering, tiling), the family of translates 
of K by A* is also a packing (covering, tiling). In the case of packings the 
shift is one-to-one, and if A has a density, so does A* and the two densities 
are equal. 

However, the shift does not preserve the notion of a lattice. That is, 
the shift of a lattice is not necessarily a lattice. In fact, it almost never is. 
We can see this in two ways. First, let A be a lattice in Rw with non-integral 
determinant. Recall that the number of elements of A in a large cube is 
asymptotic to the quotient, Volume of cube/det A. If the shift of A, A*, 
were a lattice, then det A* would be an integer, hence not equal to det A. 
But the number of elements of A* in a large cube would be asymptotic 
to the number of elements of A in a large cube, since the shift moves no 
point more than the fixed distance -y/TT. 

Second, let A be a lattice in RM which has only the origin in the cube 
0 ^ X,- ^ 2, 1 ^ i g n. Assume that there is a point P = (al5 a2, . . . , an) 
e A with positive coordinates not all of which are integers. The shift of 
P is (L^iJ» La2_l> • • • , [ßn]) a n d the /th coordinate of the shift of - P is 
- \ßi] - 1 if atr ^ Z and - [/̂ -J if #»• e Z. If tne shift, A*, were a lattice, 
then -(shift of P + shift of — P) would be in A*. Thus A* would contain 
a point of the form (e\, £2» • • • > £»)* where each et- is 0 or 1, but not all 
$i are 0. Hence A would have a point other than the origin in the cube of 
width 2 described above. Thus A* is not a lattice. 

Observe that the shift is one-to-one if and only if the lattice A intersects 
the cube 0 <; xt < 1,1 ^ / <; n, only at the origin. 
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QUESTION 1-1. What is the necessary and sufficient condition that the 
shift of a lattice is a lattice? Assume that the shift is one-to-one. 

The shift of a rational lattice is clearly a periodic set. 

QUESTION 1-2. When is the shift of a lattice that is not rational a periodic 
set? Assume that the shift is one-to-one. 

QUESTION 1-3. Are the packing and covering constants of a cluster 
rational? 

QUESTION 1-4. Are the lattice-packing and lattice-covering constants 
of a cluster rational? Is there an algorithm for determining these con­
stants? 

QUESTION 1-5. Is there, for every cluster, a periodic packing (covering, 
tiling) with a density equal to its densest packing (covering, tiling)? 

QUESTION 1-6. For which clusters does the densest Z-lattice (Q-lattice) 
packing give the densest lattice packing? The densest packing? 

QUESTION 1-7. For which clusters does the sparsest Z-lattice (Q-lattice) 
covering give the sparsest lattice covering? The sparsest covering? 

C. Clusters in the line. The problem of covering R1 by translates of a 
finite cluster was considered by Newman [37]. By the shift theorem, this 
problem is equivalent to covering R1 by integer translates of the cluster, 
hence, to covering Z by the translates of a finite set K ç Z. (The notions 
of covering, packing, or tiling Zn by translates of a subset of Zw are de­
fined much like their analogs in Euclidean space. However, the condition, 
"disjoint interiors", which appears in geometric packings, is now replaced 
simply by "disjoint".) 

It is easy to show that any set K ^ Z with one or two elements tiles Z. 
Newman showed that any set K with three elements has a covering density 
of at most 6/5, with the covering density of K = {0, 1, 3} being 6/5. 
Moreover, letting c(r) denote the least upper bound of the covering density 
of K, for all sets K ç Z with r elements, Newman proved that c(r) ~ log r. 
As mentioned earlier, this result holds in all dimensions. He conjectured 
that c(4) = 4/3. Weinstein [57] showed that it is at most 4/3 + 8/303. In 
[56] he investigated coverings in groups. 

Newman, in [34], turned to the problem of determining which finite 
sets of integers, K, tile Z by translates. He solved this problem completely 
when \K\ is a power of a prime, obtaining the following result. 

THEOREM 1-3. Let K = {ai, a2, . . . , ar} be a set of r distinct integers, 
where r = pa is a prime power. For 1 ^ / < j ^ n, let e{j denote the highest 
power of p that divides a{ — aj. Then K tiles Z by translates if and only if 
there are at most a distinct e^. 



TILING, PACKING, COVERING 287 

If r is prime, this theorem says that the a{ are all congruent modulo pe 

and incongruent modulo pe+1 for some non-negative integer e. (The suf­
ficiency of this condition is not hard to establish.) 

QUESTION 1-8. When does a set of six integers {#!, a2, a$, a±, a5, a$} tile 
Z? 

In case K has three elements, we may normalize them to be 0, a, and 
b, with a and b relatively prime. The theorem then asserts that K = {0, 
a, b) tiles Z if and only if the elements 0, a, and b are incongruent modulo 
3. Newman remarked, "Surely this special case deserves to have a com­
pletely trivial proof-but we have not been able to find one". We include 
this recent elementary proof, which is due to Dean Hickerson. 

The proof makes use of the following fact. Let A and S be subsets of 
Z x Z. Assume that every translate of —A contains exactly one member 
of S. Then A tiles Z x Z by translates by elements of S. (Similar results 
for clusters are discussed in §I-A.) 

Assume that the set of translates of {0, a, b} by the vectors in the set 
C ç Z tile Z. Without loss of generality, we assume that 0 e C. Let 
S £ Z x Z be the set of ordered pairs (x, y), such that x and y are in­
tegers and xa + yb e C. Let AT* be the three ordered pairs, (0, 0), (1, 0), 
and (0, 1). (Think of AT* as the analog in Z x Z of a (1, 2)-semicross.) 

We assert that K* tiles Z x Z, with S as the set of translation vectors. 
To show this, consider ( x j ) e Z x Z and the representation of xa + yb 

as an element of c + K, e e C. Exactly one of the numbers xa 4- yb, 
(x — \)a + yb, and xa 4- (y — \)b is in C. In other words, exactly one 
of the points (x, y)9 (x - \,y), and (x, y — 1) is in S. Thus, K* tiles Z x Z 
by translates of the elements in S. 

Note that (0, 0) e S. A sketch shows that S = {(x, y)\x = y(mod 3)). 
Since (b, — a)eS, b = —tf(mod 3). Thus, since a and b are relatively 
prime they are, in some order, congruent to 1 and 2 modulo 3. Thus 0, 
a, and b are incongruent modulo 3. This completes Hickerson's "com­
pletely trivial" proof. 

Incidentally, this argument shows that C consists of the multiples of 3. 
We are not aware of any work on packings of Z by translates of finite 

sets of integers. However, it was shown in [42] and [14] that, for any set 
K of three integers, Z is the union of disjoint congruent copies of K, that 
is, of translations of K and of its reflection, — K. This implies that trans­
lates of K (or perhaps of —K) pack Z with density at least 1/2. (The pack­
ing constructed is periodic, hence the density exists.) But —K packs Z 
just as densely as K does. Consequently, any set of three integers packs 
Z with density at least 1/2. Hickerson has shown that any three integers 
pack with density at least 3/4. (Note that {1, 2, 4} packs with density 
3/4.) 
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The proof of the next theorem illustrates a method for determining the 
packing density of a finite set of integers. 

THEOREM 1-4. For any positive integer a, the packing constant of K = 
{0,ö, 2a 4- \}is3a/(3a + 1). 

PROOF. The translates of K by the integers congruent to 0, 1, 2, . . . , or 
a — l(mod 3a 4- 1) form a packing of Z with density 3a/(3a 4- 1). We 
will show that no packing by K can have density larger than 3aj{3a 4- 1). 

The union of the translates of K in a packing with density larger than 
3a/(3a 4- 1) must contain some set of 3a 4- 1 consecutive integers. All 
that remains is to show that the union of a disjoint family of translates 
of K cannot contain 3a 4- 1 consecutive integers. 

Let A £ Z be a set such that the family {v + {0, a, 2a 4- l}|v e A} is 
pairwise disjoint and contains 3a 4- 1 consecutive integers, which, without 
loss of generality, may be assumed to be 1, 2, . . . , 3a 4- 1. 

Imagine an empty cell above each of these 3a 4- 1 integers on the real 
line. Place in the cell at integer / one of the three numbers 0, a, 2a 4- 1, 
according as / = v 4- 0, V + A, or v 4- 2a 4- 1 for some v e A, respec­
tively. 

For 1 ^ / ^ 3a, if there is an a at cell j , then cell / 4- 1 can contain 
neither 0 nor 2a 4- 1, hence must contain a. Consequently, the cells oc­
cupied by a form a single unbroken interval which stretches from the left­
most cell occupied by an a all the way to cell 3a 4- 1. Since none of the 
three symbols 0, a, 2a 4- 1 can occur in more than a consecutive cells, the 
interval occupied by a's has at most a cells, and these are among the cells 
at 2a 4- 2, 2a + 3 , . . . , 3a 4- 1. 

If, for 1 ^ i ^ 2a 4- 1, there is a 0 at cell /, then there is an a at cell 
i 4- a, hence ir ^ a 4- 2. So, for 1 g i ^ a + 1, cell / can contain neither 
0 nor a; it must contain 2a 4- 1, contradicting the fact that a given symbol 
cannot appear in a 4- 1 consecutive cells. This concludes the proof. 

Weinstein [57] investigated the packing density of a set of k integers 
for large k. On the one hand, he showed constructively that the packing 
constant for any set of k integers is at least 2/k. To obtain sets with small 
packing constants, he considered a set A that is a "basis for subtraction" 
of the set (0, 1, . . . , n). The set A of nonnegative integers is a basis for 
subtraction for {0, 1, . . . , « } if A — A ^ {0, 1, . . . , n}. If A has k ele­
ments, then the packing density of A is clearly at most k\(n 4- 1), since no 
two translating vectors of a packing family can differ by an element in 
A — A. With the aid of this tool, he constructed, for large k, sets of k 
integers whose packing density is at most 8/(3/:). 

In [12] Gilpin and Shelton considered the density of admissible sets for 
a finite set D. 
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QUESTION 1-9. What can be said about the packing constant for any set 
of four integers? 

II. The cross and semicross. The rest of this survey is devoted to ques­
tions raised by two particular clusters, the cross and the semicross. For 
convenience we will assume that the arms of the semicross correspond to 
the positive axes. Occasionally we will consider arms of non-integral 
length (when the cross or semicross is not a cluster), but generally the arm 
length k will be assumed to be an integer. Because of their connection with 
coding theory, the fact that they are star bodies, and their amenability to 
algebraic and combinatorial analysis, they have received a good deal of 
attention. This section discusses their geometry, while §111 concerns their 
algebra. 

A. The cross. The (A:, l)-cross, being an interval of length 2k + 1, lattice 
tiles the line, R1. However, even the (k, 2)-cross raises interesting problems. 

For integral k the (&, 2)-cross tiles the plane only when k = 0 or 1. (If 
we allow non-integral k, we find that the (1/2, 2)-cross also tiles R2.) 
Everett and Hickerson [8] showed that, for every real number k ^ 1, 
the packing constant of the (/:, 2)-cross is (4k + l)/(k2 + 2k 4- 2) and a 
best packing is provided by the lattice with basis vectors (k + 1, 1) and 
( - 1 , k + 1). For 0 < k < 1/2 and 1/2 < k < 1, the packing constant 
of the (k, 2)-cross is not known. 

The covering constant of the (A:, 2)-cross is far more difficult to deter­
mine. In [8] it is conjectured that, for positive integral k, it is (4k + 1)/ 
(3k 4- 2). This bound is suggested by the fact that the cluster formed of 
the union of the (A:, 2)-crosses with center squares at (0,0), (1, 1), (2 ,2) , . . . , 
(k - 1, k - 1) has area k(3k 4- 2) and tiles the plane. (For k > 1 this is 
a periodic but not lattice covering.) Loomis [8] verified this conjecture 
for the (2, 2)-cross, whose covering constant is 9/8. The proof begins by 
using the shift theorem to make the problem discrete, and then develops 
an extensive combinatorial argument that depends on a weighting of the 
ways squares covered by more than one cross are contributed by the 
crosses. Rooney [40] has shown that the lattice covering constant of the 
(2, 2)-cross is 9/7. 

The covering constant of the (k, 2)-cross has also been examined for 
non-integer values of k. Hickerson has shown that it is 21/20 for the 
(1/3, 2)-cross, and conjectures that the covering constant of the (k, 2)-
cross, for 0 g k ^ 2, is given by these formulas : 

4k + [ 0 g k g 1/2 
(k + 1) (2k + 1) ' 

4k 4- 1 
2(k + \y 

1/2 é k ^ (^/T - l)/2 



290 S. STEIN 

^ 3 F T T ' ( V T - D / 2 É * E l . 

4k + 1 
2k + 3 

1 <k < ^ 1 7 - 1 

2(4£ + 1) V17 - 1 < ^ < 1 

k2 + 5Jfc 4- 2 ' 2 

QUESTION II-1. What is the covering constant of the (/:, 2)-cross? 

Stein [43] showed for integer k that if the (k, «)-cross tiles Rn, then the 
(/:, 2/i)-semicross tiles R2M. 

Using finite fields, Stein [44] constructed a tiling of R10 by the (4, 10)-
cross (with notches and bumps added) and showed that there is no lattice 
tiling by this set. This is the first example of a star body that tiles, but not 
as a lattice. Using a slightly different algebraic approach, Szabó [51] 
proved that the notched (3/2, 5)-cross has the same property. In both 
cases, the notches are added to force the crosses to fit together along com­
plete facets of the individual cubes. It is not clear that the notches are 
necessary. It may be that, for integer values of k, if a (k, «)-cross lattice 
tiles, then it Z-lattice tiles. In any case, by Hajós's theorem in §I-B, if a 
cross (or any cluster) lattice tiles, it Q-lattice tiles. 

Szabó [52], [53] explored Q-lattice tilings by crosses, proving the fol­
lowing theorem. 

THEOREM II-l. Ifk is an integer and the (k, n)-cross Z-lattice tiles Rn, and 
iflkn 4- 1 is composite and each of its prime divisors is larger than k, then: 

(a) there is a Q-lattice tiling of Rn by the (k, n)-cross, which is not a Z-
tiling; and 

(b) there is a Z-tiling by the (k, n)-cross that is not a lattice tiling. 

The proof of (b) in [52] and [53], which is independent of that of (a), 
makes use of Hajós's fundamental theorem on the factorization of abelian 
groups by sets that are "front ends" of cyclic subgroups. However, (b) 
follows from (a) by applying the shift theorem, described in §I-B, to the 
lattice A produced in (a). Because of the special form of A it can be shown 
that the shift of A is not a lattice. 

The question, "For which k and n does the (k, «)-cross tile Rw?", is far 
from being answered. We might suspect that, for n ^ 2, the (/:, «)-cross 
cannot tile Rn when k is too large. Confirming this suspicion, Stein [43] 
showed that, for n > 2, if the (k, «)-cross tiles Rn, then k ^ 2(n — 1). 
This bound is probably not the strongest possible. For n = 2 the actual 
bound is 1 and for n = 3 the bound is 2. No example is known for which 
k exceeds n — 1. For an odd prime /?, the ((/? — l)/2, p + l)-cross tiles 
Rfi+l, as was shown in [19]. This suggests that perhaps, for all« ^ 4, if a 
(k, A?)-cross tiles Rw, then k < n/2. 
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QUESTION II-2. For a given n ^ 2, if the (k, w)-cross tiles Rw, how large 
can k be? 

QUESTION II-3. For which k and « does the (k, «)-cross tile Rw? Z-lattice 
tile R"? Q-lattice tile R«? 

Algebraic methods for constructing Z-lattice tilings of Rw by the (&, «)-
cross will be discussed in §V. 

While almost nothing is known about the covering constant of the 
cross for dimensions n ^ 3, its packing constant has been determined, at 
least asymptotically for large k. Stein [47] obtained the following theo­
rem. 

THEOREM II-2. Let 5 (k, ri) be the packing constant and ôjjk, ri) be the 
lattice-packing constant of the (k,ri)-cro ss. Then, for n ^ 2, 

lim k2ö(k, ri) = 1 and lim k2 ôA(k, ri) = 1. 
£- •00 &-+00 

The algebraic argument behind the second limit is discussed in §V. 

QUESTION II-4. What can be said about the Z-lattice, Q-lattice, and 
arbitrary packing constants of the (k, ri)-cross for n ^ 3 ? 

QUESTION II-5. What are the Z-lattice and lattice-covering constants of 
the (/:, w)-cross, n ^ 21 What is the covering constant? 

B. The semicross. The semicross is fundamentally different from the 
cross in several respects. First, because of the greater symmetry of a cross, 
C, tiling by translates of C is the same as tiling by congruent copies of C. 
Second, the (/:, 2)-semicross tiles R2 for all real k, but only for k = 0, 1/2, 
and 1 does the (fc, 2)-cross tile R2. A more dramatic contrast is found in the 
way the semicross and cross pack R3. Stein [47] showed that the lattice-
packing constant of the (A:, 3)-semicross is at most 8(3/: + l)//:3/2, while 
its packing constant is at least (3k + \)jklAU for large k. These two facts 
show that 

™ d*(k9 3) U' 

where d* (k, ri) is the lattice-packing constant and <?*(&, ri) is the packing 
constant of the (k, «)-semicross. By Theorem II-2, the corresponding limit 
for (/:, 3)-crosses is 1. 

The problem of determining the packing density of the (k, 3)-semicross 
was first considered by Hamaker and Stein in [20]. It is intimately con­
nected with the following combinatorial design. 

Consider a square array of k2 cells. Place in some of these cells one of 
the integers J, 2, . . . , k in such a way that the following three conditions 
are satisfied: 
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(a) For two filled-in cells in a row, the one further right has a larger 
entry; 

(b) For two filled-in cells in a column, the higher one has a larger entry ; 
and 

(c) For two filled-in cells with the same entry, the cell further right is 
higher (the "positive slope" condition). 

Such an array is called a monotonie matrix of order k. 
A monotonie matrix of order k records the locations of corners of a set 

of disjoint translates of a (k, 3)-semicross. The entry z at the cell where 
column x meets row y records the presence of the corner (x, y, z). The more 
entries there are in a monotonie matrix of order k, the more disjoint trans­
lates of the (/r, 3)-semicross can be placed with their corners in a cube of 
width k. 

Let m(k) be the largest number of filled-in cells in all k by k monotonie 
matrices. It is not hard to show that m(\) = 1, m(2) = 2, m(3) = 5, and 
m(4) = 8. Computer searches by Ken Joy and by Peter Constantinidis 
showed that w(5) = 11 and suggest that m(6) = 14. (There were many 
cases of 14 found, and none of 15.) Table II-1 lists m(k) for small values 
of k\ numbers in parentheses are lower bounds. 

k\ \ 2 3 4 5 6 7 8 9 10 
m(k)\ 1 2 5 8 11 (14) (19) (22) (28) (32) 

TABLE II-1 

The only monotonie matrices of order 3 with 5 entries are the one shown 
in Figure II-1 

Ì 2 3 

I l ' 
| 1 3 

FIGURE II-1 

and its transpose. When k is a square, it is easy to construct a monotonie 
matrix with k3/2 entries, as illustrated in Figure II-2 in the case k = 9. 

3 
3 

3 
2 

2 
2 

1 
1 

1 

6 
6 

6 
5 

5 
5 

4 
4 

4 

9 
9 

9 
8 

8 
8 

7 
7 

7 
FIGURE II-2 
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With the aid of the following lemma, which rests on the existence of the 
monotonie matrix of Figure II-1, we can construct monotonie matrices 
of order k for which m(k) > k3/2. 

LEMMA II-1. For each positive integer k, m(2k + 1) ^ 2m(k) + 3k. 

PROOF. Partition a 2k 4- 1 by 2k + 1 array into nine regions by two 
vertical lines and two horizontal lines, resulting in four corner k by k 
squares, four 1 by k rectangles and a 1 by 1 square in the center, as shown 
in Figure II-3. 

E 

A C 

B 

D 

|t——k f-1-4 k *l 
FIGURE 11-3 

Label five of those nine regions A, B, C, D, and E, as shown in Fi cure 
II-3. In square A9 form a monotonie matrix of order k with m(k) entries, 
using the numbers 1, 2, . . . , / : . In square B, using the numbers k + 2, 
k + 3,. . . , 2k + 1, form a monotonie matrix of order k with m(k) entries. 
In the main diagonal of E place the number k + 1, k times. In C place the 
numbers k •+• 2, k 4- 3, . . . , 2k + 1 and in D, the numbers 1 , 2 , . . . , 
k. The resulting matrix is monotonie, and shows that m(2k + 1) è 
2m(k) + 3k. 

5 
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1 

5 

4 
2 

5 

3 
1 

5 

4 
2 
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8 
6 
1 

9 
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2 

8 
6 

3 

9 
7 

4 
4 

2 

T 

14 
4| 

1 

13 
U 

3| 

7 
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5 
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5 
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7 
2 

7 

3 

FIGURE 11-4 
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The matrices of orders 7 and 9 shown in Figure II-4 are constructed with 
the aid of the lemma. Thus m(l) ^ 19 = 71-513 and m(?) ^ 28 = 91-5!?. 

QUESTION II-6. Is ra(8) ^ 23, as table II-1 may suggest? 

The function m has the following properties: (i) m(k) ^ k2, (ii) 
m(k 4- 1) > m(k); and (iii) m(kik2) ^ m(&i) ra(&2)- The first two are imme­
diate, while the third is established in [20]. It follows from these three 
properties that if m(k) is written as ke(k\ then lim^oo e(k) exists and is 
at most 2. This limit equals sup {e(k)} and lies in the interval [log9 28, 2]. 
(Hickerson has shown that m(255) ^ 4639, so lim^oo e(k) ^ 1.523.) 

QUESTION II-7. What is lim^«, <?(&)? 

If it turns out that limÄ_>oo e(k) < 2, then lim^oo m(k)/k2 = 0. As shown 
in [20], this equation is equivalent to the assertion that the density of 
packings of R3 by the (k, 3)-semicross approaches 0 as k approaches 
infinity. However, not even the following question has been answered. 

QUESTION II-8. Is l im*^ m(k)/k2 = 0? 

We are tempted to conjecture on the basis of admittedly skimpy data 
that 

(IM) m(k) ~ i i kl—7X' 
1 + T + ' " + k 

or, equivalently, m{k) ~ k2/\og k. Table II-2 compares m(k) and, to two 
decimals, k2/(l/l + 1/2 + • • • 4- l/k), for k = 1, 2, . . ., 9. 

k m(k) *2/(-f + -1 4- • • • + \ 

1 

2.67 

4.91 

7.68 

10.95 

14.69 

18.90 

23.55 

28.63 

34.14 

2 

3 

4 

5 

6 

7 

8 

9 

0 

2 

5 

8 

11 

è 14 

^ 19 

^ 22 (23?) 

^ 28 

è 32 
TABLE HI-2 
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If it turns out that m(k) ~ A:2/log k, then it follows that lim^oo e(k) = 2 
and lim^oo m{k)\k2 = 0. 

QUESTION II-9. Is formula (II-2) correct? 

HI. Multiplier sets. Figure III-1 shows that the (1, 2)-cross Z-lattice 
tiles R2 by means of the translating vectors {(*, y)\x + 2y = 0(mod 5)}. 

(0,0) 

FIGURE Ill-l 

The reflection of this tiling in the line y = x produces the only other tiling 
of the plane by the (I, 2)-cross up to translation. Similarly, the (1, 3)-
cross tiles R3 with {(*, y, z)\x + ly + 3x == 0(mod 7)} as translation 
vectors, and the (2, 3)-cross tiles R3 by means of {(*, y, z)\x + 3y + 4z = 
0(mod 13)). These Z-lattice tilings depend on certain properties of the 
cyclic groups C(5), C(7), and C(13), respectively. The first reduces to the 
fact that the four numbers 1, - 1 , 2 , - 2, constitute the nonzero elements of 
C(5). The second corresponds to the fact that 1, - 1 , 2 , - 2 , 3, - 3 are 
the six nonzero elements of C(7) and the third to the fact that each non­
zero element of C(13) can be expressed uniquely in the form ab, where 
ae{± 1, ± 2} and b e [1, 3, 4}. These examples illustrate the following 
algebraic means of producing Z-lattice tilings. 

Let G be a finite abelian group of order m. Let k and n be positive 
integers such that 2kn + \ = m. Assume that there are n elements in 
O, {gi, g2, • • ., gn}> s u c h t n a t t n e 2kn elements ± igh 1 è i è k, 1 ^ 
/ g n, are distinct from each other and distinct from OeG. In other 
words, each nonzero element in G is uniquely expressible in the form 
± igj, 1 S i Û k, 1 ^ j g n. Then the (k, «)-cross Z-lattice tiles Rn. As 
the set of translating vectors, A, use the set of all integer points (xh x2, 
. . ., xn) such that 



296 S. STEIN 

xigi + x2g2 + • • • + xngn = 0, 

the identity element of G. Note that the quotient group Zn/A is isomor­
phic to G. 

The converse also holds. Starting from a Z-lattice tiling of Rn by 
translates of the (k, tf)-cross by vectors in a lattice A, we may construct 
a finite abelian group G, namely Zn/A, and the set {gl9 g2, . . ., gn} ^ G 
as the images of the n unit vectors (1, 0, . . ., 0), (0, 1, . . ., 0), . . ., (0, . . ., 
0, 1) under the natural homomorphism from Zn to ZnjA. (See [18] or 
[45].) 

A similar result holds for the (k, tf)-semicross. In this case the group 
G has order kn + 1 and the kn elements igj, 1 <̂  i? ^ k, 1 ^ j ^ n, are 
distinct from each other and from 0. This is equivalent to the assertion 
that the (k, «)-semicross Z-lattice tiles Rn. These two basic facts motivate 
the rest of this survey. 

First we make some general definitions. 
Let M be a finite set of nonzero integers, called a multiplier set, and 

let G be a finite abelian group. Assume that there is a set S in G such 
that each nonzero element in G has a unique representation in the form 
ms, m e M, s e S, and that 0 has no such representation. Then we say that 
M splits G and that S is a splitting set. 

If (in, \G\) = 1 for each m e M, the splitting is called nonsingular. 
Otherwise it is called singular. If each prime that divides \G\ divides at 
least one m e M, then the splitting is called purely singular. 

If G is the cyclic group C(n), split by M with splitting set S, then we 
may identify M with a subset of C(n). Each element of C(n) — {0) is 
uniquely expressible as a product ms, m e M, s e S, where the product is 
taken in the multiplicative structure of the ring Zn. In particular, when 
« is a prime, C{n) — {0} is a cyclic group of order n — 1, denoted C(«)*. 
The splitting of C(n) is then equivalent to a factoring of the group C(n)* 
(A factoring of a group G consists of two subsets A and B such that each 
element of G is uniquely expressible in the form ab, a e A, b e B. Such a 
factoring is denoted G = A o B. More generally, if X, A, and B are 
subsets of G such that each element of X e G is uniquely representable 
in the form ab, a e A, b e B, and each product ab is in X, then we write 
X = A o B.) For a survey of the work of Sands and deBruijn on factoring 
groups, see [45]. 

A. Splittings of finite abelian groups. Splitting behaves nicely with respect 
to exact sequences, as the following theorems show. 

Theorem III-l. [23]. Let H be a subgroup of the finite abelian group G. 
Then if M splits G and GjH, it splits H. 

The proof shows that if S is a splitting set of G, then S fi H is a splitting 
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set of H. Actually, Hickerson proved this in the case of a normal sub­
group of the not necessarily abelian group G, after extending the definition 
of splitting to nonabelian groups in the expected way. The assumption that 
G is finite is essential, as this example of Hickerson's shows. 

Let G be the additive group of rational numbers modulo 1 and let H 
be the subgroup consisting of the elements 0 and 1/2. Let M = (2). Then 
M splits G by the splitting set S = {g\g e G, 0 < g < 1/2}, hence splits 
Gl H, which is isomorphic to G, but does not split H since 1/2 is not of the 
form 2x, x e H. 

COROLLARY III-1. ([GSt]) Let H be a subgroup of the finite abelian 
group G. Then if M splits G and H, it splits G/H. 

This follows from Theorem III-l by use of the functor Hom( , ß/[l]), 
where Q/[l] is the additive group of Q modulo 1. From the exact sequence 
of finite abelian groups, 

0 -> / / -> G -> G/H -+ 0, 

we obtain the exact sequence 

0 «- Hom(//, Q/[\]) <- Hom(G, Q/[\]) <- Hom(G/#, Q/[\]) «- 0. 

Since Hom(A, Q/[\]) is isomorphic to A for any finite abelian group A, 
the corollary follows. However, this argument does not show how to 
construct the splitting set in G/H. 

The next few theorems enable us to construct splittings of a group from 
splittings of smaller groups. 

THEOREM III-2. [19] Let G be a finite abelian group and 

a ß 

0-+A-+G-+B-+0 

an exact sequence. If M splits the groups A and B, with the splitting of A 
nonsingular, then M splits G. 

The proof is constructive. Let a\, a2, . . ., ar be a splitting set in A and 
b\, b2, . . ., bs be a splitting set in B. Select gx, g2, . . ., gs in G such that 
ß(St) = °h 1 = i è s. Then it can be checked that the set 

{a(fli), a(a2), . . -, a(ar)} (J (a(A) + {gu g2, . . ., gs}) 

is a splitting set for G. (For subsets X and Y in an abelian group, X + Y 
denotes the set {x + y | x e X, y e Y}.) It follows from Theorem III-2 
that if p is a prime and M splits C(p), then M splits any abelian group of 
order p». In the next theorem, which is obtained from Theorem III-2 by 
use of Hom( , ß/[l]), the splitting set whose existence is asserted is not 
constructed. 
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THEOREM 111-3. [19] Let G be a finite abelian group and 
a ß 

an exact sequence. If M splits A and B, with the splitting of B nonsingular, 
then M splits G. 

The restriction "nonsingular" in these two theorems cannot be re­
moved. For instance, M = {1, 2, 3} splits C(4) but not C(16), and there is 
an exact sequence, 0 -> C(4) -• C(16) -• C(4) -* 0. 

Next, consider the case when M splits G. 

THEOREM III-4. [(19] Let G be a finite abelian group and 
a ß 

0_> A-+ G -+ B-+0 
an exact sequence. If M splits G and if (m, \B\) = 1, for each me M, 
then M splits A {hence B). If M splits G and if (m, \A\) = 1, for each 
me M, then M splits B (hence A). 

The first part is proved constructively by showing that the subset of the 
splitting set for G that lies in A is a splitting set for A. The second part is 
then obtained by duality. 

The assumption that (m, \B\) = 1 is necessary, as the example M = 
{1, 2, 3}, G = C(4) and A = B = C(2) shows. 

With the aid of these theorems we can determine, for instance, all finite 
abelian groups G that are split by M = {1, 2). First, write G as the direct 
product of its Sylow subgroups, 

G = Sy(Pl)xSy(p2) x . . . x Sy(pr), 

where pÌ9 p2, . . ., pr are the prime divisors of \G\. Since \G\ is odd, each 
element of M is relatively prime to the orders of these Sylow subgroups. 
By the preceding theorems, M splits G if and only if M splits each Sy(pj). 
Next, write each Sy(pi) as the direct product of cyclic subgroups. The 
theorems show that M splits Sy(pt) if and only if M splits each of these 
cyclic subgroups. But the existence of the exact sequence 0 -* C(p) -* 
C(pn) -* C(/?n_1) -+ 0, for any prime /?, together with the theorems, shows 
that M splits C(pn) if and only if M splits C(p). It is then an easy matter 
to show that M splits C(p) if and only if the order of 2 modulo p is even. 
So the question "Which finite abelian groups does M = {1, 2} split?" 
is equivalent to the question "For which odd primes p is the order of 2 
modulo p even?" The order is even when p = 3 or 5(mod 8), odd when 
p = 7(mod 8), but either odd or even when p = l(mod 8). 

The case M = {1,2} was simplified by the fact that all splittings by M 
are nonsingular. For M = {1, 2, 3} the result is more complicated, since 
there are singular splittings, such as the splitting of C(4). In [10] it is 
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shown that M = {1, 2, 3} splits the finite abelian group if and only if (a) 
the 2-sylow subgroup of G is either {1} or C(4) and (b) M splits C(p) for 
each odd prime divisor/? of \G\. The argument uses the following result 
of Hickerson [23], which generalizes a theorem in [10]. 

THEOREM III-5. Let p be a prime. If M splits the finite abelian p-group 
G singularly, then G is cyclic. 

The case M = {1, 2, 3, 4} was also settled in [10]: M = {1, 2, 3, 4} 
splits the finite abelian group G if and only if (a) the 3-sylow subgroup of 
G is either C(l) or C(9), and (b) M splits C(p) for each prime divisor/? of 
\G\ other than 3. 

In [23] this was generalized to any set M with four elements and an 
incomplete result for any set M of five elements was obtained. Sy(2) x 
Sy(3) must be of the form C(2a) x C(2b) x C(3C), where c = a + b(mod 
4). For the particular case when M is (1, 2, 3, 4, 5} it was shown that 
M splits the finite abelian group G if and only if Sy(2) x Sy(3) is C(6) 
or C(l) and M splits C(/?), for all prime divisors p of \G\, p ^ 7. 

The next theorem treats the case M = {1, 2, 3, 4, 5, 6}. 

THEOREM III-6. M — {1, 2, 3, 4, 5, 6) sp/zto the finite abelian group G if 
and only if\G\isnota multiple of 5 and M splits C(p)for each prime divisor 
P of \G\. 

PROOF. Since \G\ = l(mod 6), all elements of M other than 5 are re­
latively prime to \G\. Write G as the product of its Sylow subgroups, 

G = Sy(5) x Sy(Pl) x . . . x Sy(pr\ 

where the p{ are the primes that divide \G\ but no element of M. By the 
preceding theorems, M splits G if and only if M splits each of these 
Sylow subgroups. M splits Sy(pt) if and only if it splits C(pt). 

Consider the form of Sy(5), which, for the moment, we will assume has 
more than one element. Since the splitting of Sy(5) is singular, Sy(5) is 
cyclic, of the form C(5n). Furthermore, since 5n = l(mod 6), n is even. 
We shall determine which cyclic groups of the form C(5n), n even, are 
split by M. 

Consider C(5n) to be comprised of the integers 0, 1, 2, . . ., 5" — 1. 
Assume that n ^ 4. Let dh / = 0 or 1, be the number of elements in 
C(5n) divisible by 5< but not by 5<+1. Note that d{ = 5W~* - S»-*-1. Let si9 

i = 0 or 1, be the number of elements in the alleged splitting set that are 
divisible by 5'' but not by 5,,+1. Then d0 = 5^0 and d\ = ^0 + 5^. Thus 
5» - 5*-1 = 5^ and 5*-1 - 5n~2 = s0 + 5^. Hence s0 = 5"-1 - 5n~2 

and sx = 0. Thus the number of elements in the splitting set that are 
multiples of 52 is (5* - l)/6 - (5*-1 - 5«"2), which equals (5»~2 - l)/6. 
Let Tbe this subset of the splitting set. Since \T\ = (5W~2 - l)/6, M splits 
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the subgroup of C(5n) that consists of the multiples of 25; consequently 
it splits C(5n'2). By descent, M splits C(25). But, as some short calculations 
show, M does not split C(25). Thus Sy(5) is the group of order 1. This 
proves the theorem and incidentally shows that each splitting of a finite 
abelian group by M = (1, 2, 3, 4, 5, 6} is nonsingular. 

As these arguments illustrate, if the finite abelian group G is split 
by the multiplier set M, then G can be expressed as a direct product A x 
B, where \B\ is relatively prime to each m e M and each prime that divides 
\A\ divides at least one me M. Moreover, M splits B nonsingularly and 
splits A purely singularly. Nonsingular splittings are determined by the 
prime divisors p of \B\ for which M splits C(p). Purely singular splittings 
do not have such a reduction. The first results on purely singular splittings 
appeared in [10] and concerned finite abelian p groups and C(pn) in 
particular. 

The following theorem appears in [23]. 

THEOREM II1-7. Let M split the finite abelian group G in a purely singular 
manner. Then (a) \M\ ^ 3; (b) If \M\ = 3, then G = C(4r) for some 
r ^ 0; and (c) If \M\ = 4, then G = C(9). 

As shown in [10] and [23], C(4r) has a splitting with M = {1, - 1 , 2} 
and S = {n | 0 < n < 4r/2, 2 appears an even number of times in the 
prime factorization of n). 

QUESTION III-1. What are the purely singular splittings of C(2n)l Of 
C(pn) for odd primes pi 

For other results in this direction see [10], [23], and [54]. 
A set of integers M may split no finite abelian group. Such a set must 

have at least three elements, as shown in [18]. Furthermore, Hamaker 
showed that M = (1, 3, 27} splits no finite abelian group. On the other 
hand, as shown by Hickerson in [23], it does split an infinite abelian 
group, namely the group of rationals with denominators a power of 3 
under addition modulo 1. Hamaker's result was generalized in [10]: For 
any integer c ^ 2, the set (1, c, c3} does not split any finite abelian group. 
This is a special case of the following theorem. 

THEOREM III-8. M = (1, a, b} splits some finite abelian group other than 
C(\) if and only if one of these two conditions holds: 

(1) a and b are not both integral powers of an integer c. 
(2) a and b are both integral powers of an integer c, a = cs, b = cl and 

s't' = 2(mod 3), where s = ds\ t — dt' and d = (s, t). 

QUESTION III-2. Which multiplier sets split some finite abelian group 
of order greater than 1 ? Some infinite abelian group? Which M split 
infinitely many finite abelian groups purely singularly? 
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In reference to the last question, M = {1, —1, 2} does, but sets of 
cardinality 1, 2, or 4 do not. Neither does {1, 2, 3}, {1, 2, 3, 4, 5}, nor 
{1, 2, 3, 4, 5, 6}, as already shown. Hickerson has shown that (1, 2, 3, 4, 
5, 6, 7, 8} does not as well; this is a consequence of the fact that {1, 2, 3, 
4, 5, 6, 7, 8} splits a finite abelian group G if and only if Sy(3) is C(l) or 
C(9), Sy(5) = C(l), S>(7) = C(l), and (1, 2, 3, 4, 5, 6, 7, 8} splits C(p) 
for each prime divisor/? of |(7|, /? ^ 11. He has obtained similar results 
for many other such multiplier sets. 

B. Splittings of infinite abelian groups. The question, "Which finite sets 
of positive integers, M, split Z?", was considered in [11], where a com­
plete solution was obtained. The key lies in this lemma. 

LEMMA III-l. Let M be a finite set of positive integers that splits Z. 
Let x be the smallest element of M that is larger than 1. Let y e M not be 
relatively prime to x. Then x divides y. 

They then characterize all such M with this theorem. 

THEOREM II1-9. A set M of positive integers split Z if and only if there 
are subsets M\, M2, . . ., Mr of M such that 

(i) M = Mi o M2 °* • • ° Mr; 
(ii) \M{\ = Pi is prime, 

and 
(iii) Mi = {1, xi9 x% . . ., xft*1}, where xt- is an integer greater than 

1 and, for 2 ^ i' <> r, 

Xi = Zi f] Xf^\ 

with üij, z{e.Z, a{j §: 0, zt-g: 1, gcd(z/-, fl}=i xj) ~ 1> and an = 0 if 
Xj divides xkJ for some A:, j < k < r. 

In addition, it was shown in [11] that if M splits Z, then it splits any 
torsion-free infinite abelian group. 

Splittings of the additive group of rationals, Q, by a finite set of positive 
integers, M, were also considered in [11]. Observe that M may be con­
sidered a subset of Q and that M factors Q*, the multiplicative group of 
positive rational numbers. 

Let G be the subgroup of Q* generated by the positive primes that 
divide at least one element of M. Letting pl9 p2, . . . , /?„ be these primes, 
we see that G is the free abelian group generated multiplicatively by 
{^b />2> • • •> Pn}- Let <p: Zn -» G be the isomorphism given by 

(P(ZU . . . , Zn) = p?-..p*nn. 

Then M = {mx, m2, . . ., mk} factors Q* if and only if the cluster cor­
responding to <p~l{mi), <p~l(m2), • • -, <P~H^k) Utes Z*. Thus, the three 
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questions: "Which finite sets of positive integers split the additive group 
Ô?"; "Which finite sets of positive integers factor the multiplicative 
group ß*?"; and "Which clusters tile Euclidean space?" are equivalent. 
The particular primes that appear in the prime factorization of the ele­
ments of M are irrelevant. In particular, for any distinct primes p and 
/?', M = {1, /?, /?'} splits Q but not Z. 

If M does not split Z, we then may ask how densely does it pack Z and 
how sparsely does it cover Z. 

QUESTION III-3. Let a and b be distinct positive integers greater than 
1. Let M = {1, Û, b}. How dense a packing set S ^ Z can always be 
found? 

QUESTION III-4. To what extent do results on splitting finite abelian 
groups generalize to infinite abelian groups? To non-abelian groups? 

QUESTION III-5. If a multiplier set splits some finite abelian group 
does it split some cyclic group? Some group of prime order? An infinite 
number of groups of prime order? 

IV. The multiplier set {1, 2, . . . , A:}. Because of their close connection 
with tilings by the semicross and cross, the particular sets {1, 2, . . ., k} 
and {± 1, ±2, . . ., ±k} have been the multiplier sets most thoroughly 
studied. Let S(k) = {1 ,2 , . . . , / : } ("5"' for "Semicross") and let F(k) = 
{±1 , ±2, . . ., ±k} ("F" for "Full cross"). Trivially, S(k) splits C(k + 1) 
and C(2k 4- 1) and F(k) splits C(2k + 1). It is not known whether for 
every k, they split some other group, though the evidence gathered so 
far indicates that they do. We first consider S(k). 

A. Splittings by S(k) = {7, 2, . . ., k). In §111 we already examined 
which groups are split by S{k) for k = 2, 3, 4, 5, 6, 8. If k + 1 is prime, 
k + 1 =/?, then S(k) splits any finite p-group since it splits C(p). Similarly, 
if 2/c -h 1 is prime, 2k + 1 = p, then S(k) splits any finite p-group. For 
instance, S(6) splits C(7) and C(13) and therefore any finite abelian group 
of order lal3b. Similar reasoning shows that S(k), k = 8, 9, 10, 11, and 
12, splits a group of prime order, hence an infinite number of groups. 

QUESTION IV-1. We showed earlier that, for k = 2, 3, 4, 6, and 8, if 
S(k) splits C(r) x G for a finite abelian group G, then S(k) splits C(r). 
Is this true for any other values of kl 

QUESTION IV-2. If S(k) splits C(r) x G, where G is an abelian group, 
must k and r be relatively prime? (If G is finite, the answer is yes since 
k divides r\G\ — 1.) The same question may be asked for any multiplier 
set with k elements. 

In the first work on splittings [43], Stein considered only splittings 
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of cyclic groups. Though it was not known at the time, cyclic groups are in 
a sense the easiest groups to split, as the following theorem of Hickerson 
[23] shows. It provides an affirmative answer to a question of Raphael 
Robinson. 

THEOREM IV-1. If S{k) or F{k) splits the finite abelian group G, then 
it splits the cyclic group of the same order as G, C(\G\). 

This theorem is not true for all multiplier sets. For example, as shown 
in [23], {±1 , ±2 , ± 3 , ±5 , 7} splits C(2) x C(2) x C(7) but not C(28). 
Theorem IV-1 is a consequence of this more general result in [23]. 

THEOREM IV-2. Let M be a finite set of nonzero integers such that, for 
all primes p, the number of elements in M divisible by p is either 0 or at 
least \M\/p2. Then if M splits the finite abelian group G, it splits C(|G|). 

QUESTION IV-3. Which multiplier sets M have the property that if they 
split the finite abelian group G they split C(\G\)1 

Since S(p — 1) splits any /?-group when p is a prime, it is natural to 
consider a related question for S(n — 1) for any positive integer n. After 
all, S(n — 1) splits C(n). It turns out that for composite n analogous 
splittings are quite rare, as the following theorem, proved in [10], shows. 

THEOREM IV-3. Let G = C(nai) x • • • x C(nar), where r ^ 2 and a{ ^ 
1 or else r = 1 and ax ^ 2. If S(n — 1) splits G, then n is prime. 

In other words, if n is not prime and S(n — 1) splits a group G of the 
form described in the theorem, then G — C(n). 

Hamaker [18] showed that if S(k) splits an abelian group of order 
m > 2/c + 1, then k2 ^ 2(ra — 1). This is equivalent to the assertion that 
in a Z-lattice tiling of Rn by the (k, ft)-semicross, n ^ 3, we have k ^ In. 
Recently, Stein [48] reduced Into n — 2, which is best possible. 

For a prime /?, S(p - 1) splits C(p2) with a splitting set of p + 1 ele­
ments. This means that the (p — 1, p 4- l)-semicross Z-lattice tiles RP+1. 

These algebraic results and a related result from coding theory suggest 
the following geometric question. 

QUESTION IV-4. If the (k, «)-semicross tiles Rw, n ^ 3, is k ^ n - 2? 

As we saw earlier, the determination of nonsingular splittings by S(k) 
depends on which cyclic groups of prime order, C(/?), are split by S(k). 
In such a splitting we may assume without loss of generality that S(k) is 
a subset of C(p) and that the splitting set contains 1. We have a factoring 
of C(/?)*, 

C(p)* = {l,29...,k}oS. 

Recall that C(/?)* is a cyclic group of order/? - 1. We might hope that S 
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is a subgroup of C(/?)* and that the elements 1, 2, . . . , / : are its coset 
representatives. This need not be. For instance, 5(2) splits C(17) with 
splitting set (1, 4, 42, 43} o {1, 3} but not by the set {1, 9, 92, . . ., 97}, 
which is the only subgroup of order 8. However, in certain circumstances 
we can assume that the splitting set is a group, as the following theorem 
of Sands [41] shows. 

THEOREM IV-4. Let G be a finite abelian group of order qm where q 
is a prime power and (q, m) = 1. Then if A has q elements and factors G, 
there is a subgroup B ^ G such that A ° B = G. 

For instance, if 5(4) splits C(/?), where p = 5(mod 8) is prime, the 
hypotheses are satisfied: 4 is a prime power and G has order of the form 
Sx + 4 = 4(2JC + 1 ) ; and (4, 2x + 1) = 1. As another example, if 
5(5) splits C(/?), where p = 6, 11, 16, or 21 (mod 25) is prime, the condition 
is met. This covers four out of five cases since if 5(5) splits C(p), we 
already have p = l(mod 5); hence, p = 1, 6, 11, 16, or 21(mod 25). 
Only the case p = l(mod 25) is not covered. In this case, since p is odd, 
we have p = l(mod 50). In any event Theorem IV-4 indicates that we may 
not lose much by restricting our search for splittings to the case where the 
splitting set is a subgroup of the multiplicative group C(p)*. 

QUESTION IV-5. For the multiplier set 5(5), what do the splittings of 
C(p) for p = l(mod 50) look like? 

Assume that S(k) splits C(p) with the splitting set B, a subgroup of 
C(p)*. Then there is an onto homomorphism 

h: C(p)*-* C(k) ( ^ C(p)*IB\ 

and this homomorphism, when restricted to S(k), is a bijection from 
S(k) to C(k). (Think of C(p)* as being written multiplicatively and C(k) 
additively.) Conversely, if there is a homomorphism h: C(p)* -> C(k) 
which is one-to-one on S(k), then S(k) splits C(p), 

C(p)* = S(k) o kernel h. 

It turns out, as described in [43] and [10], that a theorem of Kummer and 
Mills from analytic number theory enables us to construct such homo-
morphisms if we can construct a function resembling a logarithm, from 
S(k) to C{k). This type of function is described in the following definition. 

DEFINITION. Let k be a positive integer. A one-to-one function / : 
S(k) -+ C(k) is a ^-logarithm if, for 1 ^ x, y, xy ^ Kf(xy) = f(x) + f{y). 

Observe that a ^-logarithm is determined by its values on the primes 
in the interval [1, k]. A computer search by Hickerson showed that, for 
k ^ 172, there is a ^-logarithm. In addition, for any k such that k + 1 is 
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prime, there is a ^-logarithm, namely the ordinary index. Also as shown 
in [10], if 2k + 1 is prime, then there is a /c-logarithm. 

QUESTION IV-6. IS there always a fc-logarithm for each positive integer 
kl 

The ability to extend a ^-logarithm to a homomorphism h: C(p)* -» 
C(/c) for some prime p depends on the following result, proved in [31]. 

THEOREM IV-5. (KUMMER (k prime) and MILLS (k composite), PRESCRIB­
ING HOMOMORPHISMS.) Let pi, p2, . • -, Pr be distinct prime positive 
integers. Let bx, b2i . . ., br be elements of C(k), the additive group of 
integers modulo k. Then there are an infinite number of primes p and onto 
homomorphisms 

h: C(p)* - C(k) 

such that h{pt) = b{, i = 1, 2, . . ., r if and only if one of the following cases 
holds : 

(1) k is odd; 
(2) k = 2m, m odd, for each p( = 1 (4) where pt-\m, b{ is even, and for 

all Pi = 3 (4) such that p^m, all the b'{s have the same parity. 
(3) k = 4m, and for each p{ that divides m, bt- is even. 
Moreover, if there is one such prime p, there is an infinite number of such 

primes. 

This theorem directs our attention to a special type of ^-logarithm. 

DEFINITION. Let k be a positive integer. A ^-logarithm that meets the 
hypotheses of Theorem IV-5 for all the primes in the interval [1, k] is a 
ATM-Ä>logarithm, or ATM-logarithm for short. 

For odd k, a ATM-logarithm is just a ^-logarithm. 

Take k = 32 as an example which fits into case (3) of the Kummer-
Mills theorem. We will show that there are an infinite number of primes 
p such that S(32) splits C(p). First we construct a ATM-logarithm for 
k = 32. Keeping in mind that it is determined by its values at the primes 
^ 32, we obtain the following table. Note that/(2) is even, as condition 
(3) requires. (There is a slight error in this example as given in [10].) Assign 
/ a t the primes as shown here. 

2 

2 

3 

9 

5 

12 

7 

26 

11 

5 

13 

17 

17 

31 

19 

22 

23 

25 

29 

29 

31 

1 

This determines fon S(32) as shown below. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 2 9 4 12 11 26 6 18 14 5 13 17 28 21 8 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

31 20 22 16 3 7 25 15 24 19 27 30 29 23 1 10 

(Note that since the primes 17, 19, 23, 29, 31 do not occur as products xy 
nor as factors of xy ^ 32, the values off at these numbers are free to be 
assigned after defining/at the primes ^ 16, which is half of 32. That 
there are primes between k/2 and k encourages us to think that there are 
^-logarithms. These primes are like jokers in a game of cards and intro­
duce some leeway in defining/.) 

By the Kummer-Mills theorem there are an infinite number of primes 
p = l(mod 32) and homomorphisms h\C(p)* -> C(32) that extend the 
above assignment. Since such an h is necessarily one-to-one on 5(32), 
5(32) splits C(p). 

The Kummer-Mills theorem, together with the fact that S(k) splits 
C(k + 1) with splitting set {1} and splits C(2k + 1) with splitting set 
(1, — 1}, show that if k + 1 or 2k + 1 is prime, then S(k) splits an infinite 
number of groups of prime orders. 

Information about splittings by S(k) can in turn provide information 
about the Kummer-Mills theorem. 

THEOREM IV-6. Assume that, for the integer k, there is a KM-logarithm. 
Then the smallest prime p > 2k + 1 for which there is a homomorphism 
h:C(p)* -> C(k) that extends that logarithm is greater than (k + l)2. 

PROOF. Let p be a prime greater than 2k 4- 1 for which there is such 
an extension h. By [48] the splitting set has at least k + 2 elements. Thus 
p — 1 è k(k + 2), and the theorem follows. 

B. Packings by S(k). The problem of finding Z-lattice tilings of Rn by 
the (k, /?)-semicross led us to consider splittings of finite abelian groups 
by the multiplier set S(k). Finding Z-lattice packings of Rw by the (k, n)-
semicross is equivalent to finding n elements, gÌ9 g2,.. . , gn, in some finite 
abelian group G such that the kn elements igj9 1 ^ i ^ k, 1 ^ j ^ n, 
are distinct from each other and distinct from 0. We say that the elements 
£i> #2> • • • ,gn form a packing set for S(k) in G and that S(k) has an n-
packing in G. As with tilings, the corresponding Z-lattice packing of Rw 

is formed by using as translation vectors the integer vectors (jq, x2,. . . ,xn) 
such that 

*i£i + x2g2 4- • • • + xngn = 0 e G. 
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The density of this packing is (kn 4- I)/a, where a is the order of the sub­
group of G generated by the set {gÌ9 g2, . . . , gn). Since we are looking for 
dense packings, we will assume that G is generated by {gÌ9 g2, . . . , gn}. 
The density of the packing is therefore 

kn + 1 
\G\ ' 

The problem of finding dense Z-lattice packings of RM by the (A:, ^-semi-
cross reduces to finding, for given positive integers k and «, the smallest 
abelian group G in which there is an «-packing of S(k). Call that minimal 
order g(k, «). Trivially, g(k, 1) = k + 1 and g(k, 2) = 2k + 1. The exact 
value of g(k, «), « ^ 3, is not known, though the asymptotic behavior of 
g(k, «) for fixed « è 3 and k large is known and will be described below. 
Affirmative answers to the next two questions would simplify the search 
for dense packings of S(k) in groups. 

QUESTION IV-7. If S(k) «-packs a finite abelian group G does it «-pack 
C(|G|)? 

As mentioned earlier, the answer is yes if the packing is a splitting. 

QUESTION IV-8. If S(k) «-packs a cyclic group C(m) is there an «-packing 
of C(m) in which the packing set contains 1 ? This may be asked for any 
multiplier set. 

(The notion of packing extends in the obvious way to any multiplier 
set.) 

The first work on packings appears in [47], which is concerned with 
the multiplier sets F(k) and S(k). We will discuss packings by S(k) first 
and packings by F(k) in the next section. 

By the remarks on p.298, for a prime p, S(p — 1) (p + l)-packs 
C(p2). Thus, for any prime p, S(p — 1) 3-packs C(p2). Since the ratio 
between consecutive primespn+i/pn, approaches 1 as « -> oo, we conclude 
that, for any e > 0, S(k) 3-packs a group C(m) where m < (1 + e)k2. 
The same conclusion holds for «-packings, « = 4, 5, 6, . . . . However, 
a much stronger result holds, as will now be described. 

For « = 3, which corresponds to packing semicrosses in R3, the fol­
lowing theorem was obtained in [47]. 

THEOREM IV-7. For « = 3, 

The proof consists of two parts. First it is shown that if S(k) 3-packs 
a finite abelian group G, then |G| ^ (k 4- l)3. The argument uses the 
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pigeon-hole principle and can yield the slightly stronger result, k3 + 
3k2 + k ^ (\G\ — l)2. Second, it is shown that, for any positive integer 
b, S(b2 - b) 3-packs C(b3 + 1). 

The packing set constructed for the 3-packing just mentioned is 
{1, —b, ( — b)2}. Since (-b)3 = 1 in C(b3 + 1), the packing set is a sub­
group of the multiplicative structure of the ring Z(b3 + 1). 

This particular method of construction also gives some information in 
the case of 4-packings and 6-packings. It can be shown that, for a positive 
odd integer b, S((b2 - l)/2) 4-packs C((b + 1) (b2 + l)/2). From this it 
follows that 

IETAÌU2. 
*̂ oc k3 

The packing set is the subgroup (1, —b, ( — b)2, ( — Z?)3}, with ( — ò)4 = 1 
since (b + 1) (Z?2 -f- l)/2 divides bA — 1. Similarly, we can show that, for 
6 = l(mod 6), S((b2 + b - 2)/3) 6-packs C((Z>2 + è + 1)(* + l)/3) 
with packing set (1, -b, (-b)2, (-Z>)3, ( -6) 4 , (-Z>)5}. Hence, 

In this approach, a packing set in the form of a subgroup is formed. The 
method rests on the fact that the polynomials x3 — 1, x4 — 1, and x6 — 1 
have cubic factors with certain properties. Both k and the order of the 
group, m, are expressible as polynomials in b with rational coefficients, 
m as a cubic and k as a quadratic. The limit of m2/k3 for n = 3, 4, and 
6 is 1,2, and 3 respectively. This approach does not generalize to other 
orders, and for good reason. It turns out, as shown in [23], that 

l i m g ^ ) _ = 4 c o s 2 Ä 

*-*oo k6 n 

which is rational only when n — 3, 4, or 6. For example, when n = 5, the 
limit is (3 + VT)/2. 

Nevertheless, this technique can be used to construct specific very 
tight packings. For instance, we will show that S(5) 6-packs C(35) with 
packing set {1, - 4 , ( -4) 2 , ( -4) 3 , ( -4) 4 , ( -4) 5 }. To begin, note that 

46 - 1 = (4 - 1) (42 + 4 + 1) ( 4 J J ) (42 - 4 + 1). 
^ r " % 3^7 ' ^ P ' 13 ' 

Thus ( —4)6 = l(mod 35). Next, we show that none of the congruences 
(i) - 4/ = y(mod 35), (ii) ( - 4)2/ = j(mod 35), and (iii) ( - 4)3/ = y'(mod 35) 
have solutions where 1 ^ /, y ^ 5. 

Since 4/ + j < 35 for 1 ^ /, j ^ 5, (i) has no such solution. 
Assume next that 16/ = ./(mod 35). Then / = j(mod 5), so / = j and we 
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have 16/ = /(mod 7); thus 2/ = /(mod 7) and, finally, / = 0(mod 7). 
Thus (ii) has no solution in the given range. 

If (iii) holds, we have — 64/ = ./(mod 5) or / = ./(mod 5), hence / = j 
and —64/ = /(mod 7). Thus 65/ == 0(mod 7) and / = 0(mod 7), which is 
impossible for 1 ^ / <; 5. 

From the fact that (i), (ii), and (iii) have no solutions in 5(5) and 
the fact that ( -4 ) 6 = l(mod 35), it follows that {(-4)' |0 ^ / ^ 5} is a 
packing set. 

Incidentally, this packing shows that there is a Z-lattice packing of 
R6 by the (5, 6)-semicross with density 31/35. 

QUESTION IV-9. Let r ^ 3 and k ^ 1. Is g(k, r)/(k + 1)3/2 ^ 

2cos(;r/r)? 

QUESTION IV-10. What is the exact value of g(k, r)l 

Even for r — 3 the answer is not clear. The following theorem, whose 
proof is similar to that in [47] for the special case b = d, is of some aid 
in examining g(k, 3) for small values of k. 

THEOREM IV-8. Let b, k, d, and m be positive integers such that m divides 
db2 -f 1, and k is less than the minimum of m/(b -f 1) and m/(d + 1). 
Then S(k) 3-packs C(m) with packing set {1, —b, bd). 

For instance, the case b = 4, d = 5 shows that 5(13) 3-packs C(81) 
with packing set {1, —4, 20}. The case b = d — 5 shows that 5(10) 
3-packs C(63). Theorem IV-8, together with some computations, provides 
the basis for Table IV-1, which lists some 3-packings. 

The entry m in the second column corresponding to k in the first 
column records the fact that S(k) 3-packs C(m). For 1 <; k ^ 6, this was 
checked to equal g(k, 3). For 7 <; k S 9, it was checked that m is the 
smallest order of a cyclic group that S(k) 3-packs. The packing of 5(5) in 
C(26) does not seem to fit into a pattern. 

The final column records the density of the corresponding Z-lattice 
packing of R3 by the (k, 3)-semicross. The contrast of k = 5 and k = 6 
shows that the Z-lattice packing density is not a monotonie function of k. 

A word is in order concerning the geometry of these Z-lattices, in 
particular, their symmetry and bases. 

Corresponding to the packing set {(-by\0 S i è n - 1), where 
(-b)n = 1 is the Z-lattice in R«, 

(IV-1) L = {(xo, jq, . . ., *,-i)|x, e Z, £ ( - * ) % • = ° ( m o d m)l-
*'=0 

If (x0, xi, . . ., xn-i) e L, we have 

x0 - bxi + b2x2 - • • • + (-by-1 xn-i = 0(mod m), 
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* 

T 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
16 
20 
21 
25 
30 
42 

m 

4~ 
9 

13 
19 
26 
28 
37 
49 
49 
63 
65 
65 
81 

101 
126 
151 
181 
217 
344 

Remark 

Splitting 
b = d = 2 Smallest group 
b = 2, d = 3 Smallest group 
b = 3, d = 2 Smallest group 
Packing set {1, 12, 23} Smallest group 
b = d = 3 Smallest group 
b = 3, d = 4 Smallest cyclic group 
See k = 9 Smallest cyclic group 
6 = 4, d = 3, Smallest cyclic group 
b = d= 5 
See A: = 12 
b = d = 4 
* = 4, rf = 5 
Z> = 5, </ = 4 
è = rf= 5 
b = 5, J = 6 
6 = 6, rf = 5 
Z> = </= 6 
b = d=l 

Z-lattice packing 
density 

4/4 = 1.000 
7/9 = 0.778 

10/13 = 0.769 
13/19 = 0.684 
16/26 = 0.615 
19/28 = 0.679 
22/37 = 0.595 
25/49 = 0.510 
28/49 = 0.571 
31/63 = 0.492 
34/65 = 0.523 
37/65 = 0.569 
40/81 = 0.494 

49/101 = 0.485 
61/126 = 0.484 
64/151 = 0.424 
76/181 = 0.420 
91/217 = 0.419 

127/344 = 0.369 

TABLE IV-1 

hence, on multiplication by — b, 

— bx0 + b2xi — b3x2 + -h xn-i = 0(mod ni). 

Thus, the point Cxn_i, x0, xi, . . ., xw_2) is also in L. The lattice is highly 
symmetric, being carried into itself by the cyclic group generated by the 
isometry T, where 

r ( x 0 , * i , . . ., Xn_i) = (Xn_i, XQ, XI, . . ., Xw_2). 

If m = bn — (— l)w, the lattice has a basis obtained from one vector v 
by the operation of T and its powers, namely the basis consisting of the 
n vectors 

(b, 1, 0, . . . , 0) 

(0, b, 1, . . . , 0) 

(0, . . . , 0, *, 1) 

( 1 , 0 , . . . , 0, b) 
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XQ 

zo 

yo 

yo 
XQ 

zo 

zo 

yo 
XQ 

(The determinant of the matrix formed by these n vectors equals bn -
(—l)w, as can be seen by expanding it along the first column.) How­
ever, if m is less than bn — (— l)w, the lattice, though carried into itself 
by T, may not have a basis of the form v, T(v), . . . , rw_1(v), which we will 
call a cyclic basis. 

For instance, consider n = 3, b = 5, and m = 21, which divides 53 — 
( - 1 ) 3 = 126. The lattice L = {(x, y, z) \x - 5y + 25z = 0(mod 21)} 
has determinant 21. Assume that there is a vector v = (x0, y0, z0) such 
that v, J(v), T2(v) is a basis for L. We would then have x0 = 5yQ — 25z0 + 
21#, q eZ, and 

± 2 1 , 

that is 

(IV-2) 4 + y3Q + zl - 3x0jo^o = ± 21. 

We claim (IV-2) has no integer solutions with XQ = 5y0 — 25z0 + 2\q. 
First of all, x0 = 5^0 - 4z0 + 21/, / e Z , so that x0 = 5(^0 + ^o) + 3f 

(mod 9). Then 

*o + JVo + 4 - 3^oJo^o 

= (S(y0 + ZQ) + 3/)3 + J§ + zl - 3(5(y0 + z0) + 30j>o*o(mod 9) 

= 125(jo + ^o)3 + y3Q + zl - 150>o + z0)^0^o(mod 9) 

= -(.Vo + *o)3 + yl + *o + 3(jo + zo)yQZQ(mod 9) 

= 0(mod 9) 

Since 9 does not divide 21, (IV-2) cannot hold. 
However, the case n = 3, b — 5, and m = 63, another divisor of 126, 

is quite different. The corresponding lattice does have a cyclic basis, v, 
T(v), r2(v), where v = (3, - 2 , 2). So is the case n = 3, Z? = 5, and m = 
9, where v = (1, 2, 0) works. 

QUESTION IV-11. When does a Z-lattice in Rw that is invariant with 
respect to the cyclic permutation T, T(xi, x2, . . ., xn) = (xw, xl5 . . ., xw_i) 
have a cyclic basis? 

Even for lattices L in R3 whose quotient group Z3/L is not cyclic the 
question is of interest. Consider, for instance, a positive integer n and let 
£ = {(*> .V» z) | x = j = z(mod «)}. In this case, Z3/L « C(rc) x C{n), 
since the homomorphism from Z3 to C(n) x C(«) given by (x, >>, z) -» 
(JC — >>, j> — z) is onto and has L as its kernel. L is symmetric with respect 
to T. The following theorem tells when a cyclic base can be found for L. 
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THEOREM IV-9 . For the positive integer n, the lattice L = {(x, y, z)\x = 
y = z(mod n)} has a cyclic basis if and only if n is not a multiple of 3. 

PROOF. If n ^ 0(mod 3), consider the vector v = (x + n, x, x)eL 
for which the determinant of the matrix formed of v, T(v), T2(y) equals 
n\n -f 3x). If n = l(mod 3), there is an integer x such that n 4- 3x = 1 
and the determinant then equals n2. If n = - l(mod 3), x can be chosen 
so the determinant equals — n2. 

If n = 0(mod 3), consider the arbitrary vector v e L, which has the 
form (x, x + nb, x + nc) for some integers x, b, and c. The determinant, 

x x 4- nb x + nc I 

I x 4- ne x x 4- nb \ 

x 4- nb x + ne x | 

equals 

3n2xc2 — 3n2xbc + 3n2xb2 4- n3b3 4- n3c3, 

which, being divisible by 3n2, cannot equal n2. This concludes the proof. 

In the reverse direction, assume that the lattice 

(IV-3) L = {Oo, *l9 . . ., x„_i)|x0 4- aixi 4- a2x2 + • • • + a»-ix„-i 
= 0(mod m)} 

is invariant under the isometry T given earlier. Then, for all choices of 
the integers xi, x2, . . ., *»-i, the point (xw_i, x0, x\9 . . ., xn-2) lies in L 
if (XQ, XI, . . ., xn-i) does. Thus 

(IV-4) xn-X 4- a1(-a1x1 - a2x2 - • • • - fl„-i.x„-i) 4- a2xx 4- tf3x2 

+ • • • 4- an-.ixn-2 = 0(mod m). 

for all choices of xi, x2, . . ., xn-i in Z. Comparison of coefficients in 
(IV-4) shows that 

— a\ + a2 = 0(mod ra), — a\a2 4- a$ = 0(mod m)- • • 

- flitf„_2 -H an-\ = 0(mod m) and 1 — a\an_\ = 0(mod in). 

Hence a2 = a2, a% = axa2 = a\, . . ., an^\ = a"-1, and a\ = 1. Thus the 
congruence in (IV-3) has the form (IV-1), with a\ = —6. 

Incidentally, in case « + 1 = /?, a prime, the (1, «)-semicross Z-lattice 
tiles Rw by a lattice that is invariant with respect to T. In a suitable in­
dexing of the coordinates, the lattice is described by the congruence 

Xi 4- 2x2 4- • • • 4- nxn = 0(mod p = n 4- 1). 

Since C(/?)* is cyclic, with generator g, say, after reindexing the coordi­
nates, the preceding congruence takes the form 
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*i + gx2 + £2*3 + • • • 4- gn~lxn = 0(mod p), 

with gn = l(mod p). This shows that the lattice is invariant with respect 
to T. 

In this section we considered Z-lattice tilings and packings by the 
(k, «)-semicross. Z-lattice coverings have scarcely been examined. In R1 

and R2 every semicross tiles and in R3 the (1, 3)-semicross does. So the first 
interesting case is the covering density of the (2, 3)-semicross. If we con­
sider only Z-lattice coverings, the problem becomes: What is the largest 
order of an abelian group G for which there are three elements gls g2, g$ 
in G such that each nonzero element of G is of the form igj, i = 1, 2, j = 
1, 2, 3? Call such a set a covering set in G. The answer is 6. In C(6) there 
is the covering set {1, 3, 5} for S(2). Thus there is a lattice covering of R3 

by the (2, 3)-semicross with density 7/6. 

QUESTION IV-12. Let k and n be positive integers. What is the order 
of the largest abelian group G such that there are n elements in G, g1? g2, 
. . ., gn, with the property that each nonzero element of G is of the form 
igj, 1 è i è k, 1 é j è ni 

V. M = F(k) = { ± 1 , ±2 , . . . , ± * } . This section, motivated by the 
full cross, parallels the preceding section, which concerned the algebra of 
tilings and packings by the semicross. 

A. Splittings by F(k) = {± 1, ±2, . . ., ±k}. If Ik 4- 1 is a prime, p, 
then F(k) splits C(p), hence any finite abelian /?-group. Furthermore, 
by Theorem IV-1, if F(k) splits the finite abelian group G, then it splits 
the cyclic group C(|(7|). It is easy to see that F(l) splits any abelian group 
of odd order. It is not known whether F(k) always splits an abelian group 
of order greater than 2k 4- 1. It is an easy consequence of the pigeon­
hole principle that the order of such a group would have to be at least 
(k + l)2. (See [43] or [47].) This is equivalent to the assertion that if F(k) 
splits a finite abelian group of order greater than 2k 4- 1, then the splitting 
set has at least 

elements. For odd k, therefore, the splitting set has at least (k + 3)/2 
elements and the group has order at least (2k) (k + 3)/2 4- 1 = k2 + 
3k + 1. 

These are probably far from the best lower bounds. If 2/c H- 1 is prime, 
then F(k) splits C((2k 4- l)2), which is a group of order 4k2 H- 4k 4- 1 ; 
the splitting set has 2k 4- 2 elements. Letting r(k) be the order of the 
smallest group of order greater than 2k + 1 that F(k) splits (assuming that 
there is such a group), we have 
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r(k) è (* + l)2 

and, when 2k H- 1 is prime, 

r(k) <: (2k + l)2. 

QUESTION V-l : How does r(k) behave for large kl 

There is a complication in using the Kummer-Mills theorem to produce 
splittings by F(k). Consider for instance splittings by F(6). L e t / b e the 
A'M-logarithm 

, 1 2 3 4 5 6 

10 1 3 2 5 4 

There is an infinite number of primes/? = l(mod 6) and homomorphisms 
h: C(p)* -+ C(6) that extend/ If/? = l(mod 12), then the kernel of h has 
an even number of elements and therefore contains the subgroup {1, — 1}. 
The kernel is therefore factorable in the form {1, — 1} o A, and we have 
the factorization of C(/?)*, 

(1,2, 3,4, 5,6} o{l, -\}oA = C(p)* 

or 

F(6) o A = C(p)*. 

However, the Kummer-Mills theorem does not guarantee the existence of 
p = l(mod 12) for which / extends to a homomorphism from C(/?)* to 
C(6). 

As Mills pointed out in correspondence, a slight variation in the 
construction will give p = l(mod 12). Instead of working with C(6), 
work with C(12). Define/: {1, 6} -> C(12) by the table below. 

i 1 2 3 4 5 6 

iO 1 4 2 3 5 

Since/(3) is even, condition (3) of the Kummer-Mills theorem is satisfied. 
There are therefore an infinite number of primes p = l(mod 12) and 
corresponding homomorphisms h: C(p)* -* C(12) extending / Let g: 
C(12) -• C(12)/{0, 6} be the natural homomorphism. Then g o h is a 
homomorphism from C(/?)* to C(6) that induce a 1 — 1 correspondence 
between {1, 2, 3, 4, 5, 6} and C(6). 

B. Packings by F(k). Let h(k, n) be the smallest order of a finite abelian 
group that F(k) «-packs. This function was investigated in [47] after 3-
packings by S(k). 

Trivially, h(k, 1) = 2k + 1. It was shown geometrically in [8] that 
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h(k, 2) = k2 + 2k + 2, hence that h(k, n) à k2 + 2k + 2 for n ^ 3. 
The following theorem obtained in [47] contrasts with the corresponding 
result on packings by S(k) in two respects, i.e., n does not influence the 
limit and the exponent is 2 instead of 3/2. 

THEOREM V-l. For n ^ 2, 

lim •* (*»*> = 1 . 

The proof consists of constructing packing sets in the form of an 
arithmetic progression supplemented by 1 rather than a geometric pro­
gression, which was used to construct packings for S(k). The examples in 
Table V-l can be justified by the technique used in [47] 

n = size of 
packing set Packing set 

2 l9k + 1 

3 1, A: + 1, A: + 2 
4 \,k + 1, * + 2, k + 3 

5 1, k + 1, k + 3, * + 5, 
k + 7 

6 1, A: + 11, & + 13, A: + 15, 
k + 17, k + 19 

Order of cyclic 
group packed 

k2 + 2fc + 2 = 
(A: + l)2 + 1 

k2 + 3A: + 3 
A:2 + 4A: + 5 = 

(k + 2 ) 2 + 1 
k2 + 8* + 9 

&2 + 30A: + 233 

TABLE V-l 

Condition 

Â: even 

k even 

/: even, fc ^ 
2(mod 3) 

A: = 0(mod 6) 

These examples were found while searching for packing sets in the 
form of geometric progressions. (It was also expected that the lattice of 
a dense packing would have a good deal of symmetry.) In fact, consider 
the case n = 3. The powers of k + 1 in C(k2 + 3k + 3) are (k + l)2 = 
— (k + 2) and (k + l)3 = 1. Thus, the given packing set equals {1, £ + 1 , 
— (& + l)2} with (k + l)3 = 1. Hence the geometric progression {1, 

k + 1, (A: + l)2} is also a packing set, since changing the sign of an 
element in a packing set for F(k) produces another packing set. 

In the proof of Theorem V-1 a packing set of n elements for F(k) was 
constructed in the cyclic group of order k2 + uk + v, where the integers 
u and v depend on n but not on k. The number u is on the order of 0*2/2) 
LCM{1, 2, . . ., n), which is probably much larger than necessary, as 
Table V-l indicates. However, even Table V-l may not give a good es­
timate of h(k, n). 

For n = 2, h(k, n) is given by the formula k2 + 2k + 2 in the table. 
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For n = 3 it was checked that, for 1 ^ k ^ 6, the order of the smallest 
cyclic group that F(k) 3-packs is given by the formula k2 4- 3k -f 3. For 
4-, 5-, and 6-packings the orders of the groups given in Table V-1 diverge 
rapidly from h(k, «), as the Tables V-2, 3, 4 show. 

Table V-2 lists the order of the smallest cyclic group that F(k) 4-packs 
for 1 g k < 6. 

k 

1 
2 
3 
4 
5 
6 

Order of 

9 
17 
30 
37 
61 
65 

group Remark 

Split by {1,2, 3, 4} 
Split by {1, 4} o {1,3} 
Packed by {1, 4, 5, 7} 
Packed by {1, 5, 6, 7} 
Packed by {1, 9, 11, 23} 
Packed by {1, 7, 8, 9} 

TABLE V-2 (4-packs) 

Table V-3 lists some cyclic groups in which F(k) has a 5-packing. 

k Order of group Remark 

1 11 Split by {1, 2, 3, 4, 5} 
2 22 Packed by {1, 3, 5, 7, 9}, which is, up to 

sign, {1, 3, 32, 33, 34}, 35 = 1 
3 35 Packed by {1, 5, 6, 8, 13}, which is, up to 

sign, {5} U {1, 8, 82, S3}, 8* = 1 
Theorem V-2(b) 
Packed by {1, 7, 8, 9, 11} 
Packed by {1, 23, 232, 233, 234}, 235 = - 1 

TABLE V-3 (5-packs) 

Table V-4 lists some cyclic groups in which F(k) has a 6-packing. 

4 
5 
6 

45 
70 
82 

k 

1 
2 
3 

4 
5 
6 

Order of 

13 
25 
43 

50 
77 
85 

group Remark 

Split by {1, 2, 3, 4, 5, 6} 
Splitting, since F(2) splits C(5) 
Packing set {1, 5} o {1, 6, 62}, which is, 

up to sign, {1, 5, 6, 7, 8, 13} 
Theorem V-2 (a) 
Theorem V-2 (d) 
Packed by {1, 7, 8, 11, 36, 38} 

TABLE V-4 (6-packs) 



TILING, PACKING, COVERING 317 

Some of these packings are based on the following theorem. 

THEOREM V-2. (a) For any odd prime p, F(p - 1) (p + \)-packs C(2p2) 
and C(p) x C(2p). 

(b) For any prime p, F(p — 1) p-packs C(p) x C(2p — 1), which is 
C(p(2p - 1)). 

(c) For any prime p and integer n ^ 2p — 1, F(p — 1) p-packs C(p) x 
C(n). 

(d) For r relatively prime to k\ and s > 2k, F(k) r-packs C(r) x C(s). 

PROOF, (a) It is easy to check that 

{1, 2p±l,4p±l,.. ., 2 ^ ± p ± 1} U {/>} 

and 

{(0,1),(1, 1), . . . , (p- 1,1)} U {(!,/>)} 

are packing sets for F(p — 1) in the respective groups C(2p2) and C(p) x 
C{2p), 

(b), (c), and (d) are successively more general. For (d) the packing set 
{(0, 1),(1, 1), . . . , ( r - 1, 1)} suffices. 

The packings in Theorem V-2 (a) come very close to being splittings 
since 2(p — 1) (p + 1) = 2p2 — 2, only 2 less than the order of the group. 
(In the first case, p2 is not covered, and in the second, (0, /?).) Thus, for odd 
primes /?, the (p — 1, p + l)-cross, expanded by one cube at the end of 
one arm, tiles R^+1 in at least two ways. 

QUESTION V-2. For which primes p does F(p — 1) split C(2p2 — 1)? 

QUESTION V-3. If F(n — 1) (w + l)-packs C(2«2), must n be prime? 

We may also examine how well F(k) packs large groups when k is fixed. 
As the next theorem shows, in this case F(k) comes near splitting the 
groups. 

THEOREM V-3. Let F(k) split two groups of prime order, C(p) and C(q). 
Then 

Um ff*. ") = 1. 
W-KX> 2kn + 1 

PROOF. Since F(k) splits C(p) and C(q), it splits all groups C(p* qj) 
where / and y are nonnegative integers. Using the fact that log/? and log q 
are linearly independent over Q, it is easy to show that in the sequence of 
integers p* qj, arranged by increasing size, the ratio between successive 
terms approaches 1. 

If 2kn + 1 is of the form pi qj, then h(k, n) = 2kn + 1. If 2kn + 1 is 
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not of that form, let m be the smallest integer of the form p{ qj that is 
larger than Ikn + 1. Since h(k, ri) ^ m and m/(2kn + 1) is close to 1 when 
n is large, it follows that \\mn_00 h(k, n)j(2kn + 1) = 1. 

The hypothesis of Theorem V-3 holds if 2k + 1 is prime, by the Kum-
mer-Mills theorem. For instance, when n is large, the (6, «)-cross packs 
Rn with a density near 1 (and equals 1 for an infinite number of n). This 
means that crosses with arms that are short with respect to the dimension 
pack very well. 

From the fact that for prime/?, F(p - 1) (p + l)-packs C(2/?2), it follows 
that 

This means that, for large dimension when the arm length of the cross 
equals the dimension of the space, the cross packs that space very densely. 

VI. Origins. The general history of clusters is too long and varied to be 
covered here. However, the origins of the study of the cross and semi-
cross are simple, though they can be traced back to several independent 
sources: Ulrich in 1957, Kârteszi in 1966, Stein in 1967, and Golomb and 
Welch in 1968. 

Ulrich [55] constructed single-error correcting codes for alphabets 
of more than two symbols. His equation X1 + 2X2 4- 3XZ + 4JSf4 = 
0(mod 10) utilizes a packing of (1, - 1 } in C(10). (See [55, p. 1349].). On 
p. 1351 he presents the equivalent of a splitting of C(5) x C(5) by 
{1, - 1 } . Later, pp. 1362-3, he shows essentially that {(1,4), (1, 3), (1, 2), 
(1, 1), (1, 0), (0, 1)} is a splitting set for {1, 2, 3, 4} in C(5) x C(5) and 
remarks that "the number base must be prime". However, this paper did 
not lead to subsequent investigations of crosses or semicrosses in Euclidian 
space. 

Kârteszi [25] asked whether the (1, 3)-cross tiles space. This was an­
swered by Freller [9] in 1970; Korchmâros [27] about the same time 
treated n > 3. Molnar [32] in 1971 related the number of Z-lattice tilings 
of Rn by the (1, «)-cross to the number of abelian groups of order 2n + 1. 
Medyanik [30], apparently unaware of Molnar's work, showed in 1977 
that the (1, «)-cross tiles Rw. 

Around 1963 I posed the following problem. Consider the standard 
lattice of unit squares that partition the plane. What is the smallest density 
of a set S of such squares with the property that every square from the 
lattice has at least one edge on the border of a square in SI That the 
answer is 1/5 follows immediately from the fact that the (1, 2)-cross tiles 
the plane. (Each cross must contain at least one member of S; hence, the 
density of S is at least 1/5. On the other hand, the set of center squares of 
the crosses in the tiling serves as a suitable family S.) This initiated my 
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work in (k9 #)-crosses and semicrosses, which first appeared in 1967 
[43]. 

Golomb and Welch [13] showed that the (1, «)-cross tiles Rn. They 
thought of the center of a cross as a code word and the other cubes of the 
cross as words that might be received if there were an error in one co­
ordinate of the code word. A tiling then corresponds to a perfect code. 

In 1978, Szabó [49], stimulated by Molnar's work, considered tilings 
by "lopsided" crosses, where at each facet of the central cube either no 
cube or one cube is attached. Around that time he read a Russian transla­
tion of [45] and became familiar with the papers of Hamaker and Stein; 
in 1981 he proved in [51] that if In + 1 is not prime, then there is a non-
lattice Z-tiling by the (1, «)-cross and a Q-lattice tiling that is not a Z-
tiling. 
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Added in Proof. S. Szabó, in A bound for k for tiling by (k, n) crosses and semicrosses, 
Acta Marth. Hung. 44 (1-2) (1984), 97-99, showed that if n ^ 2 and the (k, «)-cross 
lattice tiles Zn, then k ^ n - 1. S. Stein, in Splitting groups of prime order (ms.) 
obtains criteria for splitting C(P), p prime, incidentally obtaining sets of integers that 
split no group. 




