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SOME RATIONAL CONTINUA 

E.D. TYMCHATYN 

In this note there are presented some examples of rational continua. 
The first example is of a rational continuum X (of rim-type 2) and a 
confluent mapping of X onto a non-rational continuum. This answers 
m the negative Problem III which was posed by A. Lelek in [6, p. 57]. 
In the second example there is presented a rational continuum X of rim-
type 2 and a confluent mapping of X onto a rational continuum of rim-
type 3. These two examples give negative answers to the following question 
which was posed by B.B. Epps in his dissertation [3, p. 6]: If Xis a rational 
continuum of finite rim-type and / : X -» Y is a confluent map, is the 
nm-type of Y less than or equal to the rim-type of XI In the second 
example there is given a rational, uniquely arcwise connected continuum 
X which contains a dense ray (continuous one-to-one image of [0, 1)) 
which is of first category in X. This answers in the negative a question 
Posed by J.B. Fugate in a talk given at the Auburn Topology Conference 
JA March 1976 (see [4, Question 2]). The third and final example in this 
n°te is of a hereditarily locally connected continuum X which contains a 
dense ray which is of first category in X. 

I wish to thank Professors A. Lelek and J.R. Martin for several very 
helpful conversations. 

L Definitions and preliminaries. Our notation follows that of Whyburn 
U- By a continuum is meant a compact, connected, metric space. The 
Set °f natural numbers is denote by N. A continuum Zis rational at a point 
* e X if X has a neighbourhood basis at x of open sets with countable 

°undaries. A continuum is rational if it is rational at each of its points. 
^ sequence of sets is said to form a null sequence if the diameters of the 
ets converge to zero. A continuous function / of a continuum X onto a 
°ntinuum Yls confluent if for each continuum C in Yeach component of 

maps onto C. Let C\(A) and Bd(^) denote the closure and bound-
rv , respectively, of a set A. By a neighbourhood we shall mean an open 

neighbourhood. 
If A is a subset of a space X, let A' denote the derived set of A. Let 
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A{0) = A. If a is the successor of the ordinal numbers, let A{a) = (A{n))'-
If a is a limit ordinal let 

A^ = [){A^\n < a}. 

If C is a compact, countable subset of a metric space, then there exists 
a countable ordinal a such that C(a) = 0 . We denote the smallest such 
ordinal a by ttyp(C). If X is a continuum which is rational at x. then X 
has a countable neighbourhood basis at x of open sets with countable 
boundaries. We define the rim-type of X at x by nm\x{X) = a where a is 
the smallest ordinal such that X has a neighbourhood basis at x of open 
sets Ut)iE:N such that ttyp(Bd(C/,)) ^ a for each / e JV. Then rimt^J) is a 
countable ordinal number. 

If A" is a rational continuum we denote the rim-type of X by 

rimt(X) = supfrimt^X)!* 6 X) . 

It is well-known (see [5, p. 290]) that the rim-type of a rational continuum 
is an ordinal number that is strictly smaller than the first uncountable 
ordinal Q. We shall need the following slightly stronger result. 

LEMMA 1. If X is a continuum which is rational at each point of a subset 
A of X, then there exists a countable ordinal a such that nm\x(S) ^ af°r 

each xeA. 

PROOF. Let 39 be a countable base for A of open sets in X with countable 
boundaries. Let 

a = sup{ttyp(Bd(l/))|l/e#}. 

LEMMA 2. Let A,)i(=N be a null sequence of pairwise disjoint rational 
continua in a continuum X.Ifa and ft are countable ordinal numbers such 
that rimtx(X) g a for each x e X\(AQ (J Ax U • • • ) and rimt^,-) £ pf°r 

each i e N, then rinuXT) ^ a + /3. 

PROOF. Let x e A0 and let U be a neighbourhood of x. Then 

W = U\ {J{Ai\i £ 1 and A{ [\ Bd(tf) # 0 } 

is a neighbourhood of x since 4»)«etf is a null sequence of closed sets. 
Since rimt(^0) ^ j3, there exists a neighbourhood K of x in Jf such that 
C\(V) c Wand(Bd(K) f| ^o)(/3) = 0 -

Define an equivalence relation ~ on X by setting x ~ >> if and only ** 
x = y or there exists / e N s u c h that x, ye A{. Since the non-degenerate 
equivalence classes of ~ form a null sequence of closed sets, it followS 

that ~ is upper semi-continuous and the quotient space X\~ is a con­
tinuum. Let % be the natural projection of X onto the quotient spa<* 
XI~. Notice that %{W) is open in X/~. 
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Let <% be a countable basis for Xj~ of open sets whose boundaries 
miss the countable set %(AQ \J A\ U • • •)• We may suppose, since Xj ~ 
is a compact metric space, that the members of <% form a null sequence. 
Let # cz <% be a locally finite collection in (X/~)\iuA0) such that <g 
is a cover for ^(Bd(K))\^(y40) and such that, for each CG<^, C meets 
a:(Bd(F)) and Cl(C) is contained in the open set 7U(W)\TU(A0). Let # ' = 
{3r-HC)|C e #} . We may write <T = {C,-\i G JV}. Then <T is a locally finite 
collection in X\AQ which covers Bd(V)\A0 and, if Q e f , Cl(Q) c 
&V 0 and Bd(C,) c Z\(^0 U ^ i U • • •)• 

Let C{ G <g". For each ,y G Bd(C,) let By be a neighbourhood of y with 
(Bd(By))(«) = 0 , with diameter £y < \\i and with Cl(5y) <= JfV0. Since 
**d(Ct) is compact, there exist AZ G N and ^ b . . . , yn G Bd(Q) such that 
Byi U • • • U £y, contains Bd(Q). Then D{ = Ct-[j Byi\J • • • U £,M is 
a neighbourhood of C, with 

diameter Dt g diameter Q 4- 2// 

and with Cl(A) <= ^ \ ^ 0 . Also, Bd(A) c B d ( ^ ) U • • • U Bd(£J so 
(Bd(/).))(«) = 0 . Let 

P= F \ U ( C l ( A ) | / = 1 , 2 , . . . } . 

* hen P is an open neighbourhood of JC and 

Bd(/>) c= (4 , n Bd(F)) U U { M ( W e ^ } 
Slnce the sets Dh D2, . . . form a null locally finite collection in X\A0. If 
•£ £ Bd(P)\^0) then there exists a neighbourhood G of y and n G TV such that 
W ) n C? e BdCDx) U • • • U Bd(D„). Hence (Bd(/>))<«> c Bd(F) f| ^o 
a^d (Bd(/>))<«+/» c (Bd(K) n A0)W = 0 - This completes the proof of 
t l l e lemma. 

COROLLARY 3. Let X be a continuum and let At)tGN be a null sequence of 
PQirwise disjoint rational continua in X. Then X can not fail to be rational 
0nly at points of A0 [) Ax U • • • . 

R 0 0 F . The corollary follows immediately from Lemma 1 and 2. 

Lemma 2 and Corollary 3 fail if the continua Ai)iGN do not form a null 
^uence. Lelek has given an example of an arclike Suslinian continuum 

Cn fails to be rational only at points in the union of a countable family 
disjoint arcs. Another example relevant to this paper is the continuum 

. &ven in Example 3.1 of [J. Grispolakis and E.D. Tymchatyn, Confluent 
lfn«ges of rational continua, Houston J. Math. 5 (1979), 331-337]. 

A continuous mapping of a continuum X onto a locally connected con-
n u u m ^is said to be pseudo-confluent (see [7]) if for each arc A in F some 
°mponent of f~\A) maps onto A. A confluent map is clearly pseudo-

c°nfluent. 
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The following proposition is related to a result in [7], Theorem 5.1]. 
It shows that Epps' question has a positive answer if the image space is 
locally connected. 

PROPOSITION 4. If / : X-• Y is a pseudo-confluent mapping of a rational 
continuum X onto a locally connected continuum Y, then Y is rational 
and rimt(r) ^ rimt(jr). 

PROOF. Let a - rimtpO. Let J / , Z G 7 . Let A be a countable compact 
set in A'such that A separates/_10) from/-1^) and ttyp(^) g a. Since/is 
pseudo-confluent and Y is locally connected, it follows (as in [7, Theorem 
4.5]) that /(^) separates x and y in Y. It is easy to check by transfinite 
induction that (f(A)Yn) czf(A(n)) for each ordinal n. Hence ttyp(/00) ^ 
ttyp(4). Thus, rimt(F) = rimt(X). 

LEMMA 5. Let f be a continuous mapping of a compact metric space Xonto 
a compact metric space Y. Let K = {x e 7 | / _ 1 (^) is non-degenerate). If 
{/_1(x)| x e K} forms a null sequence in X, then /'\X\/-HK) is an embedding 
ofX\f~\K)into Y. 

PROOF. Let XGX\f~x(K) and let U be a neighbourhood of x. Then 
f(X\U) is compact and hence closed in Y. The set X\f-1f[X\U) c 1/ is a 
neighbourhood of x since the sets {f~l{y) \ y e K} form a null sequence. 
Hence f(X\f~if(X\U)) = Y\f(X\U) c f(U) is a neighbourhood of /(*)• 
T h u s , / | w _ 

i(/o *s a homeomorphism. 
2. Examples. We are now ready to present our first example. This is 

an example of a rational continuum Y (of rim type 2) and a confluent 
mapping / of y onto a non-rational continuum X. 

EXAMPLE 1. Let S be the Sierpinski triangular curve (see Kuratowski 
[5, p. 276]). It is defined there as follows. Let Tbe the equilateral triangk 
in the plane with vertices (0, 0), (1, 1) and ( V T , 0). Partition J into fo^ 
congruent triangles r0, Th T2, T3. Let r0 , T b T2 be the triangles whicb 
have a vertex in common with T. The triangles 7o, 2\ and T2 a r e 

numbered 
clockwise and T0 is the left-most triangle of the three. Let v0, vh v2 be the 
vertices of T3 where v0 is the left-most vertex of the three and the numbed 
ing is clockwise. In a similar way partition each of the triangles f, f°r 

i = 0, 1, 2 into four congruent triagnles Tit0, Tith Tii2, TitZ, where T,j 
is the triangle which has no vertices in common with Tt. Let vl>0, v,-,i ^ 
vit2 be the vertices of Ti>3. The vertices vf-t0, vffl, vit2 and the triangleS 

Tif0, Ti>h Ti>2 are numbered clockwise starting with the left-most one-
Continue inductively in this manner. Let 

s = ci((j Bd(rai,..., ak) 
D 

where D = {(ah . . . , ak)\h = 1, 2, . . . and ah . . . , ake {0, 1, 2}}' 



SOME RATIONAL CONTINUA 313 

The local separating point of S are the vertices vait t ak where (c^, . . . , ak) 
sZ). 

Our example is obtained from the Sierpinski curve S as an inverse limit 
by successively exploding the local separating points of S to arcs. 

Let X0 = Y0 = S and let / 0 : Y0 -> XQ be the identity map. Let Y1 = 
U?=o04, U Si U £/) be a plane continuum and %i\Yi~* Y0 a continuous 
dap such that for each / = 1, 2, 0, %x carries St homeomorphically onto 
rA{v0, Vb V2}, fr^W = ^ , U *» C1(W = 5, U At U 5(/+2)mod3, 
Cl(S,) has three arc components, and At and Bt are line segments of the 
same length such that A{ f| #, = {w,-} where w, is a common endpoint 
°f 4,- and 5,-. Suppose also that if K is a ray in Sf such that vy e ClfcCK)), 
then A{ c Cl(JO when / = y, and £ ; c C\(K) when 7 = (1 + 2) mod 3. 
We identify the points of y0\{

vo> vi» v2} with their preimages in Yx. Let 

f o*(a b . . . ,a , )eZ>. 
define an equivalence relation ~x on 1^ by setting x ~i y if and only 

if * = y or x, j e At• \J Bt for some / and the distance from x to m{ equals 
the distance from y to w(-. Then ~ ! is an upper semi-continuous relation 
°n y1# Let Xx be the quotient space Yxl~i and let /^ r2 -> ^ be the na­
tural projection. Let fa:Xi-> X0 be such that <j>x o/i = / 0 0 7^. See Figure 1. 

Figure 1. 
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The space 7X was obtained from Y0 by replacing by arcs At- [j Bt each 
of the three local separating points vf- of S = YQ which were obtained at 
the first stage of construction of S. The space Xi was obtained from Y\ 
by folding in half each of the arcs A{ U Bt and thus eliminating the three 
local separating points mh i = 0, 1, 2, in Yv Both Yx and Xx have six arc 
components. 

Let 

Y2 = Ufoi.-. U K^ U Baha2\ah a2 = 0, 1, 2} 

be a plane continuum and let %2. Y2 -• Fx be a continuous map such 
that ff2 carries U{5aifa2|als a2 = 0, 1, 2} homeomorphically onto 
Yi\{vaha2\cch cc2 = 0, 1, 2}, and for each ah a2 = 0, 1, 2, 

X2(Sai,a2) = Tl
aha^{vahai\ah a2 = 0, 1, 2 } , 

#2 (vai,a2^ = ^ai,a2 U A*i,a2 ' 

d\Saha2' ~ SCCQ,<X2 U ^ai,«2 U -°ai, (a2+2) mod 3 > 

the number of arc components of C\(SahCC2) is two more than the number 
of arc components of T\h<X2, Aaha2 and BahCt2 are line segments of the 
same length such that Aaha2 f] Baha2 = {maha2} where mah<X2 is a common 
endpoint of Aaha2 and Bahar Suppose also that if Kis a ray in Saha2 such 
that vahJ 6 C l f e W ) , then 4 ^ c Cl(/Q when; = a2 and BaiJ c C1(J0 
when y = (a2 + 2) mod 3. We identify the points of Yi\{vaitaz\ai, #2 6 

{0, 1, 2}} with their preimages in Y2. Let 

nh...,ak = GKT^J n ci(5ai,a2) 
for fa, . . . , ak) e D and k ^ 2. Let 7% = %? (Fai) for a i = 0, 1, 2. 

Define an equivalence relation ~ 2
 o n Y2 by setting x ^ 2 ^ in Y2 if ^nd 

only if x = >> or *, y e ^ai,a2 U £ai,a2
 f o r s o m e <*i» <*2 e {0, 1, 2} and the 

distance from x to mabcr2 is the same as the distance from y to maha2. Then 
^ 2 is an upper semi-continuous relation on Y2. Let X2 be the quotiefl 
space Y2/~2

 ana" l e t /2 ' ^2 ~* ^2 be the natural projection. Let fa'.Xi^ 
Xi be such that ^2 o/2 = /1 ° %2. 

The space ^ was obtained from Y2 by replacing by arcs Aah<X2 U #n><*2 

each of the nine local separating points of Yi which correspond to the 
vertices of the triangles Tit3 / = 0, 1,2, which were introduced at the 
second stage of construction of 5. The only point of Aait a2 (J Bah a2 which *s 

a local separating point of Y2 is ma a . The space X2 was obtained fro* 
72 by folding in half each of the arcs Aaha2 [) Bah<n so t h a t / ^ ^ J * 

MBaitad contains no local separating points of X2. ' 
We can continue this process inductively to define for each « = 1,2, • •' 

space Yn and Xn and maps %n and <j>n such that the rectangles in the for 
lowing diagram commute 
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f 0 * • * ' * I » - l I «-1 * In* 

/ 0 fn-\ 

l » - l « 

Let Y be the inverse limit of the sequence (Fn, %n) and let X be the in­
verse limit of the sequence (Xn, 0n). Let %\ Y -> 5, 0: X -• S and/: r -+ 
^ be the natural maps induced by the above diagram. Then Y is clearly 
rational at each point of 

y\[j{7c-1(vait...,ak)\(ah...,ak)sD}. 

*n fact at each of these points Y has a neighbourhood basis of open sets 
with boundaries consisting of at most four points (the boundary points 
are the points in Y which correspond to points in {mah ak\(ai, . . . , <xk) e 
D} in Yk). The sets ff"1^, ...,„,)) where (ah ...,ak)eD form a null 
Sequence of pairwise disjoint arcs in Y. By Lemma 2, Y is rational and 
rimt(y) ^ 2. It is easy to see that Y does not have a basis of open sets with 
finite boundaries at the point corresponding to m0. Hence rimt(y) = 2. 
* he continuum X is not rational since X contains no local separating 
Points (see [9, III.9.43]). 

It remains to prove only that/: Y -> X is confluent. Notice that / i s at 
most two-to-one on Y and / is one-to-one off of the inverse image under 
n °f the local separating points of S. Let # be a continuum in X and 
JuPpose K meets f(Aah^ak). IfKcz/iA^^ then/-*(#) bas at most 
*wo components and both of these are mapped onto K by / If K <£ 

«̂b...,a*)» then K 3 /04aij j (J by the construction of Zand Y. Thus 

Now jp-i : $-> Y is upper semi-continuous. If K <£ f(Aah iUk\ then 
p restricted to <f>(K) is monotone. Hence irtyK) = /~ W is connected. 
n each case each component off~l{K) maps onto K and/ is confluent. 

A continuum is said to be decomposable if it can be written as the 
n i 0 n of two proper subcontinua.̂  A continuum is said to be hereditarily 
ecomposable if each subcontinuum is decomposable. Since every rational 
0l^tinuum contains a countable set whose complement is zero-dimen-
*onal and every indecomposable continuum has an uncountable family 

of Pairwise disjoint, non-degenerate continua (see [5, p. 212, Theorem 7]), 
every rational continuum is hereditarily decomposable. A continuum X 

said to be uniquely arcwise connected if for each x ^ y in X there is a 
n^ue arc in X with endpoints x and y. 

rbe next example is of a rational uniquely arcwise connected continuum 
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which contains a dense ray which is of first category. This answers Ques­
tion 2 of Fugate [4]. 

EXAMPLE 2. Let X, S and <j>: X -> S be as in Example 1. Let x * y in X 
if and only if x = y or there exists keN and a\, . . . , a*_i e {0, 1, 2} and 
<xk e {0, 1} such that x, >> e 0-1(vai, ...,»*)• Then * is an equivalence relation 
on X. The equivalence classes of * that are non-degenerate form a null 
sequence of arcs. Hence, * is upper semi-continuous. Let Z be the quo­
tient space XI* and let 0: X ^ Z be the natural projection. 

If (x, 0) e S where 0 < x < */~2 and (x, 0) is not a local separating 
point of S, then there exists a sequence un) of local separating points of 
S where wn = vai,...,aKn), ax . . . , a*(„)-i e {0, 1, 2}, aHn) e {0, 1}, the 
sequence un) converges to (x, 0) and {(*, 0)} U |J^=i{w„} separates [0, x) 
x {0} from (JC, V T ] x {0} in S. Also, 

oo 

0»0-K{(*,o)}uU W) 

separates 0 ° 0-i([O, JC) x {0}) from I? o jr\(x, V T x {0}) in Z. Notice 
that 0°0~1((J«=i{w»}) *s a s e c m e n c e m Z which converges to the point 
0 o <jr\{x, 0). It is now easy to show by a similar argument that if (x, y) eS 
such that z = 6° 0-1((*> J7))*s a single point, then Zhas a neighbourhood 
basis at z of open sets whose boundaries have at most three limit points. 
Thus, rimit2(Z) ^ 2. It is easy to see that no finite set separates Z between 
0 o <f>-K(y, 0)) and 0 ° <j>-\(x, 0)) for all JC and >> such that 0 ^ j < JC g V 2 • 
Hence rimt(00)(Z) = 2. By Lemma 3, rimt(Z) g 3 since the set of points 
z in Z such that rimtz(Z) > 2 is contained in the union of a null sequence 
of pairwise disjoint arcs. If z e 0 ° 0_1(v2) and £/ is a small neighbourhood 
of z, then the boundary of U disconnects 0 ° 0-1([O, \ /T]) into infinitely 
many components. It follows from the above that ttyp (Bd(C/)) ^ 3. Thus 
rimt(Z) = 3. 

Let Yand/: Y -> Z be as in Example 1. The map 0 °/: Y -> Z is a con­
fluent map (since it is a composition of confluent maps) which carries a 
continuum of rim-type 2 onto a. continuum of rim-type 3. 

Let W = S\{vah^aJk 6 tf and ah . . . , ak = 0, 1, 2}. Then ^ is » 
uniquely arcwise connected set. By Lemma 5,0 © ^ ( J F ) is homeomorpn10 

to FT. It is now easy to see that the arc components of Z are 0 o jrHJ*' 
and the null sequence of pairwise disjoint arcs 0o0_1(Vai,...,a*,2) w**ere 

ke Amanda!, . . . , a* e {0, 1,2}. 
We may suppose Z lies in a hyperplane in E* since it is one-dimensional-

Adjoin to Z a null sequence of pairwise disjoint arcs Dt)ifEN as follows. 
(1)Z), H Z consists of exactly two points. 
(2) D0 is a semi-circle in £ 4 such that D0 meets Z in 0 o ^ ( ( l , 1)) and o& 

of the endpoints of 0 o 0-1(v2). 
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(3) R = (A> U Dx U • • •) U U ( 0 ° <J>~Ky(n>...,ak,2)\k eN,ai,...,ake 
{0,1,2}} is a ray. 

(4) If n is the smallest integer such that Dn meets 6 ° ^-1(va, ...,a*,2)» 
then Z>„+1 also meets 0 o ̂ ( v , , , ...,„„ 2)-

(5) If ft, . . . , j8*-i 6 {0, 1, 2} and y 6 N such that 0 o ^(v.,,..., a4+„ 2) 
meets D„ for some a b . . . , «*+,- 6 {0, 1, 2}, then there exists meN such 
that w < nandZ)OTmeets0 o <trliy^...^k_lt^ 

(6) If Z)„ meets 6 o ^ ( v , , , ...,,„ 2) and 6o^(v^...)/3„2), then 7 ; ^ meets 

It is easy to find a null family of pairwise disjoint arcs Dt) satisfying 
conditions (\)-(6). Then Z' = Z [} (JD, is an arcwise connected con­
tinuum. It is also not very difficult to see that Z' is uniquely arcwise 
connected. 

Define x # y in Z ' if and only if x = y or there exists / e N such that 
*> y e Z>,. Then # is an equivalence relation on Z' since the sets Df are 
Pairwise disjoint. Since the non-degenerate equivalence classes of # are 
closed and form a null sequence, # is upper semi-continuous. Thus 
2 ' / # = Z/ # is a continuum. The image of R in Z'\ % is a ray which is 
dense and of first category in Z'j #. 

It is well known that a continuum is rational if and only if it contains 
a countable set with zero-dimensional complement. If C is a countable set 
m Z with zero-dimensional complement, then the image of C together with 
the image of D0 \J Dx [) • • • is a countable set in Z'\ % with zero-dimen­
sional complement in Z'j # by Lemma 5. Thus Z'j # is a rational con­
tinuum. 

We next give an example of a hereditarily locally connected continuum 
X which contains a dense ray which is of first category in X. Note that such 
a n example cannot be uniquely arcwise connected for a uniquely arcwise 
connected, locally connected continuum is a dendrite. 

EXAMPLE 3. Let [0, 1] denote a unit segment on the z-axis in Euclidean 
three-space. Let Ch C2, . . . , be a sequence of Cantor sets in [0, 1] such 
that for each n = 1,2, . . . , 

(1) the components of [0, 1]\C„ have diameter less than 1/w, 
(2) if n is even Cn f] C„_! = {bn} where bn = sup Cn-X = sup C„, 
(3) if n > 1 is odd, Cn fl Cnli = {an} where an = inf Cn_i = inf Cn, 

and 

wc.ruciu ••• uc„_2) = 0. 
If C is a Cantor set in [0, 1], x and y two points of C are said to be con-

Secutive endpoints of C if x and j> are the two endpoints of the closure of a 
c°mponentof[0, l]\C. 

For each natural number n let Pn be the plane in Euclidean three-space 
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which contains the z-axis and the point (1, n, 0). If A: and y are consecutive 
endpoints of Cn, let xy be a semi-circle in Pn with endpoints x and y. 
For each n let An = Cn f| ( J l ^ l * an(* ^ a r e consecutive endpoints of 
C„}. Then each An is an arc in P„. 

Let ^ = [0, 1] U Ai U ^2 U • • • • Then A'is obtained by attaching to 
the arc [0, 1] a null sequence of disjoint arcs each of which meets [0, 1]. 
By [8, p. 94] X is a hereditarily locally connected continuum. Also R = 
A\ U ^2 U • • • is a dense ray in X. 

Let x ~ y in X if and only if x = y or x, >> 6 z ^ for some z2 and 22 
consecutive endpoints of Cn for some n = 1,2, . . . . Then ~ is an upper 
semi-continuous equivalence relation on X. The quotient space Xj~ *s 

hereditarily locally connected since the projection map is monotone and 
monotone mappings preserve hereditarily locally connected continua 
(see [6, p. 58]). The image of the ray R in Xj ~ under the natural projection 
mapping is a ray which is dense and of first category in Xj ~ . 

It is easy to modify Example 3 to obtain a hereditarily locally con­
nected continuum with countably infinitely many disjoint dense rays. 

QUESTION 1. Does there exist a hereditarily decomposable continuum 
which contains uncountably many disjoint dense rays? 

QUESTION 2. If X is a locally connected continnum, is it true that X is 
finitely Suslinian if and only if the closure of every ray in X is an arc, a 
simple closed curve, or a simple closed curve with an arc adjoined by its 

endpoint? (A continuum Zis said to be finitely Suslinian if every sequence 
of disjoint continua in .r is a null sequence). The necessity can be proved 
along the following lines. Let R be a ray in a finitely Suslinian continuum 
X such that R is not compact. Let x e C1(I0\-R. By Whyburn [10, p. 334] 
R (J {x} is arcwise connected. If 0 is the endpoint of R, it follows from 
Sierpinski's theorem that R \J {x} is the only arc in R [} {x} from 0 to x-
Hence R [} {x} is an arc. 
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