LINEAR TRANSFORMATIONS PRESERVING SETS OF RANKS

LEROY B. BEASLEY

ABSTRACT. Let T be a linear transformation on $M_{m,n}(F)$, the set of all $m \times n$ matrices over the algebraically closed field F, and let R_j denote the subset of all matrices of rank j. Further let $R_E = \bigcup_{j \in E} R_j$ where E is a subset of $\{0, 1, \ldots, \min(m, n)\}$. We explore the structure of T when $T(R_E) \subseteq R_E$.

1. Introduction. Let $M_{m,n}(F)$ denote the set of all $m \times n$ matrices over the algebraically closed field F and let $\rho(A)$ denote the rank of the matrix A. Let R_j denote the set of all matrices $A \in M_{m,n}(F)$ such that $\rho(A) = j$. If E is a subset of $\{0, 1, \ldots, \min(m, n)\}$, let $R_E = \bigcup_{j \in E} R_j$. In this notation consider the following problem: if $T: M_{m,n}(F) \to M_{m,n}(F)$ is a linear transformation, $E \subseteq \{0, 1, \ldots, \min(m, n)\}$, and $T(R_E) \subseteq R_E$, then what is the structure of T? There are two trivial cases: $E = \{0, 1, \ldots, \min(m, n)\}$ and $E = \{1, \ldots, \min(m, n)\}$. In the first case T need only be linear and in the second case T need only be linear and nonsingular.

Throughout the remainder of the paper we will assume that T is a linear transformation on $M_{m,n}(F)$ and that $m = \min(m, n)$.

Some research has been done for the case $E = \{k\}$ [1, 6, 7] and, in fact, in each known case when E is a proper subset of $\{1, \ldots, m\}$ the structure of T is the same [1, 2, 3, 6, 7]. We demonstrate that structure in the following theorem of Marcus, Moyls and Westwick [6, 7].

THEOREM 1. If $T(R_1) \subseteq R_1$, then there exist $m \times m$ and $n \times n$ nonsingular matrices U and V respectively such that either

i) $T: A \to UAV$ for all $A \in M_{m,n}(F)$

or

ii) m = n and $T: A \to UA^t V$ for all $A \in M_{m,n}(F)$ where A^t denotes the transpose of A.

For easy reference we define a transformation T satisfying (i) or (ii) in Theorem 1 as a rank-1-preserver. We note that as a consequence of [2, Thm. 4] we have the following theorem.

THEOREM 2. If E is a subset of $\{0, 1, ..., m\}$, $E \neq \{1, 2, ..., m\}$, and if T is nonsingular, then T is a rank-1-preserver.

Received by the editors on August 4, 1980, and in revised form on November 2, 1981. Copyright © 1983 Rocky Mountain Mathematics Consortium

We use the notation $A[\alpha_1, \ldots, \alpha_s | \beta_1, \ldots, \beta_t]$ to denote the submatrix of A on rows α_1, \ldots, e_s and columns β_1, \ldots, β_t .

2. An extension of a result of Botta. In [3] Botta proves the interesting result that, if m = n and $E = \{0, 1, ..., m - 1\}$, and if $T(R_E) \subseteq R_E$, then either T is nonsingular (hence a rank-1-preserver) or $T(M_{m,n}(F)) \subseteq R_E$.

THEOREM 3. If $E = \{0, \ldots, k\}$, $1 \leq k \leq m$, and $T(R_E) \leq R_E$, then either $T(M_{m,n}(F)) \leq R_E$ or dim ker $T \leq mn - (k + 1)^2$.

The proof of this theorem and a later one rely heavily on the following lemma.

LEMMA 1. If $T(R_E) \subseteq R_E$, where $E = \{0, 1, \ldots, k\}$, $1 \leq k \leq m$, and $T(M_{m,n}(F)) \not\subseteq R_E$, then there exist nonsingular matrices $R, U \in M_m(F)$, $S, V \in M_n(F)$, and a positive integer s such that

$$UT\left(R^{-1}\begin{bmatrix}I_{k+s} & 0\\ 0 & 0\end{bmatrix}S^{-1}\right)V = \begin{bmatrix}I_{k+t} & 0\\ 0 & 0\end{bmatrix}$$

for some t > 0 and

$$T'(A) = UT \begin{pmatrix} R^{-1} \begin{bmatrix} A & 0 & 0 \\ 0 & a_{11}I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} S^{-1} V[1, \dots, k+1|1, \dots, k+1]$$

is a nonsingular linear transformation of $M_{k+1}(F)$ to $M_{k+1}(F)$ mapping I_{k+1} to I_{k+1} .

PROOF. Since $T(M_{m,n}(F)) \notin R_E$, there is $G \in M_{m,n}(F)$ such that $\rho(T(G)) > k$. Since $T(R_E) \subseteq R_E$, $\rho(G) > k$. Choose $B \in M_{m,n}(F)$ of smallest rank such that $\rho(T(B)) > k$. Say $\rho(B) = k + s$ and $\rho(T(B)) = k + t$. Let R, $U \in M_m(F)$ and $S, V \in M_n(F)$ be nonsingular matrices such that

$$RBS = \begin{bmatrix} I_{k+s} & 0 \\ 0 & 0 \end{bmatrix} \text{ and } UT(B)V = \begin{bmatrix} I_{k+t} & 0 \\ 0 & 0 \end{bmatrix}$$

Define $T_1: M_{m,n}(F) \to M_{m,n}(F)$ by $T_1(X) = UT(R^{-1}XS^{-1})V$ for all $X \in M_{m,n}(F)$ so that,

$$T_1\begin{bmatrix}I_{k+s} & 0\\0 & 0\end{bmatrix} = \begin{bmatrix}I_{k+t} & 0\\0 & 0\end{bmatrix}.$$

Further, since R, S, U and V are nonsingular and $T(R_E) \subseteq R_E$, we have that $T_1(R_E) \subseteq R_E$.

Now define $T': M_{k+1}(F) \to M_{k+1}(F)$ by

$$T'(A) = T_1 \begin{bmatrix} A & 0 & 0 \\ 0 & a_{11}I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} [1, 2, ..., k + 1|1, ..., k + 1]$$

for all $A \in M_{k+1}(F)$. It is easily checked that T' is linear. Also, if $C \in M_{k+1}(F)$ and $\rho(C) \leq k$, then

$$\rho \begin{bmatrix} C & 0 & 0 \\ 0 & c_{11}I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} \leq k + s - 1$$

so that

$$\rho \left(T_1 \begin{bmatrix} C & 0 & 0 \\ 0 & c_{11} I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \leq k$$

since the matrix of smallest rank whose image under T (and hence under T_1) has rank greater than k has rank k + s. Thus, $\rho(T'(C)) \leq k$. That is, the image under T' of any singular matrix is singular. By [3, Thm. 1], either T' is nonsingular or $\rho(T'(Z)) \leq k$ for all $Z \in M_{k+1}(F)$. Since

$$T'(I_{k+1}) = T_1 \begin{pmatrix} I_{k+1} & 0 & 0 \\ 0 & I_{s-1} & 0 \\ 0 & 0 & 0 \end{pmatrix} [1, \dots, k+1|1, \dots, k+1]$$
$$= \begin{bmatrix} I_{k+t} & 0 \\ 0 & 0 \end{bmatrix} [1, \dots, k+1|1, \dots, k+1] = I_{k+1},$$

we must conclude that T' is nonsingular, and the lemma is proven.

PROOF OF THEOREM 3. Suppose $T(M_{m,n}(F)) \not\subseteq R_E$. By Lemma 1, there exist nonsingular $R, U \in M_m(F)$, $S, V \in M_n(F)$, and a positive integer s such that

$$T'(A) = UT \left(R^{-1} \begin{bmatrix} A & 0 & 0 \\ 0 & a_{11}I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} S^{-1} \right) V[1, \ldots, k+1|1, \ldots, k+1]$$

is nonsingular. That is, dim im $T' = (k + 1)^2$. Now, dim im $T \ge \dim m T'$ so that dim im $T \ge (k+1)^2$. Thus dim ker $T \le mn - (k+1)^2$.

3. Main results. One of our main results is contained in the following theorem.

THEOREM 4. If $0 \notin E$, $\max\{j: j \in E\} = k < m$ and $T(R_E) \subseteq R_E$, then either $T(M_{m,n}(F)) \subseteq R_G$, where $G = \{0, 1, \ldots, k\}$ or T is nonsingular (and hence a rank-1-preserver).

In developing the arguments for this theorem we use the following lemmas, which appear to have some importance in themselves.

LEMMA 2. If $\rho(A) = s$ and $\rho(T(A)) = t$ for any linear transformation

T, then there exist $A_i \in M_{m,n}(F)$, i = 1, ..., m - s, such that $\rho(A_i) = s + i$ and $\rho(T(A_i)) \ge t$.

PROOF. Let U and V be nonsingular matrices such that

$$UAV = \begin{bmatrix} I_s & 0\\ 0 & 0 \end{bmatrix}$$

Define

$$B_i = U^{-1} \begin{bmatrix} 0_s & 0 & 0 \\ 0 & I_i & 0 \\ 0 & 0 & 0 \end{bmatrix} V^{-1},$$

i = 1, ..., m - s. Clearly, $\rho(xA + B_i) = s + i$ whenever $x \neq 0$. Let R and S be nonsingular matrices such that

$$RT(A)S = \begin{bmatrix} I_t & 0\\ 0 & 0 \end{bmatrix}.$$

Further, define $T_1: M_{m,n}(F) \to M_{m,n}(F)$ by $T_1(X) = RT(X)S$. Obviously, $\rho(T_1(X)) = \rho(T(X))$. Now det $T_1(xA + B_i)[1, \ldots, t|1, \ldots, t] = x^t + f(x)$ where the degree of f(x) is less than t, since

$$T_1(xA + B_i) = x \begin{bmatrix} I_t & 0 \\ 0 & 0 \end{bmatrix} + T_1(B_i) .$$

Thus there is some nonzero x, say x_i , for which det $T_1(x_iA + B_i)[1, \ldots, t|1, \ldots, t]$ is nonzero. That is $\rho(T_1(x_iA + B_i) \ge t$. Let $A_i = x_iA + B_i$. Here $\rho(A_i) = s + i$ and $\rho(T(A_i)) = \rho(T_1(A_i)) = \rho(T_1(x_iA + B_i)) \ge t$.

LEMMA 3. If $E \subseteq \{0, \ldots, m\}$, $\max_{j \in E} j = k$ and $T(R_E) \subseteq R_E$, then $T(R_G) \subseteq R_G$, where $G = \{0, \ldots, k\}$.

PROOF. If k = m, the lemma is trivial. Suppose k < m and $T(R_G) \notin R_G$. In this case there is $A \in M_{m,n}(F)$ with $\rho(A) = s < k$ and $\rho(T(A)) = t > k$. Since s < k, there is some *i* such that s + i = k. By Lemma 2 there exists $B \in M_{m,n}(F)$ such that $\rho(B) = s + i$ and $\rho(T(B)) \ge t > k$. That is, $B \in R_E$ and $T(B) \notin R_E$, a contradiction.

PROOF OF THEOREM 4. Suppose $T(M_{m,n}(F)) \not\subseteq R_G$. By Lemma 3, $T(R_G) \subseteq R_G$ and hence by Lemma 1, there exist nonsingular matrices $R, U \in M_m(F)$, $S, V \in M_n(F)$, and a positive integer s such that

$$UT\left(R^{-1}\begin{bmatrix}I_{k+s} & 0\\ 0 & 0\end{bmatrix}S^{-1}\right)V = \begin{bmatrix}I_{k+t} & 0\\ 0 & 0\end{bmatrix}$$

for some t > 0 and

$$T'(A) = UT \left(R^{-1} \begin{bmatrix} A & 0 & 0 \\ 0 & a_{11}I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} S^{-1} \right) V[1, \dots, k+1|1, \dots, k+1]$$

is a nonsingular linear transformation of $M_{k+1}(F)$. Let $T_1: M_{m,n}(F) \rightarrow M_{m,n}(F)$ be defined by $T_1(X) = UT(R^{-1}XS^{-1})V$ for all $X \in M_{m,n}(F)$. Here $T'(A) = T_1(A)[1, \ldots, k+1|1, \ldots, k+1]$ for all $A \in M_{k+1}(F)$. Now let $k^{(1)} = \max\{\rho(T(A)): A \in R_E\}$ and let $j^{(1)} = \min\{\rho(A): \rho(T(A)) = k^{(1)}\}$. If $j^{(1)} \ge k^{(1)}$, then let $k^{(2)} = \max\{\rho(T(A)): A \in R_E \text{ and } \rho(T(A)) < k^{(1)}\}$ and let $j^{(2)} = \min\{\rho(A): \rho(T(A)) = k^{(2)}\}$. If $j^{(2)} \ge k^{(2)}$, continue the process until either $k^{(\prime)} = q$ where $q = \min_{i \in E} j$ or $j^{(\prime)} < k^{(\prime)}$.

CASE 1. $j^{(r)} \ge k^{(r)} = q$. If $q \ne 1$, then $T(R_q) \subseteq R_q$. By [1, Thm. 2.1] either T is nonsingular or there is $B \in M_{m,n}(F)$ such that $\rho(B) < q$ and $\rho(T(B)) = q$, contradicting that $j^{(r)} \ge q$. Thus T is nonsingular. If q = 1, then by Theorem 1, T is nonsingular.

CASE 2. $j^{(\prime)} < k^{(\prime)}$. In this case we can assume without loss of generality that $\ell = 1$ (i.e., $j^{(l)} < k^{(l)}$). Choose $H \in M_{m,n}(F)$ such that $\rho(H) = j^{(l)}$ and $\rho(T(H)) = k^{(l)}$. Let

$$T(H) = K = \begin{bmatrix} K_1 & K_2 \\ K_3 & K_4 \end{bmatrix}$$

where K_1 is $(k + 1) \times k \times 1$). Let $U_1, V_1 \in M_{k+1}(F), U_2 \in M_{m-k-1}(F)$ and $V_2 \in M_{n-k-1}(F)$ be nonsingular matrices chosen so that:

$$U_1 K_1 V_1 = \begin{bmatrix} 0 & I_u \\ 0 & 0 \end{bmatrix},$$
$$U_1 K_2 V_2 = \begin{bmatrix} 0 & K_1^{(2)} \\ I_v & 0 \\ 0 & 0 \end{bmatrix}$$

where $K_1^{(2)}$ is $u \times (n - k - 1 - v)$

$$U_2 K_3 V_1 = \begin{bmatrix} 0 & I_w & 0 \\ 0 & 0 & K_1^{(3)} \end{bmatrix}$$

where $K_1^{(3)}$ is $(m - k - 1 - w) \times u$ and

$$U_2 K_4 V_2 = \begin{bmatrix} K_1^{(4)} & K_2^{(4)} \\ K_3^{(4)} & K_4^{(4)} \end{bmatrix}$$

where $K_1^{(4)}$ is $w \times v$.

To see the existence of U_1 , U_2 , V_1 and V_2 , let

$$U_{1} = \begin{bmatrix} I_{u} & -K_{2}^{(2)} \\ 0 & I_{k+1-u} \end{bmatrix} \begin{bmatrix} I_{u} & 0 \\ 0 & P_{2} \end{bmatrix} P_{1},$$

and

$$V_{1} = Q_{1} \begin{bmatrix} Q_{2} & 0 \\ 0 & I_{u} \end{bmatrix} \begin{bmatrix} I_{k+1-u-w} & 0 & 0 \\ 0 & I_{w} & -K_{2}^{(3)} \\ 0 & 0 & I_{u} \end{bmatrix}$$

where P_1 and Q_1 are chosen so that

$$P_1K_1Q_1 = \begin{bmatrix} 0 & I_u \\ 0 & 0 \end{bmatrix},$$

then P_2 and V_2 are chosen so that

$$\begin{bmatrix} I_{u} & 0 \\ 0 & P_{2} \end{bmatrix} P_{1}K_{2}V_{2} = \begin{bmatrix} K_{2}^{(2)} & K_{1}^{(2)} \\ I_{v} & 0 \\ 0 & 0 \end{bmatrix}.$$

Choose Q_2 and U_2 so that

$$U_2 K_3 Q_1 \begin{bmatrix} Q_2 & 0 \\ 0 & I_u \end{bmatrix} = \begin{bmatrix} 0 & I_w & K_2^{(3)} \\ 0 & 0 & K_1^{(3)} \end{bmatrix}.$$

Now

$$U_{1}K_{1}V_{1} = \begin{bmatrix} I_{u} & -K_{2}^{(2)} \\ 0 & I_{k+1-u} \end{bmatrix} \begin{bmatrix} I_{u} & 0 \\ 0 & P_{2} \end{bmatrix} P_{1}K$$

$$\cdot Q_{1}\begin{bmatrix} Q_{2} & 0 \\ 0 & I_{u} \end{bmatrix} \begin{bmatrix} I_{k+1-u-w} & 0 & 0 \\ 0 & I_{w} & -K_{2}^{(3)} \\ 0 & 0 & I_{u} \end{bmatrix}$$

$$= \begin{bmatrix} I_{u} & -K_{2}^{(2)} \\ 0 & I_{k+1-u} \end{bmatrix} \begin{bmatrix} I_{u} & 0 \\ 0 & P_{2} \end{bmatrix} \begin{bmatrix} 0 & I_{u} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_{2} & 0 \\ 0 & I_{u} \end{bmatrix}$$

$$= \begin{bmatrix} I_{u} & -K_{2}^{(2)} \\ 0 & I_{k+1-u} \end{bmatrix} \begin{bmatrix} I_{u} & 0 \\ 0 & P_{2} \end{bmatrix} \begin{bmatrix} 0 & I_{u} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_{2} & 0 \\ 0 & I_{u} \end{bmatrix}$$

$$\begin{bmatrix} I_{k+1-u-w} & 0 & 0 \\ 0 & I_{w} & -K_{2}^{(3)} \\ 0 & 0 & I_{u} \end{bmatrix}$$

$$= \begin{bmatrix} I_{\sigma} & -K_{2}^{(2)} \\ 0 & I_{k+1-u} \end{bmatrix} \begin{bmatrix} 0 & I_{u} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{k+1-u-w} & 0 & 0 \\ 0 & I_{w} & -K_{2}^{(3)} \\ 0 & 0 & I_{u} \end{bmatrix}$$

Also, $U_1K_2V_2$ and $U_2K_3V_1$ have the desired forms. Now

304

$$\begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix} K \begin{bmatrix} V_1 & 0 \\ 0 & V_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & I_u & 0 & K_1^{(2)} \\ 0 & 0 & 0 & I_v & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & I_w & 0 & K_1^{(4)} & K_2^{(4)} \\ 0 & 0 & K_1^{(3)} & K_3^{(4)} & K_4^{(4)} \end{bmatrix} = C_1.$$

Let

$$U_3 = \begin{bmatrix} 0 & -K_1^{(4)} & 0 \\ -K_1^{(3)} & -K_3^{(4)} & 0 \end{bmatrix} \in M_{m-k-1, k+1}(F)$$

and

$$V_3 = \begin{bmatrix} 0 & 0 \\ 0 & -K_2^{(4)} \\ 0 & -K_1^{(2)} \end{bmatrix} \in M_{k+1, n-k-1}(F) .$$

Now

$$\begin{bmatrix} I_{k+1} & 0 \\ U_3 & I_{m-k-1} \end{bmatrix} C_1 \begin{bmatrix} I_{k+1} & V_3 \\ 0 & I_{n-k-1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & I_u & 0 & 0 \\ 0 & 0 & 0 & I_v & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & I_w & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & L \end{bmatrix} = C_2,$$

where $\rho(L) = k^{(1)} - u - v - w = x$. Let $U_4 \in M_{m-k-1-w}(F)$ and $V_4 \in M_{n-k-1-v}(F)$ be nonsingular matrices such that

$$U_4LV_4 = \begin{bmatrix} I_x & 0\\ 0 & 0 \end{bmatrix}.$$

Now

where $u + v + w + x = \rho(K) = k^{(1)}$. Define $T_2: M_{m,n}(F) \to M_{m,n}(F)$ by

L.B. BEASLEY

$$T_{2}(X) = \begin{bmatrix} I_{k+1+w} & 0 \\ 0 & U_{4} \end{bmatrix} \begin{bmatrix} I_{k+1} & 0 \\ U_{3} & I_{m-k-1} \end{bmatrix} \begin{bmatrix} U_{1} & 0 \\ 0 & U_{2} \end{bmatrix} T_{1}(X)$$
$$\cdot \begin{bmatrix} V_{1} & 0 \\ 0 & V_{2} \end{bmatrix} \begin{bmatrix} I_{k+1} & V_{3} \\ 0 & I_{n-k-1} \end{bmatrix} \begin{bmatrix} I_{k+1+v} & 0 \\ 0 & V_{4} \end{bmatrix}$$

for all $X \in M_{m,n}(F)$. Hence $T_2(H) = C_3$. Define $T'': M_{k+1}(F) \to M_{k+1}(F)$ by

$$T''(Y) = T_2\begin{bmatrix} Y & 0 & 0 \\ 0 & y_{11}I_{s-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} [1, \ldots, k+1|1, \ldots, k+1].$$

One sees by the structure of T_2 and the definition of T' that T''(Y) = $U_1T'(Y)V_1$ for all $Y \in M_{k+1}(F)$. Since T' is nonsingular, T" is and thus, for every pair (i, j), $1 \leq i, j \leq k + 1$, there is a matrix in $M_{k+1}(F)$ whose image has a nonzero (i, j) entry. Therefore, for any pair (i, j), $1 \leq i, j \leq j$ k + 1, there is a matrix in $M_{m,n}(F)$ whose image under T_2 has a nonzero (i, j) entry. Since every matrix in the image of T_2 is the sum of images of rank 1 matrices, there is a rank 1 matrix $P \in M_{m,n}(F)$ such that $T_2(P) =$ R has a nonzero (k + 1, 1) entry. That is, $\rho(zH + P) \leq j^{(1)} + 1$ for all $z \in F$ and $T_2(zH + P) \ge k^{(1)} + 1$ for some $z \in F$ since det $T_2(zH + P)$ $\cdot [1, \ldots, u + v, k + 1, k + 2, \ldots, k + 1 + w + x]1, k + 1 - w - u, \ldots,$ $k + 1 + v + x] = \det(zC_3 + R)[1, \dots, u + v, k + 1, k + 2, \dots, k + 1]$ $1 + w + x [1, k + 1 - w - u, ..., k + 1 + v + x] = z^{k^{(1)}} \cdot r_{k+1,1} + v^{(1)} + x [1, k + 1 - w - u]$ f(z) and deg $(f(z)) < k^{(1)}$, and thus for some choice of z, the above determinant is nonzero. That is $\rho(T_2(zH + P)) \ge k^{(1)} + 1$. However since $T(R_{E'}) \subseteq R_{E'}$ (and hence $T_2(R_{E'}) \subseteq R_{E'}$) where $E' = \{0, 1, \ldots, k^{(1)}\}$ and $j^{(1)} < k^{(1)}$, we have a contradiction. Thus T must be nonsingular.

The following corollary is a special case of Theorem 4.

COROLLARY 1. If $T(R_k) \subseteq R_k$, k > 0, then either T is nonsingular or $\rho(T(A)) \leq k$ for all $A \in M_{m,n}(F)$.

COROLLARY 2. If $T(R_k) \subseteq R_k$, k > 0, and if dim ker $T \leq (m - k)n$, then T is nonsingular.

PROOF. Suppose T is singular. From Corollary 1, $\rho(T(A)) \leq k$ for all $A \in M_{m,n}(F)$. Thus, by [4, Theorem 1] dim im $T \leq nk$, and therefore dim ker $T = mn - \dim \operatorname{im} T \geq mn - nk = (m - k)n$, a contradiction.

THEOREM 5. If D and E are nonempty disjoint subsets of $\{0, 1, ..., m\}$, $D \neq \{0\}, E \neq \{0\}, T(R_D) \subseteq R_D$ and $T(R_E) \subseteq R_E$, then T is nonsingular.

PROOF. Let $k = \max\{\rho(T(A)): A \in R_D\}$ and let $\ell = \max\{\rho(T(A)): A \in R_E\}$. Now $k \neq \ell$ since D and E are disjoint. Assume $k > \ell$. By

306

Theorem 4, T is nonsingular since there exists a matrix $A = M_{m,n}(F)$ such that $\rho(T(A)) = \ell > k$.

COROLLARY 3. If $T(R_k) \subseteq R_k$ and $T(R_j) \subseteq R_j$ where $k \neq j$ and k, j > 0, then T is nonsingular.

If E is a subset of $\{0, 1, \ldots, m\}$, we define E^c to be the complement of E in $\{0, 1, \ldots, m\}$.

THEOREM 6. If $E \subset \{0, \ldots, m\}, E \neq \emptyset, T(R_E) \subseteq R_E$ and $T(R_{E^c}) \subseteq R_{E^c}$, then T is nonsingular.

PROOF. By Theorem 5 either T is nonsingular or $E = \{0\}$ or $E^c = \{0\}$ Since $T(R_E) \subseteq R_E$ and $T(R_{E^c}) \subseteq R_{E^c}$, $T(A) \not\subseteq R_{\{0\}}$ if $A \neq 0$; that is, T is nonsingular.

I would like to thank the referee for his valuable suggestions.

REFERENCES

1. L.B. Beasley, *Linear transformations on matrices: the invariance of rank k matrices*, Lin. Alg. and Appl. 3 (1970), 407–427.

2. ____, Linear transformation on matrices: the invariance of sets of ranks, Lin. Alg. and Appl. (to appear).

3. P. Botta, Linear maps that preserve singular and nonsingular matrices, Lin. Alg. and Appl. 20 (1978), 45-49.

4. H. Flanders, On spaces of linear transformations with bounded rank, Journal London Math. Soc. 37 (1962), 10–16.

5. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964.

6. M. Marcus and B.N. Moyls, *Transformations on tensor product spaces* Pac. J. Math. 9 (1959), 1215–1221.

7. R. Westwick, Transformations on tensor spaces, Pac. J. Math. 23 (1967), 613-620.

DEPARTMENT OF MATHEMATICS, UTAH STATE UNIVERSITY, UMC 41, LOGAN, UT 84322.