MULTIPLIERS FOR SOME SPACES OF BANACH ALGEBRA VALUED FUNCTIONS

HANG-CHIN LAI

ABSTRACT. Let G be a locally compact abelian group, and A be a commutative Banach algebra. Let $C_0(G, A)$ be the Banach algebra of A-valued continuous functions on G which vanish at infinity. It is the object of this paper to characterize the space of multipliers for the space $C_0(G, A)$ regarded as a Banach algebra and regarded as an $L^1(G, A)$ -module, respectively, where $L^1(G, A)$ is the Banach algebra of A-valued Bochner integrable functions on G. We prove that the space of algebra multipliers of $C_0(G, A)$ is isometrically isomorphic to $C^b(G, \mathcal{M}(A))$, the bounded continuous $\mathcal{M}(A)$ -valued functions on G where $\mathcal{M}(A)$ denotes the multiplier algebra of the Banach algebra A with a bounded approximate identity. It is proved also that the $L^1(G, A)$ -module homomorphisms of $C_0(G, A)$ is identified with $\mathcal{M}(G, A)$ when A has identity of norm 1 where $\mathcal{M}(G, A)$ is the Avalued regular Borel measure of bounded variation on G.

1. Introduction and preliminaries. Let G be a locally compact abelian group with Haar measure dt, and A be a commutative Banach algebra with a bounded approximate identity. The space $C_0(G, A)$ of A-valued continuous functions on G vanishing at infinity forms a commutative Banach algebra under pointwise products. M(G, A) is the space of Avalued regular Borel measures of bounded variation on G.

For any commutative Banach algebra A, a linear map $T: A \to A$ is called a multiplier for A if T(ab) = a(Tb) = (Ta)b. We denote by $\mathcal{M}(A)$ the space of all multipliers for A. Clearly $\mathcal{M}(A)$ is a Banach algebra as a subalgebra of bounded linear operators on A. For the general theory of multipliers we refer to Larsen [7], and some characterizations of multipliers of Banach algebras studied also in Lai [6]. For the theory of vector valued functions or vector measures, one can consult Dinculeanu [1], [2] and Johnson [4] for the spaces of Banach algebra valued functions on a locally compact group.

Subject Classification (AMS 1980): 43A22

Key Words and Phrases: Banach module, invariant operator, module homorphism, algebra multiplier, A-valued continuous linear functional.

With partial support from NSC Taiwan, Republic of China.

Received by the editors on April 13, 1983 and in revised form on August 23, 1983. Copyright © 1985 Rocky Mountain Mathematics Consortium

Recently, in 1981 Tewari, Dutta the Vaidya [10] and Khalil [5] studied the multipliers for some spaces of vector-valued functions on a locally compact abelian group G. In [10], they proved that the multiplier algebra for $L^1(G, A)$ is isometrically isomorphic to M(G, A) where $L^1(G, A)$ is the Banach algebra of A-valued functions on G under convolution and A has identity of norm 1. If G is a compact abelian group, Khalil [5] showed that $\mathcal{M}(L^1(G, A))$ is isomorphic to $M(G, \mathcal{M}(A))$ and the multipliers of the Hilbert algebra $L^2(G, A)$ is isomorphic to $L^{\infty}(\widehat{G}, \mathcal{M}(A))$.

We shall use the concept of module tensor products and their relations to multipliers (see Rieffel [8] and [9]). If V and W are A-modules, the Amodule tensor product $V \otimes_A W$ is defined to be the quotient Banach space $V \otimes_{\gamma} W/K$ where K is the closed linear subspace of the projective tensor product $V \otimes_{\gamma} W$ spanned by the elements $av \otimes w \cdot v \otimes aw$ with $a \in A, v \in V$ and $w \in W$. A continuous linear transformation T from Vto W is called A-module homomorphism if

$$T(a \cdot v) = a \cdot Tv$$
 for all $v \in V$ and $a \in A$.

The space of all A-module homomorphisms from V to W is denoted by $\operatorname{Hom}_A(V, W)$ which is a Banach space under the operator norm. Evidently $\operatorname{Hom}_A(A, A) = \mathcal{M}(A)$ the multiplier algebra of A. In [9] Rieffel has shown that $\operatorname{Hom}_A(V, W^*) \cong (V \otimes_A W)^*$, where \cong denotes the isometric isomorphism under which an operator $T \in \operatorname{Hom}_A(V, W^*)$ defines a linear functional on $V \otimes_A W$ with value $\langle Tv, w \rangle$ at $v \otimes w \in V \otimes_A W$.

It is known that $L^1(G, A) \cong L^1(G) \otimes_{\gamma} A$, the completed projective tensor product of $L^1(G)$ with A, and $C_0(G, A) \cong C_0(G) \otimes_{\varepsilon} A$, the completed injective tensor product of $C_0(G)$ with A. In [10] Theorem 4, it is proved that

$$\mathcal{M}(L^{1}(G, A)) = \operatorname{Hom}_{L^{1}(G, A)}(L^{1}(G, A), L^{1}(G, A))$$
$$\cong M(G, A)$$

where A is a commutative Banach algebra with identity of norm 1. It is proved also in [10] that an invariant operator of $L^1(G, A)$ need not be a multiplier for $L^1(G, A)$ which is different from the multipliers for $L^1(G)$ since a bounded linear operator on $L^1(G)$ is a multiplier of $L^1(G)$ if and only if it is an invariant operator.

Since $C_0(G, A)$ is a Banach algebra under pointwise product and supremum norm defined by $||f||_{\infty} = \sup_{t \in G} |f(t)|_A$, where $|\cdot|_A$ is the norm of A, and since it is also a Banach $L^1(G, A)$ -module under convolution, we study in this paper the multipliers for $C_0(G, A)$ of the following two types.

(a) T is a linear operator of $C_0(G, A)$ such that

$$T(f \cdot g) = f \cdot Tg = Tf \cdot g$$
 for $f, g \in C_0(G, A)$

Since $C_0(G, A)$ is a commutative Banach algebra with an approximate identity under pointwise product, it is without order. Then by the Closed Graph Theorem, it can be shown that the linear operator T satisfying the formula in (a) is continuous.

(b) T is a bounded linear operator of $C_0(G, A)$ such that

$$T(f * g) = f * Tg$$
 for all $f \in L^1(G, A)$ and $g \in C_0(G, A)$.

We say that the operators of type (a) are algebra multipliers and operators of type (b) are $L^1(G, A)$ -module multipliers for $C_0(G, A)$. We shall establish in this paper that

(1)
$$\operatorname{Hom}_{C_0(G,A)}(C_0(G,A), C_0(G,A)) = \mathscr{M}(C_0(G,A))$$
$$\cong C^b(G, \mathscr{M}(A))$$

and

(2)
$$\operatorname{Hom}_{L^{1}(G,A)}(C_{0}(G,A), C_{0}(G,A)) = \mathscr{M}_{L^{1}}(C_{0}(G,A))$$
$$\cong M(G,A).$$

Note that $C_0(G, A)$ is not a Banach algebra under convolution.

2. A characterization of the algebra multipliers for $C_0(G, A)$. The following lemma is useful subsequently.

LEMMA 1. If $T \in \mathcal{M}(C_0(G, A))$, then T(af) = aTf for $f \in C_0(G, A)$ and $a \in A$.

PROOF. Since $C_0(G)$ is a Banach algebra with a bounded approximate identity, $\{u_{\alpha}\}$, letting $f = f_1 \otimes b \in C_0(G) \bigotimes_{\varepsilon} A = C_0(G, A)$, one has

$$T(af) = \lim_{\alpha} T((u_{\alpha} \otimes a) \cdot (f_{1} \otimes b))$$
$$= \lim_{\alpha} (u_{\alpha} \otimes a) T(f_{1} \otimes b)$$
$$= aTf$$

for all $a \in A$, where the limit is in $C_0(G, A)$.

Our first result is to characterize the multipliers of type (a). It is similar to a result of Lai [6, Corrollary 6.5] where the strong continuity argument is used.

THEOREM 2. Let A be a Banach algebra with a bounded approximate identity $\{e_k\}$. Then

(3)
$$\mathscr{M}(C_0(G, A)) \cong C^b(G, \mathscr{M}(A)).$$

PROOF. Let $h \in C^b(G, \mathcal{M}(A))$ and $f \in C_0(G, A)$. Then $h \cdot f$ is a continuous function on G vanishing at infinity, that is, $hf \in C_0(G, A)$. Evidently h defines a multiplier, $T \in \mathcal{M}(C_0(G, A))$, by h(t)(f(t)) = Tf(t) and $||T|| = ||h||_{\infty}$.

Conversely, for any $a \in A$ and $f \in C_0(G)$, it is obvious that $af \in C_0(G, A)$ and $||af||_{\infty} = |a|_A |f|_{\infty}$. Thus if $T \in \mathcal{M}(C_0(G, A))$ then $T(af) \in C_0(G, A)$. Now if $f \in C_0(G)$, the mapping $t \to T(f \otimes a)(t)/f(t) = h_T(t)(a)$, for $a \in A$, defines an A-valued function whenever $f(t) \neq 0$. The function $h_T(t)$ defined in this way is independent of the choice of $f \in C_0(G)$. Indeed let $\{e_\alpha\}$ be a bounded approximate identity for A and f, $g \in C_0(G)$ such that $f(t) \neq 0$, $g(t) \neq 0$, we have

$$T(af \cdot e_{\alpha}g)(t) = e_{\alpha}g(t) \cdot T(af)(t)$$
$$= e_{\alpha}f(t) \cdot T(ag)(t)$$

or

$$e_{\alpha} \cdot \frac{T(af)(t)}{f(t)} = e_{\alpha} \cdot \frac{T(ag)(t)}{g(t)},$$

and then

$$\frac{T(af)(t)}{f(t)} = \frac{T(ag)(t)}{g(t)}.$$

Therefore $h_T(t)$ is a linear operator on A and we write

$$T(af)(t) = f(t)h_T(t)(a)$$

= $h_T(t)(af)(t)$ for all $a \in A, f \in C_0(G)$.

Moreover h_T is bounded and $||h_T(af)||_{\infty} \leq ||T|| ||af||_{\infty} = ||T|| ||a| ||f||_{\infty}$. This shows that h_T is strongly continuous.

We need to show, with emphasis on the fact, that the function $h_T(\cdot)$ is continuous on G with respect to the norm topology of $\mathcal{M}(A)$.

Let $t_0 \in G$. Then there exists $f \in C_0(G)$ such that $f(t_0) \neq 0$ and $N = N(t_0) = \{t \in G, f(t) \neq 0\}$ is an open neighborhood of t_0 . Thus $h_T(t)a = (T(af)(t)/f(t))$, for $t \in N$, is a strong continuous function of values in A. We let $\{t_a\} \subset N$ with $t_a \to t_0$ in G. Then we have to show that

$$\|h_T(t_{\alpha}) - h_T(t_0)\|_{\mathscr{M}(A)} = \sup_{|a| \le 1} |h_T(t_{\alpha})a - h_T(t)a|_A$$

$$\to 0 \text{ as } t_{\alpha} \to t_0.$$

Indeed,

BANACH ALGEBRA VALUED FUNCTIONS

$$\begin{aligned} |h_{T}(t_{\alpha})a - h_{T}(t_{0})a|_{A} &= \left| \frac{T(af)(t_{\alpha})}{f(t_{\alpha})} - \frac{T(af)(t_{0})}{f(t_{0})} \right|_{A} \\ &= \frac{1}{|f(t_{\alpha})f(t_{0})|} |f(t_{0})T(af)(t_{\alpha}) - f(t_{\alpha})T(af)(t_{0})|_{A} \\ &\leq \frac{1}{|f(t_{\alpha})f(t_{0})|} \{|f(t_{0})[T(af)(t_{\alpha}) - T(af)(t_{0})]|_{A} \\ &+ |[f(t_{\alpha}) - f(t_{0})]T(af)(t_{0})|_{A} \}. \end{aligned}$$

Since $f \in C_0(G)$, $f(t_\alpha) \to f(t_0)$ as $t_\alpha \to t_0$ in G, it follows that the second term of $\{\cdot\}$ in the last inequality tends to zero when $t_\alpha \to t_0$. It remains to show that the first term of $\{\cdot\}$ tends to zero uniformly on $\{a \in A; |a|_A \leq 1\}$. Let $\{e_k\}$ be a bounded approximate identity of A. Then for any $\varepsilon > 0$ there exists $k_0 = k_0(\varepsilon)$ depending on ε only such that $||e_{k_0}T(af) - T(af)||_{\infty} < \varepsilon/4$. For this $\varepsilon > 0$ and any $a \in A$ with $|a|_A \leq 1$, we have

$$|e_{k_0}T(af)(t_{\alpha}) - e_{k_0}T(af)(t_0)|_A = |T(ae_{k_0}f)(t_{\alpha}) - T(ae_{k_0}f)(t_0)|_A$$

= $|aT(e_{k_0}f)(t_{\alpha}) - aT(e_{k_0}f)(t_0)|_A$
 $\leq |T(\underline{e}_{k_0}f)(t_{\alpha}) - T(e_{k_0}f)(t_0)|_A$
 $< \frac{\varepsilon}{2}$, whenever t_{α} is near t_0 ,

since $T(e_{k_0}f) \in C_0(G, A)$. Hence

$$\begin{aligned} |T(af)(t_{\alpha}) - T(af)(t_{0})|_{A} &\leq |T(af)(t_{\alpha}) - e_{k_{0}}T(af)(t_{\alpha})|_{A} \\ &+ |e_{k_{0}}T(af)(t_{\alpha}) - e_{k_{0}}T(af)(t_{0})|_{A} \\ &+ |e_{k_{0}}T(af)(t_{0}) - T(af)(t_{0})|_{A} \\ &\leq 2||T(af) - e_{k_{0}}T(af)||_{\infty} \\ &+ |T(e_{k_{0}}f)(t_{\alpha}) - T(e_{k_{0}}f)(t_{0})|_{A} \\ &\leq \varepsilon \end{aligned}$$

when t_{α} near t_0 . Therefore

$$\lim_{\alpha\to t_0}|T(af)(t_{\alpha}) - T(af)(t_0)|_A < \varepsilon;$$

since ε is arbitrary, it follows that

$$\lim_{t_\alpha\to t_0}|T(af)(t_\alpha) - T(af)(t_0)|_A = 0$$

uniformly on $\{a \in A : |a|_A \leq 1\}$. Hence

$$\lim_{t_{\alpha}\to t_0} \|h_T(t_{\alpha}) - h_T(t_0)\|_{\mathscr{M}(A)} = 0.$$

Finally, we have

$$\|h_{T}(t)\|_{\mathscr{M}(A)} = \sup_{|af(t)|_{A}=1} |h_{T}(t)(af(t))|_{A}$$

=
$$\sup_{|af(t)|_{A}=1} |T(af)(t)|_{A}$$

\$\le ||T||,

and so $\sup_t \|h_T(t)\|_{\mathscr{M}(A)} = \|h_T\|_{\infty} \leq \|T\|$. On the other hand

$$\|T(af)\|_{\infty} = \sup_{t} |h_{T}(t)(af(t))|_{A}$$
$$\leq \sup_{t} \|h_{T}(t)\|_{\mathscr{M}(A)} \|af\|_{\infty}$$
$$= \|h_{T}\|_{\infty} |a|_{A} |f|_{\infty}.$$

Consequently, $||T|| \leq ||h_T||_{\infty}$ proves $||h_T||_{\infty} = ||T||$. Hence the proof is completed.

3. A-valued duality between $C_0(G, A)$ and M(G, A). The arguments in this section are similar to their counterparts in Larsen [7] for scalar function spaces. At first we give the following definition in the space of vector valued functions.

DEFINITION 1. We say that a space F(G, A) is an A-valued dual of the space E(G, A) if for each $f \in E(G, A)$, the pair $\langle f, g \rangle$ defines an element of A by

$$f \to \langle f, g \rangle = \int_G f(t)g(t)dt$$
 for $g \in F(G, A)$

and $|\langle f, g \rangle|_A \leq ||f||_E ||g||_F$.

That is, each $g \in F(G, A)$ defines a bounded linear A-valued functional which maps $f \in E(G, A) \rightarrow \langle f, g \rangle \in A$.

Here any $f \in E(G, A)$ and $g \in F(G, A)$ form a dual pair $\langle f, g \rangle$ of A-valued, and F(G, A) is considered as the A-valued dual space of E(G, A) with respect to the weak*-topology induced from E(G, A), that is, each $g \in$ F(G, A) corresponds to an A-valued linear functional

$$f \to \langle f, g \rangle = \int_G f(t)g(t)dt$$

which is continuous in the weak*-topology induced from F(G, A). We denote by $F_W(G, A)$ the A-valued continuous linear functional of E(G, A) in weak*-topology. Then E(G, A) is the A-valued dual of $F_W(G, A)$.

By Definition 1, M(G, A) is the A-valued dual of $C_0(G, A)$ under which each $\mu \in M(G, A)$ is associated with the functional defined by

(4)
$$f \to \langle f, \mu \rangle = \int_G f(t) d\mu(t) \quad f \in C_0(G, A)$$

(cf. Dinculeanu [1], [2]). Evidently, $|\langle f, \mu \rangle|_A \leq ||f||_{\infty} ||\mu||$, and the integration in (4) is well defined since $C_c(G, A)$ is dense in $C_0(G, A)$ and for $f \in C_c(G, A)$, the integral in (4) is approximable by a finite sum of elements of A (see Johnson [4]).

The convolution of $\mu, \nu \in M(G, A)$ is defined as an A-valued measure by the following formula.

$$\langle f, \mu * \nu \rangle = \int_G f(t) d(\mu * \nu)(t)$$

= $\int_G \int_G f(ts) d\mu(s) d\nu(t)$ for any $f \in C_0(G, A)$.

This is well defined by the same reason given above.

LEMMA 3. If $T \in \mathcal{M}_{L^1}(C_0(G, A))$, then T commutes with the translation operator, ρ_s , that is, $T\rho_s = \rho_s T$ for every $s \in G$. Here $\rho_s f(t) = f(ts)$.

PROOF. Let $f \in L^1(G, A)$, $g \in C_0(G, A)$ and $T \in \text{Hom}_{L^1(G,A)}(C_0(G, A))$. Then f * g and T(f * g) = f * Tg are in $C_0(G, A)$. Thus for $s \in G$,

$$\rho_{s}T(f * g)(0) = T(f * g)(s) = f * Tg(s) = \rho_{s}f * Tg(0) = T(\rho_{s}f * g)(0) = T\rho_{s}(f * g)(0).$$

Hence $\rho_s T = T \rho_s$.

In [10. Theorem 3], it has shown that there exists an invariant operator T of $L^1(G, A)$, that is, T is a bounded linear operator of $L^1(G, A)$ commuting with transiation, such that T is not a multiplier of $L^1(G, A)$. This means that T does not commute with convolution in $L^1(G, A)$. It follows that an invariant operator of $C_0(G, A)$ need not be an $L^1(G, A)$ -module homomorphism. We establish the following results which are those for the scalar valued functions in Larsen [7]. The only difference is that commuting with translation is modified by commuting with convolution.

The following theorem is essential in the characterization of $L^1(G, A)$ -module multipliers for $C_0(G, A)$.

THEOREM 4. Let A be a commutative Banach algebra with an identity e of norm 1. Then a continuous linear operator T on $M_W(G, A)$ commutes with convolution in M(G, A) if and only if there exists a unique $\xi \in M(G, A)$ such that $T\mu = \xi * \mu$, for all $\mu \in M(G, A)$. PROOF. If T is a continuous linear operator on $M_W(G, A)$ commuting with convolution in M(G, A), then for any $\mu, \nu \in M(G, A)$, $T(\nu * \mu) = T\nu *$ μ . Let $\nu = \delta$ be the Dirac measure with point mass at the origin of G. Then δ is an identity of M(G, A). It follows that $T\mu = (T\delta) * \mu$ for each $\mu \in M(G, A)$. That is, $\xi = T\delta$ is a fixed unique element in M(G, A) such that $T\mu = \xi * \mu$. Conversely, if $\mu \to T\mu = \xi * \mu$ for all $\mu \in M(G, A)$, then it is obvious that T is a linear operator on $M_W(G, A)$ commuting with convolution. We have only to show that T is continuous. In fact, let $\{\mu_{\alpha}\} \subset M_W(G, A)$ converge to $\mu \in M_W(G, A)$, that is, for any $h \in C_0(G, A)$, $\lim_{\alpha} \langle h, \mu_{\alpha} \rangle = \langle h, \mu \rangle$ in A-norm topology. Since $\langle h, T\mu_{\alpha} \rangle = \langle h, \xi * \mu_{\alpha} \rangle$ $= \langle (\tilde{h} * \xi), \mu_{\alpha} \rangle$, where $\tilde{h}(t) = h(t^{-1})$ and $\tilde{h} \in C_0(G, A)$ if $h \in C_0(G, A)$, the convolution $\tilde{h} * \xi$ of $\tilde{h} \in C_0(G, A)$ and $\xi \in M(G, A)$ is given by $\tilde{h} * \xi(t)$ $= \int_{Q} \tilde{h}(ts^{-1})d\xi(s) \in A$. This is an element of $C_0(G, A)$. It follows that

$$\langle h, T\mu_{\alpha} \rangle = \langle (\tilde{h} * \xi)^{\sim}, \mu_{\alpha} \rangle$$

$$\rightarrow \langle (\tilde{h} * \xi)^{\sim}, \mu \rangle = \langle h, \xi * \mu \rangle = \langle h, T\mu \rangle$$

in the topology of A. Hence $\{T\mu_{\alpha}\}$ converges to $T\mu$ in $M_W(G, A)$, and the proof is completed.

4. The L¹(G, A)-module multipliers for C₀(G, A). The space $C_0(G, A)$ is an $L^1(G, A)$ -module under convolution, its multiplier is defined to be the space of module homomorphisms mentioned in §1. We characterize this type of multiplies as follows.

THEOREM 5. Let A be a Banach algebra with identity of norm 1, and T be a bounded linear operator on $C_0(G, A)$. Then the following two statements are equivalent:

i) $T \in \mathcal{M}_{L^1}(C_0(G, A))$

ii) There exists a unique $\mu \in M(G, A)$ such that $Tf = \mu * f$ for all $f \in C_0(G, A)$.

Moreover, in the correspondence of T and μ , we have the isometric isomorphic relation

(2)
$$\mathscr{M}_{L^1}(C_0(G, A)) \cong M(G, A).$$

PROOF. ii) implies i) is easy. In fact, let $\mu \in M(G, A)$, we define a mapping T by

$$f \to Tf = \mu * f$$
 for all $f \in C_0(G, A)$.

The convolution of M(G, A) and $C_0(G, A)$ determines an element in $C_0(G, A)$ and this T is a bounded linear operator on $C_0(G, A)$. Evidently, T is an $L^1(G, A)$ -module homomorphism since for $g \in L^1(G, A)$, $T(g * f) = \mu * g * f = g * \mu * f = g * Tf$ for all f in $C_0(G, A)$. Moreover,

$$\|Tf\|_{\infty} = \|\mu * f\|_{\infty}$$

= $\sup_{t} |\mu * f(t)|_{A}$
= $\sup_{t} \int_{G} |f(ts^{-1})|_{A} |d\mu(s)|_{A}$
 $\leq \|f\|_{\infty} \|\mu\|.$

This implies $||T|| \leq ||\mu||$. On the other hand, since $||\mu * f||_{\infty} = ||Tf||_{\infty} \leq ||T|| ||f||_{\infty}$, we have $||\mu|| \leq ||T||$, so that $||T|| = ||\mu||$.

i) implies ii). Let $T \in \mathcal{M}_{L^1}(C_0(G, A))$. Since M(G, A) is the A-valued dual of $C_0(G, A)$, we can consider a mapping

$$T^*: M_W(G, A) \to M_W(G, A)$$

defined by $\langle Tf, \mu \rangle = \langle f, T^*\mu \rangle$ in A, for any $f \in C_0(G, A)$ and $\mu \in M(G, A)$. Then for any $\mu, \nu \in M(G, A)$,

$$\langle f, T^*(\mu * \nu) \rangle = \langle Tf, \mu * \nu \rangle = \langle Tf * \tilde{\mu}, \nu \rangle \\ = \langle T(f * \tilde{\mu}), \nu \rangle = \langle f * \tilde{\mu}, T^* \nu \rangle \\ = \langle f, \mu * T^* \nu \rangle$$

for all $f \in C_0(G, A)$, where

$$f * \tilde{\mu}(t) = (\tilde{f} * \mu)^{\sim}(t) = (\tilde{f} * \mu)(t^{-1})$$

= $\int \tilde{f}(t^{-1}s^{-1})d\mu(s) = \int f(st)d\mu(s).$

Therefore $T^*(\mu * \nu) = \mu * T^*\nu$ in $M_W(G, A)$. That is, T^* commutes with convolution in $M_W(G, A)$. Applying Theorem 4, there is a unique $\xi \in M(G, A)$ such that $T^*\mu = \xi * \mu$. Hence $\langle Tf, \mu \rangle = \langle f, T^*\mu \rangle = \langle f, \xi * \mu \rangle = \langle f * \xi, \mu \rangle$ for all $\mu \in M(G, A)$. This implies $Tf = f * \xi$, for $\xi \in M(G, A)$. It is easy to verify that $||T|| = ||\xi||$. Therefore

$$\mathcal{M}_{L^1}(C_0(G, A)) \cong M(G, A).$$

The proof is completed.

REMARK. In Theorem 5, the condition on A having identity of norm 1 is necessary. Because if G is a trivial group consisting of the identity element only, then it reduces to $L^1(G, A) = A = C_0(G, A) = M(G, A)$, and the isometric isomorphic relation reduces to $\mathcal{M}(A) = A$. This equality holds if and only if A has identity.

ACKNOWLEDGEMENTS. The author would like to thank the referee for his comments.

H.C. LAI

References

1. N. Dinculeanu, Vector Measures, Pergaman, Oxford, 1967.

2. ——, Integration on Locally Compact Spaces, Noordhoff International Publishing, 1974.

3. E. Hewitt and K.A. Ross, *Abstract Harmonic Analysis, Vol.* II, Die Grundlehren der Math. Wissenschaften, Band 152, Springer-Verlag, Berlin and New York, 1970.

4. G.P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429.

5. Roshdi Khalil, Multipliers for some spaces of vector-valued functions, J. Univ. Kuwait (Sci) 8 (1981), 1-7.

6. H.C. Lai, Multipliers of a Banach algebra in the second conjugate algebra as an idealizer, Tohoku Math. J. 26 (1974), 431-452.

7. R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin and New York, 1971.

8. M.A. Rieffel, Multipliers and tensor products on L^{\flat} -spaces of locally compact groups, Studia Math. **33** (1969), 71–82.

9. M.A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491.

10. U. Tewari, M. Dutta and D.P. Vaidya, Multipliers of group algebras of vectorvalued functions, Proc. Amer. Math. Soc. 81 (1981), 223-229.

INSTITUTE OF MATHEMATICS, NATIONAL TSING HUA UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA