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A CHARACTERIZATION OF THOSE SPACES HAVING
ZERO-DIMENSIONAL REMAINDERS

BEVERLY DIAMOND

ABSTRACT. A O-space is a completely regular Hausdorff space
possessing a compactification with zero-dimensional remainder. It
is well known that any rimcompact space is a O-space, while the
converse is not true. In this paper a proximal characterization of
0-spaces is presented. Those open sets U of BX for which U N
(BX\X)is clopen in BX\X are characterized. This characterization
is then utilized to define a relation @ on 2(X). It is shown that « is
a proximity on X if and only if X is a 0-space. The definition of the
relation « is motivated by the presentation of a proximal char-
acterization of almost rimcompact spaces—a class of spaces inter-
mediate between the classes of rimcompact spaces and 0-spaces.

1. Introduction and known results. The characterization of those com-
pletely regular Hausdorff spaces possessing a compactification with zero-
dimensional remainder has been considered by various researchers (see
for example [5], [6] and [9]). Such a compactification will be called 0-
dimensional at infinity (denoted by O.1.); a O-space is any space possessing
a O.1. compactification. Recall that a space is rimcompact if it has a basis
of open sets with compact boundaries ([5]). Each rimcompact space X
possesses a compactification which has a basis of open sets whose boun-
daries are contained in X ([7], [9]). Hence a rimcompact space is a 0-
space; the converse is not true ([9]). In [2] we introduced a natural gener-
alization of rimcompactness called almost rimcompactness and obtained
the following characterization, which we consider in this paper as a de-
finition. A space X is almost rimcompact if and only if X possesses a
compactification KX in which each point of KX\X has a basis (in KX)
of open sets whose boundaries are contained in X. If KX is such a com-
pactification of X, we say that KX\X is relatively O-dimensionally em-
bedded in KX. Hence each almost rimcompact space is a 0-space; in the
same paper we show that the converse is not true. For the internal de-
finition and a thorough discussion of almost rimcompactness, see [2] and
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In this paper we give an internal characterization of the class of
0-spaces. In §2 we characterize those open sets U of X for which U N
(BX\X) is clopen in AX\X by writing U [ X as the union of a family of
open sets of X with special properties. In §3 we present a proximal char-
acterization of both almost rimcompact spaces and O-spaces. In §4 we
briefly discuss a special class of 0-spaces called full O-spaces.

In the remainder of this section, we present our notation and term-
inology and some known results. All spaces are assumed to be completely
regular and Hausdorff. The notions used from set theory are standard.
A map is a continuous surjection. A function f: X — Y is closed if when-
ever Fis a closed subset of X, then f[F] is a closed subset of Y.

The family s°(X) of (equivalence classes of) compactifications of X
is partially ordered in the usual way: JX < KX if there is a map f: KX —
JX such that f(x) = x for each x € X; KX is equivalent to JX if fis a
homeomorphism. For background information on compactifications the
reader is referred to [1] or [4]. The maximum element of »#°(X), the Stone-
Cech compactification of X, is denoted by SX. In the sequel, if KX € #7(X),
the natural map from X into KX is denoted by Kf.

If KX e x(X), we often call KX\X the remainder of KX. For any
space X, the residue of X (denoted by R(X)) is the set of points at which
X is not locally compact. If KX € £ (X), then Clxx(KX\X) = R(X) U
(KX\X).

Our standard reference on proximities is [8]. In the sequel, any proximity
considered on a space X is assumed to be compatible with the topology
of X. Two proximites § and a on X are equivalent if for 4, B = X, A0B
if and only if AaB. There is a 1 —1 correspondence between (equivalence
classes of) proximities on a space X and (equivalence classes of) com-
pactifications of X. That is, if § is any proximity on X, then there is a
unique compactification ¢X of X satisfying (for 4, B = X) A¢B if and
only if ClyxA () Cl;xB # @. Conversely, if KX € x#(X), and ¢ is defined
(for A4, B = X) by A6B if and only if ClxxA (| ClxxB # @, then d is a
proximity on X and 0X = KX.

If U is an open subset of X, and 0X € 2#(X), then Ex;xU is defined to
be 0X\Cl;x(X\U). The set Ex;xU is often called the extension of U in
0X. It is an easy exercise to verify (i), (ii), (iii) and (iv) of the following
proposition. Statement (v) is implicit in the proof of Lemma 2 of [9], and
(vi) follows from (v).

PrOPOSITION 1.1. Let 60X € °(X).
(i) If Wis openin 60X, then W < Ex;x(W (| X).
(ii) If U and V are open in X, then Ex;x(U (\ V') = (Ex;xU) () (Ex;xV).
Gii) If U is open in X, then (Ex;xU) N X = U, hence ClsxU =
ClaXEx,;XU.
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(iv) If Fis closed in X, U is openin X, and F () U = @, then ClsxF ()
EX5xU = @.

V) If U and V are open in X, then Ex;x(U |J V)\(Ex;xU U Ex;xV) <
ClsxU N ClsxV.

(vi)If U and V are open in X, and ClyjxyU \ ClzxV = @, then
Ex;x(U U V) = Ex;xU U ExzxV.

If U is any open subset of X, then it follows from 1.1 (i) that Ex;xy U
is the largest open subset of X whose intersection with X is the set U.
The collection {Ex;xU: U is an open subset of X} of open sets of 9X is
easily seen to be a basis for the topology of 4.X.

If B = X, the boundary of Bin X, denoted by bdxB, is defined to be the
set ClyB ) Clx(X\B). A compactification §X of X is a perfect compactifi-
cation of X if for each open subset U of X, Clsx(bdxU) = bdsx(Ex;xU).
According to the corollary to Lemma 1 of [9], X is a perfect compacti-
fication of X.

The equivalence of (i), (ii), and (iii) of the following proposition appears
in Theorems 1 and 2 of [9].

PROPOSITION 1.2. Let 0X € 247 (X). The following are equivalent.
(i) 0X is a perfect compactification of X.
(ii) If U and V are disjoint open sets of X, then Ex;x(U U V) = Ex;xU
U Ex,;XV.
(iii) For each p € §X, (6f)(p) is a connected subset of S.X.

The connected component of x € X is the union of all connected sub-
spaces of X containing x. The quasi-component of x € X is the intersection
of all closed-and-open (denoted clopen) subsets of X containing x. A
space X is zero-dimensional (denoted 0-dimensional) if X has a basis of
clopen sets.

For a detailed discussion of the disconnectedness of remainders of
compactifications see [2]. Any O-space X has a maximum O.l. com-
pactification (which we denote by F,X) which is also a minimum perfect
compactification of X ([6]). For each pe F X\X, (F,f)(p)is the connected
compact quasicomponent in 3X\X of each element of (F,f)<(p).

Following the terminology of [7] and [9], we say that an open set U
of X is z-open in X if bdxU is compact. The intersection and union of
finitely many z-open sets are z-open, as is the complement of the closure
of a m-open set. Also, if W is open in KX, and bdxxW < X, then W )
Xis z-open in X.

DerINITIONS 1.3. (i) If F;, F, < X, then F; and F, are z-separated in
X if there is a z-open set U of X such that F; =« U, and ClyU N F, = @.
We say that F) is z-contained in X\F, if F; and F, are z-separated.

(ii) If F is closed in X, U is open in X, and F < U, then F is nearly
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n-contained in U if there is a compact subset K of F so that whenever
F’ is a closed subset of F, and F’ (| K = @, F’ is z-contained in U.

2. Clopen subsets of remainders. We need some tools for studying clopen
sets in remainders of compactifications. These are developed in 2.1-2.5
inclusive.

DEerINITIONS 2.1. (i) Let X be a space. An open set U of KX € #(X)
is clopen at infinity in KX (denoted by KX-C.L) if U [ (KX\X) is clopen
in KX\X. The set U is a full KX-C.I. set if Uis KX-C.I., and U =
Exgx(U N X). Often a BX-C.I. (respectively, full SX-C.I) set will
simply be called a C.I. (respectively, full C.I.) set.

(ii) X is a full O-space if X is a O-space, and if for each p € fX\X, the
connected component of p in SX\X has a basis in 83X of full C.I. sets.

(iii) If ¢ is a family of open sets of X, and D is open in X, then D is
small with respect to & if for each E € &, Clx(D () FE)is compact.

(iv) A family & of open sets of X is clopenly extendible (denoted C.E.)
if there is a compact subset K of X so that if U is open in X, and K = U,
there is E € &, and D small with respect to £ suchthat X = U J E J D.
A family ¢ is a full C.E. family if & is C.E., and Exgx(| J{E: E € &}) =
U{EXﬁxEZ Ee éa}.

If bdxxW < X, then W is clearly a full KX-C.I subset of KX. The
following shows that if W is any KX-C.I. open set, then the sets W and
Exgx(W | X) can only differ in the locally compact part of KX\X.

ProrosiTioON 2.2. If KXex'(X), and if U is a KX-C.I. set, then
Exgx(U N X) N ClgxR(X) = U N\ ClgxR(X).

Proor. Let U be a KX-C.I. open set, and suppose that p € [Exxx(U N
X) N ClgxR(XN\U. As p € (KX\X)\U, which is clopen in KX\X, there is
an open subset W of KX such that pe W < Exxx(U () X) and W N
KX\X) N U =@. As peClgxR(X), there is x€ W [ R(X). Now
W RX)c Exgx(UNX)N X=UQ( X,s0xe W) U, which is an
open set of KX. Also, x € R(X), so W ) U (KX\X) # ¢, which is a
contradition to our choice of W. Then Exgx(U | X) [ ClgkxR(X) =
U N ClgxR(X). Since the reverse inclusion is always true, the result is
proved.

We need to extend some results concerning open sets and perfect com-
pactifications.

LemMMA 2.3. Let KX € #°(X). If K is a compact subset of X, and if U is
open in X, then [Exgx(U\K)] N (KX\X) = (ExgxU) N (KX\X). Hence
if Vis open in X, and Clx(U ( V) is compact, then(ExgxU) (| (ClgxV) <
X.
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PROOF. Since Exx(U\K) 1 (KX\X) = Exxx(U 1 (X\K)) N (KX\X)
= ExgxU (| Exgx(X\K) N (KX\X)
= ExxxU | (KX\K) N (KX\X)
= ExgxU ] (KX\X),

the first statement is true.

Suppose that Clx(U (| V)is compact. Since [U\CIx(UN V)] NV =
@, by 1.1 (iv), Exgx(U\Clx(U N V)) N ClgxV = @. Then ExxxU
(KX\X) N ClgxV = Exgx(U\CIx(U N V) N (KX\X) N ClgxV = @.

If ¢ is a family of open subsets of X, let Exyx& = () {ExxxE: E€
&}. The following is an immediate consequence of 2.3.

COROLLARY 2.4. Let KX € ;7 (X). Suppose that & is a family of open sets
of X, and that D is open in X. If D is small with respect to &, then ClxD
Exgxé | (KX\X) = @ and ExgxD | (J{CIxxE: E€ &}) N(KX\X) =
D.

As pointed out in 1.2, the equivalence of (i) and (ii) in the following
theorem appears in Theorem 1 of [9]; we will need the equivalence of (i)
and (iii).

THEOREM 2.5. Let KX € #(X), and let U, V be open in X. Then the
following are equivalent.

(i) KX is a perfect compactification of X.

() IfUNV =@, then Exgx(U J V) = ExgxU | ExgxV.

(i) If Clx(U N V) is compact, then Exgx(U | V)= ExxxU U
ExKxV.

Proor. (iii) implies (ii). This is obvious.

(ii) implies (iii). Since [Exxx(U U MIN X =U U V = (Exxkx U U
ExgxV) N X, it is sufficient to show that Exxx(U U V) ) (KX\X) =
(ExgxU U ExgxV) ) (KX\X). If Clx(U (O V) is compact, then according
to 2.3,

(ExkxU N (KX\X)) U (ExgxV N (KX\X))
= [Exgx(U\Clx(U N V) N (KX\X)] U [Exgx(V\CIx(U N V) N (KX\X)]
(as U\CIx(U N V)and V\CIx(U ( V) are disjoint open sets of X),
= Exgx[(U\CIx(U N V)) U (V\CIx(U N V)] N (KX\X)
= Exgd(U U I\Cl(U N V)] N (KX\X)
= Exgx(U U V) N (KX\X),
where the last equality follows from 2.3. The theorem follows.

If & = {E(a): a€ A} is a collection of sets, then &F will denote the
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collection of sets {( J{E(a;):1 < i < n}: {ay, ap, - . ., @,} is a finite subset
of A}. The following series of results will establish a correspondence
between C.E. (respectively, full C.E.) families and C.I. (respectively, full
C.1.) subsets of compactifications.

THEOREM 2.6. Let KX be a compactification of X. If U is a C.I. subset of
KX, then there is a C.E. family & such that Exgx& = U.

Proor. Since U is an open subset of KX, for each p € U we can choose
an open set E, of X such that pe€ ExgxE, c ClgxE, c U. Let §; =
{E):pe U}, and & = &7. Note that if E € & then ClgxE < U.

Clearly Exgyx& = U. In order to show that & is a C.E. family, we must
construct a compact subset K of X so that if Vis openin X, and K = V,
there is E € & and D small with respect to & such that X = V' U D |J E.
First we construct a second family of open sets of X. Since U ) (KX\X)
is clopen in KX\X, for each p € (KX\X)\U, we can choose an open set
D, of X such that p € ExxxD, while (ClgkxD,) 1 U < X. Let 91 =
{D,: pe(KX\X)\U}, and 2 = 2f. Note that if D;€ 9; and E; € &,
then ClgxxD; ) ClkxE; = X, hence Cly(E; [\ D) is compact. It follows
that if De % and E€ &, then Cly(D () E) is compact (being a finite
union of compact sets). In other words, if D € 9, then D is small with
respect to &.

Let K = KX\U{ExgxA: A€ & | 2}. Then K is a compact subset of
X. Suppose that K = V, where V is open in X. Then the collection of
sets {ExgxA: A€& U 2} U {ExgxV} is an open cover of KX, so there
is a finite subcollection whose union covers KX. Then X is covered by the
union of a finite subcollection of & J 2 |J {V}. Since & and 2 are closed
under finite unions, there are sets £ € & and D € & such that X = V |J
E U D. Since D is small with respect to &, & is a C.E. family.

It is a straightforward computation to verify that if KX = X, and if
Uis a full C.1. subset of 8X, then & as defined in the proof of 2.6 is a full
C.E. family. We observe that in the proof of 2.6, the only conditions that
& is required to satisfy are that (i) for each E€ &, ClxxE < U, and (ii)
Exgx& = U. Therefore, we could have chosen & to be {V: V is open in
Xand ClgxV < U}.

THEOREM 2.7. Let KX be a perfect compactification of X, and let &
be a C.E. family of open sets of X. Suppose that p € (KX\X)\Exgx&. Then
(i) There is a set D small with respect to & such that p € Exgx D, hence,
(i) (Exgx&) N (KX\X) = |J{CIxxE: E€ &} (| (KX\X), and
(iii) Exgx& is KX-C.I.

ProOF. (i). Let K be a compact subset of X which witnesses the fact that
& is a C.E. family, and let p € (KX\X)\Exgx&. Since p ¢ ClgxK = K,
there is an open set U of X such that K = U, while p ¢ ClgxU. Choose
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D to be small with respect to &, and choose E € &, such that X = U |J
E |J D. Now X\CIxU = D |J E,so pe KX\ClgxU = Exgx(X\CIxU) <
Exyxx(E \J D) = ExgxE |J ExgyxD, where the last equality follows from
2.5. Since p ¢ ExgyxE, it follows that p € ExgxD.

(ii) and (iii). Suppose that p € (KX\X)\Exgx&. According to (i) and
2.4, there is an open set D of X such that p e ExgyD, and ExgyxD ()
(J{ClxxE: E€¢&}) = X. Then Exgxé (| (KX\X) = ((J{ClxxE: E €
&) N (KX\X). Thus, p¢ Clgxx[Exgx6) N (KX\X)], so [Exgx&)
(KX\X)is clopen in KX\X.

It follows easily from the above that if & is a full C.E. family, then
Exgx& is a full C.I. subset of SX.

When we defined a C.E. family &, we did not specify that & is to be
closed under finite unions, although the C.E. family & constructed in the
proof of 2.6 is closed under finite unions. The following result shows that
it is not necessary to specify this property in the definition of a C.E.
family.

THEOREM 2.8. Let KX be a perfect compactification of X, and let &
be a C.E. family of open sets of X. Then
(i) &F is a C.E. family.
(i) Exgx& = Exgx(&F).
(iii) If B is a closed subset of X, then ClyyxB < Exgx& if and only if
there is E € &F such that B — E.

PrOOF. (i). Note that if D is small with respect to &, then D is small
with respect to &F. It is then clear that if & is a C.E. family, &F is also.

(ii). If U and V are any open subsets of a space X, and if §X is any com-
pactification of X, then an easy computation shows that (Ex;yU) U
(Ex;xV) < Exsx(U U V) = Clsx(U U V) = ClsxU U ClyxV. Then it
follows that (Exxx&) | KX\X) = (Exgx&F) (| (KX\X) < [|J{ClxxE:
E € ¢F}] N (KX\X) = [(J{ClxkxE: E € &}]1 N (KX\X) = (Exgxé)
(KX\X), where the last equality is (i) of 2.7. Hence Exyxx&F = Exygxé.
Clearly (Exgx&) | X = (Exgx&F) N X.

(iii). Note that Ex;xU | ExsxV < Ex;x(U |J V), for any compactifica-
tion X of X, and open sets U, ¥V of X. Hence if ClyyB < Exgxé&, by
compactness there is a set E € &F such that ClgxyB = ExgxE; that is,
B < E. On the other hand, if B < E, where E€ &F, then ClxyB =
(ClgxB N (KX\X)) U B < (ClgxE 1 (KX\X)) U E = Exgx6F = Exgxé,
where the last inclusion and the equality follow from 2.7 (ii), and (ii) of
the present result respectively.

In the following results, we will assume without loss of generality that
any C.FE. family is closed under finite unions.
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The correspondence between C.I. open sets and C.E. families developed
in 2.7 has an interesting form in the special situations discussed below.

PROPOSITION 2.9. Let U be an open subset of X. Then

(i) {U} is a C.E. family if and only if bdxU is compact.

(ii) ExgxUis C.I in 8X if and only if {V: ClxV is completely separated
Sfrom X\U} is a C.E. family.

PROOF. (i) Suppose that {U} is a C.E. family. Then by 2.7 (ii) ClgxU
(BX\X) = ExgxU ) (BX\X). That is, bdpyExpxU = ClgxbdxU < X.

Conversely suppose that bdyU is compact and let K = bdxU. If K =
V, where Vis open in X, then X = U J ¥V J (X\CIxU). Since Clx(U N
(X\CIxU)) = @, {U}is a C.E. family.

(ii) Suppose that %' = {V: ClxV is completely separated from X\U}
is a C.E. family. Then Exgx%’ is a C.I. set of 8X and equals ExxU.

On the other hand, suppose that Exgy U is a C.I. subset of §X. Accord-
ing to the remark following 2.6, the family {V: CIxV is completely sep-
arated from X\U} is a C.1. family.

3. A proximal characterization of almost rimcompact spaces and of 0-
spaces. If X is almost rimcompact, the connected components of SX\X
have a particularly nice form. According to 2.14 of [2] the connected com-
ponent in BX\X of p € fX\X is the set [ {ClzxU: U is z-open in X, p €
ExgyU}. Identifying the connected components of BX\X in this way
allowed us to show directly that by collapsing these connected compo-
nents, we obtain an upper semicontinuous decomposition of X with
certain special properties. The connected components of SX\X are not as
easily identified for an arbitrary O-space X. Rather than working with this
decomposition, we will characterize O-spaces in terms of proximity theory.
We would like to motivate this characterization by first considering al-
most rimcompact spaces from the viewpoint of proximities.

Recall that for a rimcompact space X, the proximity § associated with
F X is defined as follows: for A, B = X, AdB if and only if Clx4 and
ClyB are z-separated in X (see [5]). If X is any space, define y to be a
relation on 2(X) as follows: for 4, B = X, AyB if and only if CixA is
nearly z-contained in X\Cl/xB. For the rest of this section, y will be de-
fined as above.

If 0 is as in the previous paragraph, then ¢ is clearly symmetric, while
it is not clear that y is symmetric. It is not necessary to build symmetry
into the definition of 7. Recall that if KX € 2#°(X), and p is the relation on
2(X) defined by (for 4, B = X) ApB if and only if ClgxyA (| ClgxB #
@, then p is a proximity on X. We apply this fact to prove that if X is
almost rimcompact, then 7 is a proximity on X and therefore is symmetric
(and satisfies the remaining defining properties of a proximity).
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THEOREM 3.1. For any space X, the following are equivalent.
(1) X is almost rimcompact.
(i) 7 is a proximity on X.

If v is a proximity on X, then yX = F X.

PRrOOF. (i) implies (ii). If X is almost rimcompact, then X is a 0-space
and F_X\X is relatively 0-dimensionally embedded in F,X. We will show
both that y is a proximity on X and that yX = F, X by showing that if
F;, F, are subsets of X, then Clp xF; (| Clp xF, = @ if and only if Fip
Fz.
Suppose that Clp xF; | Clp xF; = @. For each p e Clp xF,\CIxF;,
choose an w-open subset U(p) of X such that p € Exp_xU(p),and Clp xU(p)
N ClpxF, = @. Let K = Clp xF;\U{Exp.xU(p): p € Clp xF;\X}. Then
K is a compact subset of Cl/yF;. Suppose that F] is a closed subset of
CIxF, and that F{ | K = @. Then Clp xF, = | J{Exp xU(p): p € Clp xF;
\X}. By compactness there is a finite set {p;, ps, ..., p,} = ClpxF1\X
such that Clp xF{ = | J{Exp.xU(p;): 1 £i < n}. Then F; = (J{U(p)):
1 £ i < n}, which is a z-open subset of X whose closure has empty inter-
section with F,. In other words, Fy and F, are z-separated, so F; yF,.

Conversely, suppose that F;pF,, and let K be a compact subset of
Clx F, witnessing this fact. Let p € Clp_xF;\ClxF;. There is a closed subset
F, of ClxF; such that p € Clp xF,, and (Clp xF,) 1 K = @. Thus pe
Clp xF), and by our choice of K, F,is n-separated from F,. Since F, X
is a perfect compactification of X, an easy computation shows that
ClpxFy N Clp.xF2 = @. Then p¢ Clp xF,, and as p was arbitrarily
chosen in Clp xFy, Clg xF; (| Clp xFy = @.

(ii) implies (i). Suppose that y is a proximity on X. We will show that
the proximal compactification yX associated with y has relatively O-
dimensionally embedded remainder, and therefore that X is almost
rimcompact.

Note that if U is a z-open subset of X, and if 4, B are closed subsets of
X contained in U, X\CI/;U respectively, then 4 and B are z-separated in
X, hence AyB. That is, Cl,xA | Cl,xB = @.

We now claim that if U is a z-open subset of X, then bdyU =
bd, xEx,xU. For suppose that p € bd,xEx,xU\bdxU. Then p € Cl,xEx,xU
N Clx(X\U). As U is z-open in X, bdxU is closed in 7X. Hence we can
choose an open subset W of X such that pe Ex,xW, and ClLxW
bdxU = @. Since pe Cl,xU (| Ex,xW, peClx(W () U). Similarly,
pEClLy(W N (X\U)) = Cl.x(W \ (X\CIxU)), since W ) bdxU = @.
Hence pe Clx(W N U) N Clx(W N (X\CIxU)). However, Clxy(W ) U)
< ClyW N\ ClxU < (CixW) N U, while Clxy(W ( (X\CIxU)) = CIxW
N Clx(X\CIxU) = (ClxyW) N (X\CI,U). Then Cly(W | U) and Cly(W
N (X\CIxU)) are z-separated in X, hence CLx(W N U) N CLx(W
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(X\CIxU)) = @, which contradicts our choice of p. Therefore bdyU =
bd, xEx,xU and our claim is verified.

Suppose that T'is a closed subset of y.X, and that p € (7X\X)\T. Choose
open sets U and V of X such that p € Ex,xU, T < Ex,xV, and CLxU N
ClxV = @. Then ClxUypCixV; let K be a compact subset of ClxU
witnessing this fact. Since p ¢ K, there is a closed subset F of ClyU such
that pe CLxF, and F () K = @. Then F is g-separated from ClyV.
Choose W to be a m-open subset of X such that F <« W, and CIxyW )
ClyV = @. Then bd,xEx,xW < X,and p € CLxF | (yX\X) < ClL.xW N
(rX\X) = Ex,xW (1 (yX\X), while T ( Ex,xW < (CLxV)  (Ex,xW)
= @. This shows that yX\X is relatively 0-dimensionally embedded in
rX, as required.

A proximity similar to 7 will be defined using C.E. families instead of
7-open sets. Just as in the case of almost rimcompact spaces, when con-
sidering O-spaces we are only concerned with what happens ‘“away
from compact subsets” of X.

DerINITIONS 3.2. (i) If A, B = X, A is C.E.-separated from B if there
is a C.E. family & such that 4 < E for some E€ &, and Cix(| J&) N
Cle = @.

(ii). Let X be any space, and define « to be a relation on 2(X) as follows:
for A, B = X, AaB if and only if (i) Clxy4A (| ClxB = @ and (ii) there
is a compact subset K of ClyA4, so that if A’ is a closed subset of ClxA4,
and A’ | K = @, then A’ is C.E.-separated from B.

For the rest of this paper, o will be as defined above. We shall prove
that X is a O-space if and only if « is a proximity on X, in which case
aX = F_X (3.6). Unless specifically stated, in the following results «
is not assumed to be a proximity on X.

LeEMMA 3.3. Suppose that KX is a perfect compactification of X, and that
Fy, Fy are closed subsets of X such that FigF,. Then if p € ClgxFi\F,
there is a KX-C.I. subset U, suchthat p e U,and Cly(U, N X)  Fo= @&,
hence U, (| ClgxF, = @.

PRrOOF. Suppose that FigF,; let K be a compact subset of F; witnessing
this fact. If p € ClgxxF;\Fi, then p ¢ K, so there is a closed subset F of
Fy such that p e ClgyxF;, and F; ) K = @. Thus p € ClxxF; and F; is
C.E.-separated from F,. Let & be a C.E. family such that (Clx(| J&)) N
F, = @, and F| c E, for some E € &. Since KX is a perfect compactifica-
tion of X, by 2.7 (iii), Exgx& is C.I in KX. Also, p € ClxxF; < Exgx&
by 2.8 (lll), while Clx(Uéa) ﬂ Fz = @, hence_ExKXé” ﬂ CIKXFZ = .

The following is an immediate consequence of 3.3.

COROLLARY 3.4. Suppose that KX is a perfect compactification of X,
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and that Fy, F, are closed subsets of X. If FigF,, then ClgxF; [\ ClgxF, =
.

LEMMA 3.5. Suppose that « is a proximity on X, and that aX is a perfect
compactification of X. Then aX\X is 0-dimensional, hence X is a 0-space
and aX = F_X.

PRrOOF. Suppose that T is a closed subset of aX\X, and that p € (a X\X)\
T. We must find a clopen subset U of aX\X such that p € U, while U
T = @. Now p ¢ Cl xT, so there exist open sets ¥, W of X such that
p€ Ex,xU, Cl,xT < Ex,xW, and Cl,xV (| Cl,xW = @&. Hence ClxVg
ClyW. If aX is a perfect compactification of X, then according to 3.3
there is an aX-C.I. open set U, such that p € U, while U, N Cl,x W = .
Then U, N (aX\X)is a clopen subset of @ X\X having the desired prop-
erties.

THEOREM 3.6. If X is any space, then the following are equivalent.
(i) X is aO-space.
(i) « is a proximity on X.

Furthermore, if o is a proximity on X, then a X = F_X.

Proor. (i) implies (ii). Suppose that X is a 0-space. We will prove that
a is a proximity on X, and that aX = F_X by showing that if Fy, F, are
closed subsets of X, then Clp xF; [ Clp xF, = @ if and only if FigF,.

Suppose that FigF,. Since F X is a perfect compactification, according
to 34, CIFOXFI ﬂ Clpeng = @

On the other hand, suppose that Clp xF; (| Clpx F» = . Since
F,X\X is O-dimensional, for each p € (Clp xF)\X, there is an F X-C.IL
open set U(p) such that p e U(p) while Cix(U(p) N X) N F; = @&. Let
K = Clp xF,\J{U(p): p € Clg xF,\X}. Then K is a compact subset of F;.
If Fjis a closed subset of F; such that F; | K = @, then Clp yF; c
(J{U(p): p € ClgxF,\X}. By compactness, there is a finite subset {p;,
P2 > Puj © ClpxF1\X such that ClpxF; < (J{U(p): 1 <i < n}.
Now (J{U(p): 1 £i < n}is a C.I. open set of F,X, so by 2.6, there is
a C.E. family & of open sets of X such that Exp y&=J{U(p,):1 Si <
n}. Now Clp xF{ © Exp x&, so by 2.8 (iii), there is E € & such that F| c
E. Also, since Cly((J{U(p) N X:1 Zi<n)) N F,= @, Clx(lJ&) N
F, = @. In other words, F; is C.E. separated from F,; that is, FigF,.
(ii) implies (i). Suppose that « is a proximity on X. According to 3.5,
to show that X is a O-space it suffices to prove that aX is a perfect com-
pactification of X.

First, suppose that V; and ¥, are disjoint C.I. subsets of fX. If y; €
V: N (BX\X) (i = 1, 2), we claim that (af) (yy) # (af)(y2). To see this,
note that there are closed subsets F; of X such that y;e€ ClgyF; < V;
(i =1, 2). By 2.6 there exists a C.E. family & such that Exgyé = V1.
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Since ClgxFy © Exgxé, by 2.8 (iii), F; < E, for some Ee€&. Also,
Cix(|J&) N F2 = (ClgxV1) N Vo= @, so Fy is C.E. separated from Fy;
that is FigF, Then Cl,xF; (| ClyxF, = @. Since (af)(y;) € Cl xF;,
(af)(7) # (af)(yo), and our claim is verified.

Now suppose that a X is not a perfect compactification of X. According
to 1.2, there is p € @ X'\ X such that (af)~(p)is not connected. Write (af)(p)
=T, U T, where T; and T, are disjoint closed subsets of (af)~(p). Since
(af)<(p)is compact, T; and T are disjoint compact subsets of 3., so there
are open sets U; and U, such that T; < U; (i = 1,2), and ClgxU;
ClgxU, = @. Since af'is a closed map, and (af)(p) = U; U U,, there are
open sets Wy and W, of X such that p € Ex,xW, < Cl,xW, < Ex,xW,,
and CloxW; < (af)[ClaxWa] © Uy U Uz Now ClyxWy (| Clox(X\Wy)
=@ ; that is Clxy Wig(X\W?). Also, (af ) (p) = (af ) [CloxW1] = Clgx W1.

In the following i =1, 2. Choose z;€(af)(p) N U; N ClgxW;.
According to 3.3, there are SX-C.I. sets S; such that z; € S;, and S; )
Clﬁx(X\Wz) = . Now S,' c U]_ U Ug. Let S; = S,- m U,’. Since
ClexUy N ClgxUy, = @ and S; ) (BX\X)is clopen in SX\X, S; N (BX\X)
is clopen in BX\X. In other words, S;is a C.I. subset of X. Also z, € S,
i=1,2, while S S; = U ) Uy = @. It follows from our earlier
claim that (af)(z;) # (af)(z9), which contradicts the fact that z; e
(af)=(p). Thus (af)=(p)is connected for each p € @ X\X, hence aX is a
perfect compactification of X.

4. Full 0-spaces. The correspondence between full C.I. sets and full
C.E. families that is outlined in the remarks following 2.6 and 2.7 allows
us to characterize full O-spaces.

DErINITIONS 4.1. (i). If A, B = X, then A4 is fully C.E. separated from
B if there is a full C.E. family & such that Clx(| J&) N CIxB = @, while
A < Eforsome E€§.

(ii). If X is any space, define a’ to be a relation on 2(X) as follows:
for A, B = X, AaB if and only if there is a compact subset K of ClyA
so that if 4’ is a closed subset of ClyA, and A’ () K = @, then A’ is
fully C.E. separated from B.

Then results 3.3-3.6 hold, if in the statements and proofs of the results,
“C.E”, “C.I”, “a”, and “0O-space” are replaced by “full C.E.”, “full
C.I”, “a’”, and “full 0-space” respectively, leaving us with the following
characterization of full 0-spaces.

THEOREM 4.2. If X is any space, then the following are equivalent.
(i) X is a full O-space.
(ii) o' is a proximity on X.

If o’ is a proximity on X, then ' X = F_X.
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Recall that a closed subset F of X is regular closed in X if ClyintyF =
F. The following result is 2.4 of [10].

LeEMMA 4.3. If A is a regular closed subset of X, B is closed in X, and
ClgxA\A < ClgxB\B, then Clx(A\B) is pseudocompact.

PROPOSITION 4.4. Let U be open in X. If ExpxU is C.I. in X, and p €
bdgx(ExpxU) ( (BX\X), then there is a closed pseudocompact subset F of
X such that p € ClgxF.

ProoF. By assumption ExgxU [ (8X\X)is clopen in 3X\X. Note that
bdﬁx(Exlng)\X = [ClﬁxU\Exngu]\X. If p € (ClﬁxU\EXﬁXv)\X, there
exists an open subset V' of X such that p € ExgyV, while (ClgxV) N
ExpxU < X. Let B = X\U. Then ClgxV (N (BX\X) = BX\ExpxU =
ClgxB. Since Cly(V\B)is regular closed, according to 4.3, Clx[Clx(V\B)\
B] = Cly(V\B) is a pseudocompact subset of X. Now Clx(V\B) =
Clx(V N U), and it is easily checked that p € Clgx(V () U). The proposi-
tion follows.

COROLLARY 4.5. Suppose X is a space in which pseudocompact closed
subsets are compact. If X is a full 0-space, then X is almost rimcompact.

PRrOOF. Suppose that pseudocompact closed subsets of X are compact.
It follows from 4.4 that if ExgyU is any full C.I. subset of 38X, then
bdgyxExpxU < X. This implies that any connected component of BX\X
having a basis in 8X of full C.I. sets has a basis of open sets whose boun-
daries are contained in X. In other words, if X is a full O-space, then X is
almost rimcompact.

COROLLARY 4.6. If X is realcompact or metacompact, then X is a full
0-space if and only if X is almost rimcompact.

In 3.9 of [2] we constructed a 0-space which was not almost rimcompact.
The details of 3.9 indicate that this space is a full 0-space. We do not
have an example of a 0-space which is not full—this question is left open
to the reader.
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