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SOME RATIONAL CONTINUA
E.D. TYMCHATYN

In this note there are presented some examples of rational continua.
The first example is of a rational continuum X (of rim-type 2) and a
Confluent mapping of X onto a non-rational continuum. This answers
In the negative Problem III which was posed by A. Lelek in [6, p. 57].
In the second example there is presented a rational continuum X of rim-
type 2 and a confluent mapping of X onto a rational continuum of rim-
type 3. These two examples give negative answers to the following question
Wwhich was posed by B.B. Epps in his dissertation [3, p. 6]: If X is a rational
continuum of finite rim-type and f: X — Y is a confluent map, is the
Nim-type of Y less than or equal to the rim-type of X? In the second
€Xample there is given a rational, uniquely arcwise connected continuum
X which contains a dense ray (continuous one-to-one image of [0, 1))
Which is of first category in X. This answers in the negative a question
Posed by J.B. Fugate in a talk given at the Auburn Topology Conference
n March 1976 (see [4, Question 2]). The third and final example in this
D0te is of a hereditarily locally connected continuum X which contains a
dense ray which is of first category in X.

I wish to thank Professors A. Lelek and J.R. Martin for several very
belpful conversations.

L. Definitions and preliminaries. Our notation follows that of Whyburn
1. By a continuum is meant a compact, connected, metric space. The
$€t of natural numbers is denote by N. A continuum X is rational at a point
¥€ X if X has a neighbourhood basis at x of open sets with countable
boundaries, A continuum is rational if it is rational at each of its points.

Sequence of sets is said to form a null sequence if the diameters of the
Sets Converge to zero. A continuous function f of a continuum X onto a
c?ntlﬂllum Y is confluent if for each continuum C in Y each component of
s o) maps onto C. Let CI(4) and Bd(A4) denote the closure and bound-
ary, Tespectively, of a set A. By a neighbourhood we shall mean an open
Neighbourhood.

If 4 is a subset of a space X, let 4’ denote the derived set of 4. Let
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A©® = A If  is the successor of the ordinal number n, let 4@ = (4™)".
If ¢ is a limit ordinal let

A@ = ﬂ{A(ﬂ)In < a}.

If C is a compact, countable subset of a metric space, then there exists
a countable ordinal  such that C@ = @. We denote the smallest such
ordinal ¢ by ttyp(C). If X is a continuum which is rational at x, then X
has a countable neighbourhood basis at x of open sets with countable
boundaries. We define the rim-type of X at x by rimt (X) = « where a i
the smallest ordinal such that X has a neighbourhood basis at x of open
sets U;);cn such that ttyp(Bd(U,)) £ « for each i € N. Then rimt (X) is 2
countable ordinal number.

If X is a rational continuum we denote the rim-type of X by

rimt(X) = sup{rimt (X)|xe X} .

It is well-known (see [5, p. 290]) that the rim-type of a rational continuum
is an ordinal number that is strictly smaller than the first uncountable
ordinal Q. We shall need the following slightly stronger result.

LeMMA L. If X is a continuum which is rational at each point of a subse!
A of X, then there exists a countable ordinal o such that rimt(S) < « for
each x € A.

PROOF. Let 2 be a countable base for 4 of open sets in X with countable
boundaries. Let

a = sup{ttyp(Bd(V))|U € %} .

LEMMA 2. Let A,);cy be a null sequence of pairwise disjoint rational
continua in a continuum X. If o and § are countable ordinal numbers such
that timt(X) < « for each x € X\(dg U A; U -+ ) and rimt(4,) < B for
eachie N, then rimt(X) < a + S.

PROOF. Let x € 4y and let U be a neighbourhood of x. Then
W= U\{4i = 1 and 4, N Bd(V) # @}

is a neighbourhood of x since A,),cy is a null sequence of closed sets:
Since rimt(4y) < B, there exists a neighbourhood ¥ of x in X such that
CI(V) € Wand (Bd(V) N 4)® = @. .

Define an equivalence relation ~ on X by setting x ~ y if and only if
x = y or there exists i € N such that x, y € 4;. Since the non-degenefa‘e
equivalence classes of ~ form a null sequence of closed sets, it follows
that ~ is upper semi-continuous and the quotient space X/~ is a con”
tinuum. Let 7 be the natural projection of X onto the quotient spact
X/~ . Notice that z(W) is open in X/ ~.
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Let # be a countable basis for X/~ of open sets whose boundaries
miss the countable set z(4y U 4; U --+). We may suppose, since X/~
is a compact metric space, that the members of 2 form a null sequence.
Let ¢  # be a locally finite collection in (X/~)\zA4p) such that @
is a cover for z(Bd(V))\z(d4,) and such that, for each Ce%, C meets
z(Bd(¥)) and CI(C) is contained in the open set #(W)\zn(Ay). Let ¢’ =
{=1C)Ce %}. We may write ¢’ = {C;ji e N}. Then %" is a locally finite
Collection in X\d, which covers Bd(V)\4, and, if C;e%’, CI(C))
W\4, and Bd(C)) = X\(4o U 4; U -+ ).

Let C, e %'. For each y e Bd(C)) let B, be a neighbourhood of y with
(Bd(B,))@ = @, with diameter B, < 1/i and with CI(B,) = W\A,. Since
Bd(C,-) is compact, there exist ne N and yy, ..., y, € Bd(C;) such that
B8, U --. U B, contains Bd(C,). Then D; = C; U B, U --- U B,, is
a neighbourhood of C; with

diameter D; < diameter C; + 2/i

and with CI(D,) = W\4,. Also, Bd(D,) = Bd(B,) U --- U Bd(8,) so
Bd(D))@ = . Let

P=V\J{CDli=12 ..}
Then P is an open neighbourhood of x and
Bd(P) < (4,  BA(V)) U {J{BA(D,)li € N}

Since the sets D,, D,, ... form a null locally finite collection in X\A4,. If
ye Bd(P)\Ao, then there exists a neighbourhood G of y and # € N such that

(P)\ G = Bd(D;) U -+ U Bd(D,). Hence (Bd(P)@ < Bd(V) N 4,
and (Bd(P))@+® < (Bd(V) (| 4p)® = @. This completes the proof of
the lemma,

COROLLARY 3. Let X be a continuum and let A),cy be a null sequence of
Pairwise disjoint rational continua in X. Then X can not fail to be rational
only at points of Ay U 41 U -

PROOF. The corollary follows immediately from Lemma | and 2.

Lemma 2 and Corollary 3 fail if the continua A,);cy do not form a null
Se‘l}lence. Lelek has given an example of an arclike Suslinian continuum
::'h“?h‘ fflils to be rational only at points in the union of a countable family

qlSJOInt arcs. Another example relevant to this paper is the continuum
img“’en in Example 3.1 of [J. Grispolakis and E.D. Tymchatyn, Confluent

ages of rational continua, Houston J. Math. 5 (1979), 331-337).
in continuous mapping of a continuum X onto a locally connected con-

Wum Y is said to be pseudo-confluent (see [7)) if for each arc 4 in Y some

¢ .
°Mponent of f(A) maps onto A. A confluent map is clearly pseudo-
Confluent,
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The following proposition is related to a result in [7], Theorem 5.1}.
It shows that Epps’ question has a positive answer if the image space 15
locally connected.

PROPOSITION 4. If f: X — Y is a pseudo-confluent mapping of a rational
continuum X onto a locally connected continuum Y, then Y is rational
and rimt(T) < rimt(X).

PROOF. Let @ = rimt(X). Let y, ze Y. Let 4 be a countable compal(ft
setin X such that A separates f~1(x) from f~1(y) and ttyp(4) £ a. Since f18
pseudo-confluent and Y is locally connected, it follows (as in [7, Theorem
4.5]) that f(A) separates x and y in Y. It is easy to check by transfinite
induction that (f(4))™ < f{A™) for each ordinal n. Hence ttyp(f(4)) £
ttyp(A). Thus, rimt(Y) < rimt(X).

LEMMA 5. Let f be a continuous mapping of a compact metric space X onto
a compact metric space Y. Let K = {x € Y| f~)(x) is non-degenerate}. If
{f~Yx)| x € K} forms a null sequence in X, then f |y ;-1 is an embedding
of X\ f~UK) into Y.

PrOOF. Let x € X\f-YK) and let U be a neighbourhood of x. Then
fX\U) is compact and hence closed in Y. The set X\f-1f(X\U)c Uis 8
neighbourhood of x since the sets {f~(y) | y € K} form a null sequence:
Hence f(X\f~Lf(X\U)) = Y\A(X\U) c f(U) is a neighbourhood of f(¥):
Thus, f|x\s-1%) is a homeomorphism.

2. Examples. We are now ready to present our first example. This i
an example of a rational continuum Y (of rim type 2) and a confluent
mapping f of y onto a non-rational continuum X.

ExampLE 1. Let S be the Sierpinski triangular curve (see KuratowsK!
[S, p. 276]). It is defined there as follows. Let T be the equilateral triangle
in the plane with vertices (0, 0), (1, 1) and (4/2, 0). Partition T into f?“r
congruent triangles Ty, Ty, Ty, Ty. Let Ty, T;, T be the triangles which
have a vertex in common with T. The triangles Ty, T; and T are number®
clockwise and Ty is the left-most triangle of the three. Let vy, v, vz b€ the
vertices of T3 where v, is the left-most vertex of the three and the number”
ing is clockwise. In a similar way partition each of the triangles T; for
i =0, 1, 2 into four congruent triagnles T, T;1, T;2 T3 Where Ti3
is the triangle which has no vertices in common with T;. Let v; ¢, v;,1 37
v;2 be the vertices of T, The vertices v, 0, v;1, v;2 and the triangleS
T, T;1, T;, are numbered clockwise starting with the left-most oné:

Continue inductively in this manner. Let

S = CI(|J BA(T,
D

ALy e a/,)

where D = {(a, ..., alk =1, 2, ... and aj, ..., az€ {0, 1, 2
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The local separating point of S are the vertices v,,  ,, where (ay, ..., @)
eD.

Our example is obtained from the Sierpinski curve S as an inverse limit
by successively exploding the local separating points of S to arcs.

Let X, = Y, = S and let f;: Y, — X, be the identity map. Let ¥; =
U?:o(A; U S; U B;) be a plane continuum and z;: Y7 — Y, a continuous
map such that for each i = 1, 2, 0, z; carries S, homeomorphically onto
Ti\{"m vi, Vo, wi(v) = 4; U B;, CI(S) =S; U 4; U Biroymed 3
CI(S,) has three arc components, and A4, and B; are line segments of the
same length such that 4; | B; = {m,} where m; is a common endpoint
of 4, and B,. Suppose also that if Kis a ray in S; such that v; € Cl(z;(K)),
then A;  CI(K) when i = j, and B; < CI(K) when j = (i + 2) mod 3.
We identify the points of Yo\{vq, v1, vo} with their preimages in Y;. Let

Ty ar = 71Ty, ., ) N CL(Sy)
for (ay, ..., @) e D.
_ Define an equivalence relation ~, on Y; by setting x ~; y if and only
ifx=yorxye A; | B; for some i and the distance from x to m; equals
the distance from y to m,. Then ~ is an upper semi-continuous relation
on Y,. Let X; be the quotient space Y;/~; and let f;: ¥; — X be the na-
tural projection. Let ¢;: X; — X, be such that ¢, o f; = fo o 7. See Figure 1.

Figure 1.
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The space Y; was obtained from Y, by replacing by arcs 4, U B; each
of the three local separating points v; of § = ¥, which were obtained at
the first stage of construction of S. The space X; was obtained from Y1
by folding in half each of the arcs 4; |J B; and thus eliminating the three
local separating points m;, i = 0, 1, 2, in Y;. Both ¥; and X have six ar¢
components.

Let

YZ = U{Soq,az U Am,az U Bal,azlab az = 0» la 2}

be a plane continuum and let z,: Y, — Y7 be a continuous map such
that 7, carries | J{S,,mle, @2 =0, 1, 2} homeomorphically onto
Yl\{va],azlal? ay = O, 1, 2}, and for each ay, g = 0, l, 2,

EZ(Sal,az) = Ttlxl,az\{val,aglal’ az = 0’ 1: 2} )
”El(valyaz) = Aalyaz U Babaz >
Cl(Sa;,az) = Sao,az U Aal,az U chl,(az+2) mod 3 »

the number of arc components of CI(S,

of arc components of T% ,. A, ., and B, ,, are line segments of th
same length such that A, ,, N By o = {Myy,o,} Where m,, ,, is a commo?!
endpoint of 4, ,, and B, ,,. Suppose also that if Kis a ray in S, o such
that v, ; € Cl(zy(K)), then 4, ,, = CI(K) whenj = ayand B, ; < C1(K)
when j = (a, + 2) mod 3. We identify the points of Yj\{v,, 4l @2 €
{0, 1, 2}} with their preimages in Y;. Let

Tevas = 72 (Tay, a) N Cl(Say,a)

for (a1, ...,ap) e Dand k 2 2. Let T2 = ;! (T%,) for a; = 0, 1, 2.

Define an equivalence relation ~, on Y, by setting x ~, y in Yz if and
only if x = y or x, y€ Ay, o, U B,,,, for some ay, ap € {0, 1, 2} and the
distance from x to m,, ,, is the same as the distance from y to m,, ,, Thet
~ is an upper semi-continuous relation on Y,. Let X be the quOtient
space Yo/~ and let fo: ¥, - X, be the natural projection. Let ¢o: X2 7
X7 be such that @y o f5 = f) o 75,

The space Y was obtained from Y, by replacing by arcs 4, 4, U Byn
each of the nine local separating points of Y; which correspond to the
vertices of the triangles T, i = 0, 1, 2, which were introduced at thf
second stage of construction of S. The only point of Anyyay U Bayya which 13
a local separating point of Y, is m, ,,. The space X, was obtained from
Y by folding in half each of the arcs 4, ,, U B,,,4, so that foAuyed =
SABy,, ;) contains no local separating points of Xa.

We can continue this process inductively to define for eachn = 1,2, - -’

space Y, and X, and maps 7, and @, such that the rectangles in the fol
lowing diagram commute

a) 1S tWo more than the number

ap, a2
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Y 70 Tn—1 Tn
PRRLLERPNL R PP

fo fa-1 fa

Yo oy oy

Let Y be the inverse limit of the sequence (Y,, ,) and let X be the in-
verse limit of the sequence (X, ¢,). Letz: ¥ = S, ¢: X > Sandf: Y -
X be the natural maps induced by the above diagram. Then Y is clearly
Tational at each point of

Y\ U{”‘_l(val,...,ak)l(als ey dk) € D} .

In fact at each of these points Y has a neighbourhood basis of open sets
With boundaries consisting of at most four points (the boundary points
are the points in ¥ which correspond to points in {m,, (a1, ..., @) €
D} in v,). The sets T (Vay, ., o)) Where (a1, ..., ;) € D form a null
Sequence of pairwise disjoint arcs in Y. By Lemma 2, Y is rational and
fmt(Y) < 2. It is easy to see that Y does not have a basis of open sets with
finite boundaries at the point corresponding to my. Hence rimt(Y) = 2.
Th.e continuum X is not rational since X contains no local separating
Points (see [9, 111.9.43)).

It remains to prove only that f: ¥ — X is confluent. Notice that fis at
Most two-to-one on Y and f is one-to-one off of the inverse image under
% of the local separating points of S. Let K be a continuum in X and
SUppose K meets f(Ay, o). If K < f(A,, ), then f71(K) has at most
two components and both of these are mapped onto K by f If K &

A, .»ay)s then K > f(4,, ) by the construction of X and Y. Thus

Aahm- ag U Ba;,...,a‘, = f—l(K) N

Ngw 1 : §— Y is upper semi-continuous. If K & f(4,, ). then
=" restricted to ¢(K) is monotone. Hence 7 1¢(K) = f~1(K) is connected.
N each case each component of f~1(K) maps onto K and f is confluent.

A continuum is said to be decomposable if it can be written as the
Union of two proper subcontinua. A continuum is said to be hereditarily
CO"O_mposable if each subcontinuum is decomposable. Since. every ra?ional
siommullm contai.ns a countable set vyhose complement is zero-dnmgn-
of na? ar)d every indecomposable contm}mm has an uncountable family
eve};mrwn'se dlSjOlnt,. non-dggenerat:c cqntmua (see [5, p. 212, Thef)rem 0,
is Say rational continuum is heredltarlly'decomposable. A. continuum X
ung 1d to be? umqu.ely arcwis.e connected if for each x # y in X there is a

qQue arc in X with endpoints x and y.
€ next example is of a rational uniquely arcwise connected continuum
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which contains a dense ray which is of first category. This answers Ques-
tion 2 of Fugate [4].

EXAMPLE 2. Let X, Sand ¢: X — S be as in Example 1. Let x * yin X
if and only if x = y or there exists ke Nand ay, .. ., @, € {0, 1, 2} and
ai € {0, 1} such that x, y e ¢~1(v,,, ). Then * is an equivalence relation
on X. The equivalence classes of * that are non-degenerate form a null
sequence of arcs. Hence, * is upper semi-continuous. Let Z be the quo-
tient space X/* and let §: X —» Z be the natural projection.

If (x,0) € S where 0 < x < 4/2 and (x, 0) is not a local separating
point of S, then there exists a sequence u,) of local separating points of
S where u, = Vo, o @1 -+ o5 Q-1 € {0, 1, 2}, ayem € {0, 1}, the
sequence u,) converges to (x, 0) and {(x, 0)} U |J:,{u,} separates [0, x)
x {0} from (x, 4/ 2] x {0}in S. Also,

0o ¢7({(x, 0)} U G )

separates § o 71([0, x) x {0}) from § o ¢~X((x, 4/2 x {0}) in Z. Notice
that 0o ¢1(| Js2:{u,}) is a sequence in Z which converges to the point
60 ¢71((x, 0). It is now easy to show by a similar argument that if (x, y)es
such that z = § o ¢~1((x, y))is a single point, then Z has a neighbourhood
basis at z of open sets whose boundaries have at most three limit points:
Thus, rimit,(Z) < 2. It is easy to see that no finite set separates Z between
00 ¢~1((y,0)) and 8o ¢~Y((x, 0)) for all x and ysuchthat 0 Sy < x < &/ R
Hence rimt g ,(Z) = 2. By Lemma 3, rimt(Z) < 3 since the set of points
zin Z such that rimt,(Z) > 2 is contained in the union of a null sequenc®
of pairwise disjoint arcs. If ze §o ¢~1(v,) and U is a small m:ighbourhoOd
of z, then the boundary of U disconnects 6§ o ¢~1([0, 4/ 2]) into infinitely
many components. It follows from the above that ttyp (Bd(U)) = 3. Thus
rimt(Z) = 3.

Let Yand f: ¥ — X be as in Example 1. The map fof: Y — Z is a con
fluent map (since it is a composition of confluent maps) which carries
continuum of rim-type 2 onto a continuum of rim-type 3.

Let W = S\{v,, nodkeNand a, ...,a, =0, 1, 2}. Then Wis?
uniquely arcwise connected set. By Lemma 5, 6o g~ W) is homeomorph'
to W. It is now easy to see that the arc components of Z are § o ¢'1(W
and the null sequence of pairwise disjoint arcs 6o ¢~Yv,,, 4,2 where
keNanday, ..., a; €{0,1,2}.

We may suppose Z lies in a hyperplane in E4since it is one-dimensiona
Adjoin to Z a null sequence of pairwise disjoint arcs D;),cy as follows.

(1) D; N Z consists of exactly two points.

(2) Dy is a semi-circle in £ such that Dymeets Z in 60 ¢~1((1, 1)) and 09¢
of the endpoints of § o ¢=1(v,).
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@) R=DoUDiU--)U U8 ¢ Oy ke Nty o o€
{0,1,2}} isaray.

(4) If n is the smallest integer such that D, meets § o §1(v,, . ),
then D,,; also meets 0 o ¢1(v,,, 4y 2)-

() If 81, ..., fr-1€ {0, 1, 2} and je N such that fo¢X(v,, 4, ,2)
meets D, for some q;, ..., az; € {0, 1, 2}, then there exists m € N such
that m < nand D, meets 6 o ¢~1(vs, 5, . 2)-

T(6) If D, meets 0 ¢~Uv,,, ., q,,2) @nd G0 7Hvg, ., 5,2), then T, meets

Bls oo B

It is easy to find a null family of pairwise disjoint arcs D,) satisfying
conditions (1)~(6). Then Z' = Z |J (JD; is an arcwise connected con-
tinuum. It is also not very difficult to see that Z’ is uniquely arcwise
connected.

Define x # y in Z’ if and only if x = y or there exists i € N such that
X, ye D;. Then # is an equivalence relation on Z' since the sets D; are
Pairwise disjoint. Since the non-degenerate equivalence classes of # are
closed and form a null sequence, # is upper semi-continuous. Thus
Z'|$ = Z/#is a continuum. The image of R in Z'/ # is a ray which is
dense and of first category in Z'/ #.

It is well known that a continuum is rational if and only if it contains
a countable set with zero-dimensional complement. If C is a countable set
in Z with zero-dimensional complement then the image of C together with
the image of Dy J Dy U - - - is a countable set in Z’/ # with zero-dimen-
s‘ional complement in Z’/ # by Lemma 5. Thus Z'/ # is a rational con-
tinyum.

We next give an example of a hereditarily locally connected continuum
X which contains a dense ray which is of first category in X. Note that such
an example cannot be uniquely arcwise connected for a uniquely arcwise
Connected, locally connected continuum is a dendrite.,

ExampLE 3. Let [0, 1] denote a unit segment on the z-axis in Euclidean
three-space. Let Cy, Cy, ..., be a sequence of Cantor sets in [0, 1] such
that for each n = 1,2, .

(1) the components of [0 1)\C, have diameter less than 1/n,

()ifniseven C, N C,y = {b,} where b, = sup C,y = sup C,,

3)ifn > 1is odd, C, ) C,; = {a,} where a, = inf C,; = inf C,,
and

@We,n@GaU--UCD=0

If Cis a Cantor set in [0, 1], x and y two points of C are said to be con-
Secutive endpoints of C if x and y are the two endpoints of the closure of a
“mponent of [0, 1]\C.

For each natural number 7 let P, be the plane in Euclidean three-space
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which contains the z-axis and the point (1, n, 0). If x and y are consecutive
endpoints of C,, let xy be a semi-circle in P, with endpoints x and y.
For each nlet 4, = C, | |J{xylx and y are consecutive endpoints of
C,}. Theneach 4, is anarcin P,.

Let X =[0,1] U 4; U 42 U --- . Then X is obtained by attaching to
the arc [0, 1] a null sequence of disjoint arcs each of which meets [0, 1]-
By [8, p. 94] X is a hereditarily locally connected continuum. Also R =
Ay U A3 | --- isadenserayin X.

Let x ~ y in X if and only if x = y or x, y € z;z; for some z; and 2
consecutive endpoints of C, for somen = 1,2, ... . Then ~ is an uppef
semi-continuous equivalence relation on X. The quotient space X/~ i
hereditarily locally connected since the projection map is monotone and
monotone mappings preserve hereditarily locally connected continud
(see [6, p. 58]). The image of the ray R in X/ ~ under the natural projection
mapping is a ray which is dense and of first category in X/ ~.

It is easy to modify Example 3 to obtain a hereditarily locally con-
nected continuum with countably infinitely many disjoint dense rays.

QUESTION 1. Does there exist a hereditarily decomposable continuum
which contains uncountably many disjoint dense rays?

QuEsTION 2. If X is a locally connected continnum, is it true that X is
finitely Suslinian if and only if the closure of every ray in X is an arc, 8
simple closed curve, or a simple closed curve with an arc adjoined by its
endpoint? (A continuum X is said to be finitely Suslinian if every sequencé
of disjoint continua in X is a null sequence). The necessity can be proVed
along the following lines. Let R be a ray in a finitely Suslinian continuu™®
X such that R is not compact. Let x € CI(R)\R. By Whyburn [10, p. 334]
R | {x} is arcwise connected. If 0 is the endpoint of R, it follows from
Sierpinski’s theorem that R |J {x} is the only arcin R |J {x} from 0 to -
Hence R |J {x}is an arc.
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