MULTIPLIERS FOR SOME SPACES OF BANACH ALGEBRA VALUED FUNCTIONS

HANG-CHIN LAI

Abstract

Let G be a locally compact abelian group, and A be a commutative Banach algebra. Let $C_{0}(G, A)$ be the Banach algebra of A-valued continuous functions on G which vanish at infinity. It is the object of this paper to characterize the space of multipliers for the space $C_{0}(G, A)$ regarded as a Banach algebra and regarded as an $L^{1}(G, A)$-module, respectively, where $L^{1}(G, A)$ is the Banach algebra of A-valued Bochner integrable functions on G. We prove that the space of algebra multipliers of $C_{0}(G, A)$ is isometrically isomorphic to $C^{b}(G, \mathscr{M}(A))$, the bounded continuous $\mathscr{M}(A)$-valued functions on G where $\mathscr{M}(A)$ denotes the multiplier algebra of the Banach algebra A with a bounded approximate identity. It is proved also that the $L^{1}(G, A)$-module homomorphisms of $C_{0}(G, A)$ is identified with $M(G, A)$ when A has identity of norm 1 where $M(G, A)$ is the A valued regular Borel measure of bounded variation on G.

1. Introduction and preliminaries. Let G be a locally compact abelian group with Haar measure $d t$, and A be a commutative Banach algebra with a bounded approximate identity. The space $C_{0}(G, A)$ of A-valued continuous functions on G vanishing at infinity forms a commutative Banach algebra under pointwise products. $M(G, A)$ is the space of A valued regular Borel measures of bounded variation on G.

For any commutative Banach algebra A, a linear map $T: A \rightarrow A$ is called a multiplier for A if $T(a b)=a(T b)=(T a) b$. We denote by $\mathscr{M}(A)$ the space of all multipliers for A. Clearly $\mathscr{M}(A)$ is a Banach algebra as a subalgebra of bounded linear operators on A. For the general theory of multipliers we refer to Larsen [7], and some characterizations of multipliers of Banach algebras studied also in Lai [6]. For the theory of vector valued functions or vector measures, one can consult Dinculeanu [1], [2] and Johnson [4] for the spaces of Banach algebra valued functions on a locally compact group.

[^0]Rzeently, in 1981 Tewari, Dutta the Vaidya [10] and Khalil [5] studied the multipliers for some spaces of vector-valued functions on a locally compact abelian group G. In [10], they proved that the multiplier algebra for $L^{1}(G, A)$ is isometrically isomorphic to $M(G, A)$ where $L^{1}(G, A)$ is the Banach algebra of A-valued functions on G under convolution and A has identity of norm 1. If G is a compact abelian group, Khalil [5] showed that $\mathscr{M}\left(L^{1}(G, A)\right)$ is isomorphic to $M(G, \mathscr{M}(A))$ and the multipliers of the Hilbert algebra $L^{2}(G, A)$ is isomorphic to $L^{\infty}(\hat{G}, \mathscr{M}(A))$.

W e shall use the concept of module tensor products and their relations to multipliers (see Rieffel [8] and [9]). If V and W are A-modules, the A module tensor product $V \otimes_{A} W$ is defined to be the quotient Banach space $V \hat{\otimes}_{r} W / K$ where K is the closed linear subspace of the projective tensor product $V \hat{\otimes}_{T} W$ spanned by the elements $a v \otimes w-v \otimes a w$ with $a \in A, v \in V$ and $w \in W$. A continuous linear transformation T from V to W is called A-module homomorphism if

$$
T(a \cdot v)=a \cdot T v \quad \text { for all } v \in V \text { and } a \in A .
$$

The space of all A-module homomorphisms from V to W is denoted by $\operatorname{Hom}_{A}(V, W)$ which is a Banach space under the operator norm. Evidently $\operatorname{Hom}_{A}(A, A)=\mathscr{M}(A)$ the multiplier algebra of A. In [9] Rieffel has shown that $\operatorname{Hom}_{A}\left(V, W^{*}\right) \cong\left(V \otimes_{A} W\right)^{*}$, where \cong denotes the isometric isomorphism under which an operator $T \in \operatorname{Hom}_{A}\left(V, W^{*}\right)$ defines a linear functional on $V \otimes_{A} W$ with value $\langle T v, w\rangle$ at $v \otimes w \in V \otimes_{A} W$.

It is known that $L^{1}(G, A) \cong L^{1}(G) \hat{\otimes}_{F} A$, the completed projective tensor product of $L^{1}(G)$ with A, and $C_{0}(G, A) \cong C_{0}(G) \otimes_{\varepsilon} A$, the completed injective tensor product of $C_{0}(G)$ with A. In [10] Theorem 4, it is proved that

$$
\begin{aligned}
\mathscr{M}\left(L^{1}(G, A)\right) & =\operatorname{Hom}_{L^{1}(G, A)}\left(L^{1}(G, A), L^{1}(G, A)\right) \\
& \cong M(G, A)
\end{aligned}
$$

where A is a commutative Banach algebra with identity of norm 1. It is proved also in [10] that an invariant operator of $L^{1}(G, A)$ need not be a multiplier for $L^{1}(G, A)$ which is different from the multipliers for $L^{1}(G)$ since a bounded linear operator on $L^{1}(G)$ is a multiplier of $L^{1}(G)$ if and only if it is an invariant operator.

Since $C_{0}(G, A)$ is a Banach algebra under pointwise product and supremum norm defined by $\|f\|_{\infty}=\sup _{t \in G}|f(t)|_{A}$, where $|\cdot|_{A}$ is the norm of A, and since it is also a Banach $L^{1}(G, A)$-module under convolution, we study in this paper the multipliers for $C_{0}(G, A)$ of the following two types.
(a) T is a linear operator of $C_{0}(G, A)$ such that

$$
T(f \cdot g)=f \cdot T g=T f \cdot g \quad \text { for } f, g \in C_{0}(G, A)
$$

Since $C_{0}(G, A)$ is a commutative Banach algebra with an approximate identity under pointwise product, it is without order. Then by the Closed Graph Theorem, it can be shown that the linear operator T satisfying the formula in (a) is continuous.
(b) T is a bounded linear operator of $C_{0}(G, A)$ such that

$$
T(f * g)=f * T g \text { for all } f \in L^{1}(G, A) \text { and } g \in C_{0}(G, A) .
$$

We say that the operators of type (a) are algebra multipliers and operators of type (b) are $L^{1}(G, A)$-module multipliers for $C_{0}(G, A)$. We shall establish in this paper that

$$
\begin{align*}
\operatorname{Hom}_{C_{0}(G, A)}\left(C_{0}(G, A), C_{0}(G, A)\right) & =\mathscr{M}\left(C_{0}(G, A)\right) \tag{1}\\
& \cong C^{b}(G, \mathscr{M}(A))
\end{align*}
$$

and
(2)

$$
\begin{aligned}
\operatorname{Hom}_{L^{1}(G, A)}\left(C_{0}(G, A), C_{0}(G, A)\right) & =\mathscr{M}_{L^{1}}\left(C_{0}(G, A)\right) \\
& \cong M(G, A) .
\end{aligned}
$$

Note that $C_{0}(G, A)$ is not a Banach algebra under convolution.
2. A characterization of the algebra multipliers for $\mathbf{C}_{0}(\mathbf{G}, \mathbf{A})$. The following lemma is useful subsequently.

Lemma 1. If $T \in \mathscr{M}\left(C_{0}(G, A)\right)$, then $T(a f)=a T f$ for $f \in C_{0}(G, A)$ and $a \in A$.

Proof. Since $C_{0}(G)$ is a Banach algebra with a bounded approximate identity, $\left\{u_{\alpha}\right\}$, letting $f=f_{1} \otimes b \in C_{0}(G) \check{\otimes}_{\varepsilon} A=C_{0}(G, A)$, one has

$$
\begin{aligned}
T(a f) & =\lim _{\alpha} T\left(\left(u_{\alpha} \otimes a\right) \cdot\left(f_{1} \otimes b\right)\right) \\
& =\lim _{\alpha}\left(u_{\alpha} \otimes a\right) T\left(f_{1} \otimes b\right) \\
& =a T f
\end{aligned}
$$

for all $a \in A$, where the limit is in $C_{0}(G, A)$.
Our first result is to characterize the multipliers of type (a). It is similar to a result of Lai [6, Corrollary 6.5] where the strong continuity argument is used.

Theorem 2. Let A be a Banach algebra with a bounded approximate identity $\left\{e_{k}\right\}$. Then

$$
\begin{equation*}
\mathscr{M}\left(C_{0}(G, A)\right) \cong C^{b}(G, \mathscr{M}(A)) . \tag{3}
\end{equation*}
$$

Proof. Let $h \in C^{b}(G, \mathscr{M}(A))$ and $f \in C_{0}(G, A)$. Then $h \cdot f$ is a continuous function on G vanishing at infinity, that is, $h f \in C_{0}(G, A)$. Evidently h defines a multiplier, $T \in \mathscr{M}\left(C_{0}(G, A)\right)$, by $h(t)(f(t))=T f(t)$ and $\|T\|=$ $\|h\|_{\infty}$.

Conversely, for any $a \in A$ and $f \in C_{0}(G)$, it is obvious that $a f \in C_{0}(G, A)$ and $\|a f\|_{\infty}=|a|_{A}|f|_{\infty}$. Thus if $T \in \mathscr{M}\left(C_{0}(G, A)\right)$ then $T(a f) \in C_{0}(G, A)$. Now if $f \in C_{0}(G)$, the mapping $t \rightarrow T(f \otimes a)(t) / f(t)=h_{T}(t)(a)$, for $a \in A$, defines an A-valued function whenever $f(t) \neq 0$. The function $h_{T}(t)$ defined in this way is independent of the choice of $f \in C_{0}(G)$. Indeed let $\left\{e_{\alpha}\right\}$ be a bounded approximate identity for A and $f, g \in C_{0}(G)$ such that $f(t) \neq 0$, $g(t) \neq 0$, we have

$$
\begin{aligned}
T\left(a f \cdot e_{\alpha} g\right)(t) & =e_{\alpha} g(t) \cdot T(a f)(t) \\
& =e_{\alpha} f(t) \cdot T(a g)(t)
\end{aligned}
$$

or

$$
e_{\alpha} \cdot \frac{T(a f)(t)}{f(t)}=e_{\alpha} \cdot \frac{T(a g)(t)}{g(t)}
$$

and then

$$
\frac{T(a f)(t)}{f(t)}=\frac{T(a g)(t)}{g(t)}
$$

Therefore $h_{T}(t)$ is a linear operator on A and we write

$$
\begin{aligned}
T(a f)(t) & =f(t) h_{T}(t)(a) \\
& =h_{T}(t)(a f)(t) \quad \text { for all } a \in A, f \in C_{0}(G)
\end{aligned}
$$

Moreover h_{T} is bounded and $\left\|h_{T}(a f)\right\|_{\infty} \leqq\|T\|\|a f\|_{\infty}=\|T\||a||f|_{\infty}$. This shows that h_{T} is strongly continuous.

We need to show, with emphasis on the fact, that the function $h_{T}(\cdot)$ is continuous on G with respect to the norm topology of $\mathscr{M}(A)$.

Let $t_{0} \in G$. Then there exists $f \in C_{0}(G)$ such that $f\left(t_{0}\right) \neq 0$ and $N=$ $N\left(t_{0}\right)=\{t \in G, f(t) \neq 0\}$ is an open neighborhood of t_{0}. Thus $h_{T}(t) a=$ $(T(a f)(t) / f(t)$, for $t \in N$, is a strong continuous function of values in A. We let $\left\{t_{\alpha}\right\} \subset N$ with $t_{\alpha} \rightarrow t_{0}$ in G. Then we have to show that

$$
\begin{aligned}
\left\|h_{T}\left(t_{\alpha}\right)-h_{T}\left(t_{0}\right)\right\|_{\mathscr{M}(A)} & =\sup _{|a|_{A} \leq 1}\left|h_{T}\left(t_{\alpha}\right) a-h_{T}(t) a\right|_{A} \\
& \rightarrow 0 \text { as } t_{\alpha} \rightarrow t_{0} .
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
\left|h_{T}\left(t_{\alpha}\right) a-h_{T}\left(t_{0}\right) a\right|_{A}= & \left|\frac{T(a f)\left(t_{\alpha}\right)}{f\left(t_{\alpha}\right)}-\frac{T(a f)\left(t_{0}\right)}{f\left(t_{0}\right)}\right|_{A} \\
= & \frac{1}{\left|f\left(t_{\alpha}\right) f\left(t_{0}\right)\right|}\left|f\left(t_{0}\right) T(a f)\left(t_{\alpha}\right)-f\left(t_{\alpha}\right) T(a f)\left(t_{0}\right)\right|_{A} \\
\leqq & \frac{1}{\left|f\left(t_{\alpha}\right) f\left(t_{0}\right)\right|}\left\{\left|f\left(t_{0}\right)\left[T(a f)\left(t_{\alpha}\right)-T(a f)\left(t_{0}\right)\right]\right|_{A}\right. \\
& \left.+\left|\left[f\left(t_{\alpha}\right)-f\left(t_{0}\right)\right] T(a f)\left(t_{0}\right)\right|_{A}\right\} .
\end{aligned}
$$

Since $f \in C_{0}(G), f\left(t_{\alpha}\right) \rightarrow f\left(t_{0}\right)$ as $t_{\alpha} \rightarrow t_{0}$ in G, it follows that the second term of $\{\cdot\}$ in the last inequality tends to zero when $t_{\alpha} \rightarrow t_{0}$. It remains to show that the first term of $\{\cdot\}$ tends to zero uniformly on $\left\{a \in A ;|a|_{A} \leqq 1\right\}$. Let $\left\{e_{k}\right\}$ be a bounded approximate identity of A. Then for any $\varepsilon>0$ there exists $k_{0}=k_{0}(\varepsilon)$ depending on ε only such that $\left\|e_{k_{0}} T(a f)-T(a f)\right\|_{\infty}$ $<\varepsilon / 4$. For this $\varepsilon>0$ and any $a \in A$ with $|a|_{A} \leqq 1$, we have

$$
\begin{aligned}
\left|e_{k_{0}} T(a f)\left(t_{\alpha}\right)-e_{k_{0}} T(a f)\left(t_{0}\right)\right|_{A} & =\left|T\left(a e_{k_{0}} f\right)\left(t_{\alpha}\right)-T\left(a e_{k_{0}} f\right)\left(t_{0}\right)\right|_{A} \\
& =\left|a T\left(e_{k_{0}} f\right)\left(t_{\alpha}\right)-a T\left(e_{k_{0}} f\right)\left(t_{0}\right)\right|_{A} \\
& \leqq\left|T\left(e_{k_{0}} f\right)\left(t_{\alpha}\right)-T\left(e_{k_{0}} f\right)\left(t_{0}\right)\right|_{A} \\
& <\frac{\varepsilon}{2}, \text { whenever } t_{\alpha} \text { is near } t_{0}
\end{aligned}
$$

since $T\left(e_{k_{0}} f\right) \in C_{0}(G, A)$. Hence

$$
\begin{aligned}
&\left|T(a f)\left(t_{\alpha}\right)-T(a f)\left(t_{0}\right)\right|_{A} \leqq\left|T(a f)\left(t_{\alpha}\right)-e_{k_{0}} T(a f)\left(t_{\alpha}\right)\right|_{A} \\
&+\left|e_{k_{0}} T(a f)\left(t_{\alpha}\right)-e_{k_{0}} T(a f)\left(t_{0}\right)\right|_{A} \\
&+\left|e_{k_{0}} T(a f)\left(t_{0}\right)-T(a f)\left(t_{0}\right)\right|_{A} \\
& \leqq 2\left\|T(a f)-e_{k_{0}} T(a f)\right\|_{\infty} \\
&+\left|T\left(e_{k_{0}} f\right)\left(t_{\alpha}\right)-T\left(e_{k_{0}} f\right)\left(t_{0}\right)\right|_{A} \\
&<\varepsilon
\end{aligned}
$$

when t_{α} near t_{0}. Therefore

$$
\lim _{t_{\alpha} \rightarrow t_{0}}\left|T(a f)\left(t_{\alpha}\right)-T(a f)\left(t_{0}\right)\right|_{A}<\varepsilon
$$

since ε is arbitrary, it follows that

$$
\lim _{t_{\alpha} \rightarrow t_{0}}\left|T(a f)\left(t_{\alpha}\right)-T(a f)\left(t_{0}\right)\right|_{A}=0
$$

uniformly on $\left\{a \in A:|a|_{A} \leqq 1\right\}$. Hence

$$
\lim _{t_{\alpha} \rightarrow t_{0}}\left\|h_{T}\left(t_{\alpha}\right)-h_{T}\left(t_{0}\right)\right\|_{\mathscr{M}(A)}=0
$$

Finally, we have

$$
\begin{aligned}
\left\|h_{T}(t)\right\|_{\mathscr{M}(A)} & =\sup _{|a f(t)|_{A}=1}\left|h_{T}(t)(a f(t))\right|_{A} \\
& =\sup _{|a f(t)|_{A}=1}|T(a f)(t)|_{A} \\
& \leqq\|T\|,
\end{aligned}
$$

and so $\sup _{t}\left\|h_{T}(t)\right\|_{M(A)}=\left\|h_{T}\right\|_{\infty} \leqq\|T\|$. On the other hand

$$
\begin{aligned}
\|T(a f)\|_{\infty} & =\sup _{t}\left|h_{T}(t)(a f(t))\right|_{A} \\
& \leqq \sup _{t}\left\|h_{T}(t)\right\|_{\mathcal{K}(A)}\|a f\|_{\infty} \\
& =\left\|h_{T}\right\|_{\infty}|a|_{A}|f|_{\infty} .
\end{aligned}
$$

Consequently, $\|T\| \leqq\left\|h_{T}\right\|_{\infty}$ proves $\left\|h_{T}\right\|_{\infty}=\|T\|$. Hence the proof is completed.
3. A-valued duality between $C_{0}(G, A)$ and $M(G, A)$. The arguments in this section are similar to their counterparts in Larsen [7] for scalar function spaces. At first we give the following definition in the space of vector valued functions.

Definition 1. We say that a space $F(G, A)$ is an A-valued dual of the space $E(G, A)$ if for each $f \in E(G, A)$, the pair $\langle f, g\rangle$ defines an element of A by

$$
f \rightarrow\langle f, g\rangle=\int_{G} f(t) g(t) d t \text { for } g \in F(G, A)
$$

and $|\langle f, g\rangle|_{A} \leqq\|f\|_{E}\|g\|_{F}$.
That is, each $g \in F(G, A)$ defines a bounded linear A-valued functional which maps $f \in E(G, A) \rightarrow\langle f, g\rangle \in A$.
Here any $f \in E(G, A)$ and $g \in F(G, A)$ form a dual pair $\langle f, g\rangle$ of A-valued, and $F(G, A)$ is considered as the A-valued dual space of $E(G, A)$ with respect to the weak*-topology induced from $E(G, A)$, that is, each $g \in$ $F(G, A)$ corresponds to an A-valued linear functional

$$
f \rightarrow\langle f, g\rangle=\int_{G} f(t) g(t) d t
$$

which is continuous in the weak*-topology induced from $F(G, A)$. We denote by $F_{W}(G, A)$ the A-valued continuous linear functional of $E(G, A)$ in weak*-topology. Then $E(G, A)$ is the A-valued dual of $F_{W}(G, A)$.

By Definition 1, $M(G, A)$ is the A-valued dual of $C_{0}(G, A)$ under which each $\mu \in M(G, A)$ is associated with the functional defined by

$$
\begin{equation*}
f \rightarrow\langle f, \mu\rangle=\int_{G} f(t) d \mu(t) \quad f \in C_{0}(G, A) \tag{4}
\end{equation*}
$$

(cf. Dinculeanu [1], [2]). Evidently, $|\langle f, \mu\rangle|_{A} \leqq\|f\|_{\infty}\|\mu\|$, and the integration in (4) is well defined since $C_{c}(G, A)$ is dense in $C_{0}(G, A)$ and for $f \in C_{c}(G, A)$, the integral in (4) is approximable by a finite sum of elements of A (see Johnson [4]).

The convolution of $\mu, \nu \in M(G, A)$ is defined as an A-valued measure by the following formula.

$$
\begin{aligned}
\langle f, \mu * \nu\rangle & =\int_{G} f(t) d(\mu * \nu)(t) \\
& =\int_{G} \int_{G} f(t s) d \mu(s) d \nu(t) \text { for any } f \in C_{0}(G, A)
\end{aligned}
$$

This is well defined by the same reason given above.
Lemma 3. If $T \in \mathscr{M}_{L^{1}}\left(C_{0}(G, A)\right)$, then T commutes with the translation operator, ρ_{s}, that is, $T \rho_{s}=\rho_{s} T$ for every $s \in G$. Here $\rho_{s} f(t)=f(t s)$.

Proof. Let $f \in L^{1}(G, A), g \in C_{0}(G, A)$ and $T \in \operatorname{Hom}_{L^{1}(G, A)}\left(C_{0}(G, A)\right)$. Then $f * g$ and $T(f * g)=f * T g$ are in $C_{0}(G, A)$. Thus for $s \in G$,

$$
\begin{aligned}
\rho_{s} T(f * g)(0) & =T(f * g)(s) \\
& =f * T g(s) \\
& =\rho_{s} f * T g(0) \\
& =T\left(\rho_{s} f * g\right)(0) \\
& =T \rho_{s}(f * g)(0)
\end{aligned}
$$

Hence $\rho_{s} T=T \rho_{s}$.
In [10. Theorem 3], it has shown that there exists an invariant operator T of $L^{1}(G, A)$, that is, T is a bounded linear operator of $L^{1}(G, A)$ commuting with transiation, such that T is not a multiplier of $L^{1}(G, A)$. This means that T does not commute with convolution in $L^{1}(G, A)$. It follows that an invariant operator of $C_{0}(G, A)$ need not be an $L^{1}(G, A)$-module homomorphism. We establish the following results which are those for the scalar valued functions in Larsen [7]. The only difference is that commuting with translation is modified by commuting with convolution.

The following theorem is essential in the characterization of $L^{1}(G, A)$ module multipliers for $C_{0}(G, A)$.

Theorem 4. Let A be a commutative Banach algebra with an identity e of norm 1. Then a continuous linear operator T on $M_{W}(G, A)$ commutes with convolution in $M(G, A)$ if and only if there exists a unique $\xi \in M(G, A)$ such that $T_{\mu}=\xi * \mu$, for all $\mu \in M(G, A)$.

Proof. If T is a continuous linear operator on $M_{W}(G, A)$ commuting with convolution in $M(G, A)$, then for any $\mu, \nu \in M(G, A), T(\nu * \mu)=T \nu *$ μ. Let $\nu=\delta$ be the Dirac measure with point mass at the origin of G. Then δ is an identity of $M(G, A)$. It follows that $T \mu=(T \delta) * \mu$ for each $\mu \in M(G, A)$. That is, $\xi=T \delta$ is a fixed unique element in $M(G, A)$ such that $T \mu=\xi * \mu$. Conversely, if $\mu \rightarrow T \mu=\xi * \mu$ for all $\mu \in M(G, A)$, then it is obvious that T is a linear operator on $M_{W}(G, A)$ commuting with convolution. We have only to show that T is continuous. In fact, let $\left\{\mu_{\alpha}\right\} \subset M_{W}(G, A)$ converge to $\mu \in M_{W}(G, A)$, that is, for any $h \in C_{0}(G, A)$, $\lim _{\alpha}\left\langle h, \mu_{\alpha}\right\rangle=\langle h, \mu\rangle$ in A-norm topology. Since $\left\langle h, T \mu_{\alpha}\right\rangle=\left\langle h, \xi * \mu_{\alpha}\right\rangle$ $=\left\langle(\tilde{h} * \xi), \mu_{\alpha}\right\rangle$, where $\tilde{h}(t)=h\left(t^{-1}\right)$ and $\tilde{h} \in C_{0}(G, A)$ if $h \in C_{0}(G, A)$, the convolution $\tilde{h} * \xi$ of $\tilde{h} \in C_{0}(G, A)$ and $\xi \in M(G, A)$ is given by $\tilde{h} * \xi(t)$ $=\int_{Q} \tilde{h}\left(t s^{-1}\right) d \xi(s) \in A$. This is an element of $C_{0}(G, A)$. It follows that

$$
\begin{aligned}
\left\langle h, T \mu_{\alpha}\right\rangle & =\left\langle(\tilde{h} * \xi)^{\sim}, \mu_{\alpha}\right\rangle \\
\rightarrow\left\langle(\tilde{h} * \xi)^{\sim}, \mu\right\rangle & =\langle h, \xi * \mu\rangle=\langle h, T \mu\rangle
\end{aligned}
$$

in the topology of A. Hence $\left\{T \mu_{\alpha}\right\rangle$ converges to $T \mu$ in $M_{W}(G, A)$, and the proof is completed.
4. The $\mathbf{L}^{1}(\mathbf{G}, \mathbf{A})$-module multipliers for $\mathbf{C}_{0}(\mathbf{G}, \mathbf{A})$. The space $C_{0}(G, A)$ is an $L^{1}(G, A)$-module under convolution, its multiplier is defined to be the space of module homomorphisms mentioned in §1. We characterize this type of multiplies as follows.

Theorem 5. Let A be a Banach algebra with identity of norm 1, and T be a bounded linear operator on $C_{0}(G, A)$. Then the following two statements are equivalent:
i) $T \in \mathscr{M}_{L^{1}}\left(C_{0}(G, A)\right)$
ii) There exists a unique $\mu \in M(G, A)$ such that $T f=\mu * f$ for all $f \in$ $C_{0}(G, A)$.

Moreover, in the correspondence of T and μ, we have the isometric isomorphic relation

$$
\begin{equation*}
\mathscr{M}_{L^{1}}\left(C_{0}(G, A)\right) \cong M(G, A) \tag{2}
\end{equation*}
$$

Proof. ii) implies i) is easy. In fact, let $\mu \in M(G, A)$, we define a mapping T by

$$
f \rightarrow T f=\mu * f \text { for all } f \in C_{0}(G, A)
$$

The convolution of $M(G, A)$ and $C_{0}(G, A)$ determines an element in $C_{0}(G, A)$ and this T is a bounded linear operator on $C_{0}(G, A)$. Evidently, T is an $L^{1}(G, A)$-module homomorphism since for $g \in L^{1}(G, A), T(g * f)=$ $\mu * g * f=g * \mu * f=g * T f$ for all f in $C_{0}(G, A)$. Moreover,

$$
\begin{aligned}
\|T f\|_{\infty} & =\|\mu * f\|_{\infty} \\
& =\sup _{t}|\mu * f(t)|_{A} \\
& =\sup _{t} \int_{G}\left|f\left(t s^{-1}\right)\right|_{A}|d \mu(s)|_{A} \\
& \leqq\|f\|_{\infty}\|\mu\| .
\end{aligned}
$$

This implies $\|T\| \leqq\|\mu\|$. On the other hand, since $\|\mu * f\|_{\infty}=\|T f\|_{\infty} \leqq$ $\|T\|\|f\|_{\infty}$, we have $\|\mu\| \leqq\|T\|$, so that $\|T\|=\|\mu\|$.
i) implies ii). Let $T \in \mathscr{M}_{L^{1}}\left(C_{0}(G, A)\right)$. Since $M(G, A)$ is the A-valued dual of $C_{0}(G, A)$, we can consider a mapping

$$
T^{*}: M_{W}(G, A) \rightarrow M_{W}(G, A)
$$

defined by $\langle T f, \mu\rangle=\left\langle f, T^{*} \mu\right\rangle$ in A, for any $f \in C_{0}(G, A)$ and $\mu \in$ $M(G, A)$. Then for any $\mu, \nu \in M(G, A)$,

$$
\begin{aligned}
\left\langle f, T^{*}(\mu * \nu)\right\rangle & =\langle T f, \mu * \nu\rangle=\langle T f * \tilde{\mu}, \nu\rangle \\
& =\langle T(f * \tilde{\mu}), \nu\rangle=\left\langle f * \tilde{\mu}, T^{*} \nu\right\rangle \\
& =\left\langle f, \mu * T^{*} \nu\right\rangle
\end{aligned}
$$

for all $f \in C_{0}(G, A)$, where

$$
\begin{aligned}
f * \tilde{\mu}(t) & =(\tilde{f} * \mu)^{\sim}(t)=(\tilde{f} * \mu)\left(t^{-1}\right) \\
& =\int \tilde{f}\left(t^{-1} s^{-1}\right) d \mu(s)=\int f(s t) d \mu(s)
\end{aligned}
$$

Therefore $T^{*}(\mu * \nu)=\mu * T^{*} \nu$ in $M_{W}(G, A)$. That is, T^{*} commutes with convolution in $M_{W}(G, A)$. Applying Theorem 4, there is a unique $\xi \in$ $M(G, A)$ such that $T^{*} \mu=\xi * \mu$. Hence $\langle T f, \mu\rangle=\left\langle f, T^{*} \mu\right\rangle=\langle f, \xi$ $* \mu\rangle=\langle f * \xi, \mu\rangle$ for all $\mu \in M(G, A)$. This implies $T f=f * \xi$, for $\xi \in$ $M(G, A)$. It is easy to verify that $\|T\|=\|\xi\|$. Therefore

$$
\mathscr{M}_{L^{1}}\left(C_{0}(G, A)\right) \cong M(G, A)
$$

The proof is completed.
Remark. In Theorem 5, the condition on A having identity of norm 1 is necessary. Because if G is a trivial group consisting of the identity element only, then it reduces to $L^{1}(G, A)=A=C_{0}(G, A)=M(G, A)$, and the isometric isomorphic relation reduces to $\mathscr{M}(A)=A$. This equality holds if and only if A has identity.

Acknowledgements. The author would like to thank the referee for his comments.

References

1. N. Dinculeanu, Vector Measures, Pergaman, Oxford, 1967.
2. -_, Integration on Locally Compact Spaces, Noordhoff International Publishing, 1974.
3. E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. II, Die Grundlehren der Math. Wissenschaften, Band 152, Springer-Verlag, Berlin and New York, 1970.
4. G.P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429.
5. Roshdi Khalil, Multipliers for some spaces of vector-valued functions, J. Univ. Kuwait (Sci) 8 (1981), 1-7.
6. H.C. Lai, Multipliers of a Banach algebra in the second conjugate algebra as an idealizer, Tohoku Math. J. 26 (1974), 431-452.
7. R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin and New York, 1971.
8. M.A. Rieffel, Multipliers and tensor products on $L^{p-s p a c e s ~ o f ~ l o c a l l y ~ c o m p a c t ~ g r o u p s, ~}$ Studia Math. 33 (1969), 71-82.
9. M.A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491.
10. U. Tewari, M. Dutta and D.P. Vaidya, Multipliers of group algebras of vectorvalued functions, Proc. Amer. Math. Soc. 81 (1981), 223-229.

Institute of Mathematics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

[^0]: Subject Classification (AMS 1980): 43A22
 Key Words and Phrases: Banach module, invariant operator, module homorphism, algebra multiplier, A-valued continuous linear functional.
 With partial support from NSC Taiwan, Republic of China.
 Received by the editors on April 13, 1983 and in revised form on August 23, 1983.
 Copyright © 1985 Rocky Mountain Mathematics Consortium

