LINEAR TRANSFORMATIONS PRESERVING SETS OF RANKS

LEROY B. BEASLEY

Abstract

Let T be a linear transformation on $M_{m, n}(F)$, the set of all $m \times n$ matrices over the algebraically closed field F, and let R_{j} denote the subset of all matrices of rank j. Further let $R_{E}=$ $\bigcup_{j \in E} R_{j}$ where E is a subset of $\{0,1, \ldots, \min (m, n)\}$. We explore the structure of T when $T\left(R_{E}\right) \cong R_{E}$.

1. Introduction. Let $M_{m, n}(F)$ denote the set of all $m \times n$ matrices over the algebraically closed field F and let $\rho(A)$ denote the rank of the matrix A. Let R_{j} denote the set of all matrices $A \in M_{m, n}(F)$ such that $\rho(A)=j$. If E is a subset of $\{0,1, \ldots, \min (m, n)\}$, let $R_{E}=\bigcup_{j \in E} R_{j}$. In this notation consider the following problem: if $T: M_{m, n}(F) \rightarrow M_{m, n}(F)$ is a linear transformation, $E \cong\{0,1, \ldots, \min (m, n)\}$, and $T\left(R_{E}\right) \subseteq R_{E}$, then what is the structure of T ? There are two trivial cases: $E=\{0,1, \ldots, \min (m, n)\}$ and $E=\{1, \ldots, \min (m, n)\}$. In the first case T need only be linear and in the second case T need only be linear and nonsingular.

Throughout the remainder of the paper we will assume that T is a linear transformation on $M_{m, n}(F)$ and that $m=\min (m, n)$.

Some research has been done for the case $E=\{k\} \quad[1,6,7]$ and, in fact, in each known case when E is a proper subset of $\{1, \ldots, m\}$ the structure of T is the same $[1,2,3,6,7]$. We demonstrate that structure in the following theorem of Marcus, Moyls and Westwick [6, 7].

Theorem 1. If $T\left(R_{1}\right) \subseteq R_{1}$, then there exist $m \times m$ and $n \times n$ nonsingular matrices U and V respectively such that either
i) $T: A \rightarrow U A V$ for all $A \in M_{m, n}(F)$ or
ii) $m=n$ and $T: A \rightarrow U A^{t} V$ for all $A \in M_{m, n}(F)$ where A^{t} denotes the transpose of A.

For easy reference we define a transformation T satisfying (i) or (ii) in Theorem 1 as a rank-1-preserver. We note that as a consequence of [2, Thm. 4] we have the following theorem.

Theorem 2. If E is a subset of $\{0,1, \ldots, m\}, E \neq\{1,2, \ldots, m\}$, and if T is nonsingular, then T is a rank-1-preserver.

We use the notation $A\left[\alpha_{1}, \ldots, \alpha_{s} \mid \beta_{1}, \ldots, \beta_{t}\right]$ to denote the submatrix of A on rows $\alpha_{1}, \ldots, e_{s}$ and columns $\beta_{1}, \ldots, \beta_{t}$.
2. An extension of a result of Botta. In [3] Botta proves the interesting result that, if $m=n$ and $E=\{0,1, \ldots, m-1\}$, and if $T\left(R_{E}\right) \subseteq R_{E}$, then either T is nonsingular (hence a rank-1-preserver) or $T\left(M_{m, n}(F)\right) \subseteq R_{E}$.

Theorem 3. If $E=\{0, \ldots, k\}, 1 \leqq k \leqq m$, and $T\left(R_{E}\right) \subseteq R_{E}$, then either $T\left(M_{m, n}(F)\right) \subseteq R_{E}$ or dim ker $T \leqq m n-(k+1)^{2}$.

The proof of this theorem and a later one rely heavily on the following lemma.

Lemma 1. If $T\left(R_{E}\right) \subseteq R_{E}$, where $E=\{0,1, \ldots, k\}, 1 \leqq k \leqq m$, and $T\left(M_{m, n}(F)\right) \nsubseteq R_{E}$, then there exist nonsingular matrices $R, U \in M_{m}(F), S$, $V \in M_{n}(F)$, and a positive integer s such that

$$
U T\left(R^{-1}\left[\begin{array}{ll}
I_{k+s} & 0 \\
0 & 0
\end{array}\right] S^{-1}\right) V=\left[\begin{array}{ll}
I_{k+t} & 0 \\
0 & 0
\end{array}\right]
$$

for some $t>0$ and

$$
T^{\prime}(A)=U T\left(R^{-1}\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & a_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right] S^{-1}\right) V[1, \ldots, k+1 \mid 1, \ldots, k+1]
$$

is a nonsingular linear transformation of $M_{k+1}(F)$ to $M_{k+1}(F)$ mapping I_{k+1} to I_{k+1}.

Proof. Since $T\left(M_{m, n}(F)\right) \nsubseteq R_{E}$, there is $G \in M_{m, n}(F)$ such that $\rho(T(G))$ $>k$. Since $T\left(R_{E}\right) \subseteq R_{E}, \rho(G)>k$. Choose $B \in M_{m, n}(F)$ of smallest rank such that $\rho(T(B))>k$. Say $\rho(B)=k+s$ and $\rho(T(B))=k+t$. Let R, $U \in M_{m}(F)$ and $S, V \in M_{n}(F)$ be nonsingular matrices such that

$$
R B S=\left[\begin{array}{cc}
I_{k+s} & 0 \\
0 & 0
\end{array}\right] . \quad \text { and } \quad U T(B) V=\left[\begin{array}{cc}
I_{k+t} & 0 \\
0 & 0
\end{array}\right] .
$$

Define $T_{1}: M_{m, n}(F) \rightarrow M_{m, n}(F)$ by $T_{1}(X)=U T\left(R^{-1} X S^{-1}\right) V$ for all $X \in M_{m, n}(F)$ so that,

$$
T_{1}\left[\begin{array}{ll}
I_{k+s} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
I_{k+t} & 0 \\
0 & 0
\end{array}\right]
$$

Further, since R, S, U and V are nonsingular and $T\left(R_{E}\right) \subseteq R_{E}$, we have that $T_{1}\left(R_{E}\right) \subseteq R_{E}$.

Now define $T^{\prime}: M_{k+1}(F) \rightarrow M_{k+1}(F)$ by

$$
T^{\prime}(A)=T_{1}\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & a_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right][1,2, \ldots, k+1 \mid 1, \ldots, k+1]
$$

for all $A \in M_{k+1}(F)$. It is easily checked that T^{\prime} is linear. Also, if $C \in$ $M_{k+1}(F)$ and $\rho(C) \leqq k$, then

$$
\rho\left[\begin{array}{ccc}
C & 0 & 0 \\
0 & c_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right] \leqq k+s-1
$$

so that

$$
\rho\left(T_{1}\left[\begin{array}{ccc}
C & 0 & 0 \\
0 & c_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right]\right) \leqq k
$$

since the matrix of smallest rank whose image under T (and hence under T_{1}) has rank greater than k has rank $k+s$. Thus, $\rho\left(T^{\prime}(C)\right) \leqq k$. That is, the image under T^{\prime} of any singular matrix is singular. By [$\left.3, \mathrm{Thm} .1\right]$, either T^{\prime} is nonsingular or $\rho\left(T^{\prime}(Z)\right) \leqq k$ for all $Z \in M_{k+1}(F)$. Since

$$
\begin{aligned}
T^{\prime}\left(I_{k+1}\right) & =T_{1}\left(\left[\begin{array}{lll}
I_{k+1} & 0 & 0 \\
0 & I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right][1, \ldots, k+1 \mid 1, \ldots, k+1]\right. \\
& =\left[\begin{array}{ll}
I_{k+t} & 0 \\
0 & 0
\end{array}\right][1, \ldots, k+1 \mid 1, \ldots, k+1]=I_{k+1},
\end{aligned}
$$

we must conclude that T^{\prime} is nonsingular, and the lemma is proven.
Proof of theorem 3. Suppose $T\left(M_{m, n}(F)\right) \nsubseteq R_{E}$. By Lemma 1, there exist nonsingular $R, U \in M_{m}(F), S, V \in M_{n}(F)$, and a positive integer s such that

$$
T^{\prime}(A)=U T\left(R^{-1}\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & a_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right] S^{-1}\right) V[1, \ldots, k+1 \mid 1, \ldots, k+1]
$$

is nonsingular. That is, $\operatorname{dim} \operatorname{im} T^{\prime}=(k+1)^{2}$. Now, $\operatorname{dim} \operatorname{im} T \geqq$ $\operatorname{dim} \operatorname{im} T^{\prime}$ so that $\operatorname{dim} \operatorname{im} T \geqq(k+1)^{2}$. Thus $\operatorname{dim} \operatorname{ker} T \leqq \mathrm{mn}-(k+1)^{2}$.
3. Main results. One of our main results is contained in the following theorem.

Theorem 4. If $0 \notin E, \max \{j: j \in E\}=k<m$ and $T\left(R_{E}\right) \subseteq R_{E}$, then either $T\left(M_{m, n}(F)\right) \cong R_{G}$, where $G=\{0,1, \ldots, k\}$ or T is nonsingular (and hence a rank-1-preserver).

In developing the arguments for this theorem we use the following lemmas, which appear to have some importance in themselves.

Lemma 2. If $\rho(A)=s$ and $\rho(T(A))=t$ for any linear transformation
T, then there exist $A_{i} \in M_{m, n}(F), i=1, \ldots, m-s$, such that $\rho\left(A_{i}\right)=s+i$ and $\rho\left(T\left(A_{i}\right)\right) \geqq t$.

Proof. Let U and V be nonsingular matrices such that

$$
U A V=\left[\begin{array}{cc}
I_{s} & 0 \\
0 & 0
\end{array}\right]
$$

Define

$$
B_{i}=U^{-1}\left[\begin{array}{lll}
0_{s} & 0 & 0 \\
0 & I_{i} & 0 \\
0 & 0 & 0
\end{array}\right] V^{-1}
$$

$i=1, \ldots, m-s$. Clearly, $\rho\left(x A+B_{i}\right)=s+i$ whenever $x \neq 0$. Let R and S be nonsingular matrices such that

$$
R T(A) S=\left[\begin{array}{ll}
I_{t} & 0 \\
0 & 0
\end{array}\right]
$$

Further, define $T_{1}: M_{m, n}(F) \rightarrow M_{m, n}(F)$ by $T_{1}(X)=R T(X) S$. Obviously, $\rho\left(T_{1}(X)\right)=\rho(T(X))$. Now $\operatorname{det} T_{1}\left(x A+B_{i}\right)[1, \ldots, t \mid 1, \ldots, t]=x^{t}+f(x)$ where the degree of $f(x)$ is less than t, since

$$
T_{1}\left(x A+B_{i}\right)=x\left[\begin{array}{cc}
I_{t} & 0 \\
0 & 0
\end{array}\right]+T_{1}\left(B_{i}\right)
$$

Thus there is some nonzero x, say x_{i}, for which det $T_{1}\left(x_{i} A+B_{i}\right)[1, \ldots$, $t \mid 1, \ldots, t]$ is nonzero. That is $\rho\left(T_{1}\left(x_{i} A+B_{i}\right) \geqq t\right.$. Let $A_{i}=x_{i} A+B_{i}$. Here $\rho\left(A_{i}\right)=s+i$ and $\rho\left(T\left(A_{i}\right)\right)=\rho\left(T_{1}\left(A_{i}\right)\right)=\rho\left(T_{1}\left(x_{i} A+B_{i}\right)\right) \geqq t$.

Lemma 3. If $E \subseteq\{0, \ldots, m\}, \max _{j \in E} j=k$ and $T\left(R_{E}\right) \subseteq R_{E}$, then $T\left(R_{G}\right) \subseteq R_{G}$, where $G=\{0, \ldots, k\}$.

Proof. If $k=m$, the lemma is trivial. Suppose $k<m$ and $T\left(R_{G}\right) \nsubseteq R_{G}$. In this case there is $A \in M_{m, n}(F)$ with $\rho(A)=s<k$ and $\rho(T(A))=t>k$ Since $s<k$, there is some i such that $s+i=k$. By Lemma 2 there exists $B \in M_{m, n}(F)$ such that $\rho(B)=s+i$ and $\rho(T(B)) \geqq t>k$. That is, $B \in R_{E}$ and $T(B) \notin R_{E}$, a contradiction.

Proof of theorem 4. Suppose $T\left(M_{m, n}(F)\right) \nsubseteq R_{G}$. By Lemma 3, $T\left(R_{G}\right) \subseteq$ R_{G} and hence by Lemma 1, there exist nonsingular matrices $R, U \in M_{m}(F)$, $S, V \in M_{n}(F)$, and a positive integer s such that

$$
U T\left(R^{-1}\left[\begin{array}{ll}
I_{k+s} & 0 \\
0 & 0
\end{array}\right] S^{-1}\right) V=\left[\begin{array}{ll}
I_{k+t} & 0 \\
0 & 0
\end{array}\right]
$$

for some $t>0$ and

$$
T^{\prime}(A)=U T\left(R^{-1}\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & a_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right] S^{-1}\right) V[1, \ldots, k+1 \mid 1, \ldots, k+1]
$$

is a nonsingular linear transformation of $M_{k+1}(F)$. Let $T_{1}: M_{m, n}(F) \rightarrow$ $M_{m, n}(F)$ be defined by $T_{1}(X)=U T\left(R^{-1} X S^{-1}\right) V$ for all $X \in M_{m, n}(F)$. Here $T^{\prime}(A)=T_{1}(A)[1, \ldots, k+1 \mid 1, \ldots, k+1]$ for all $A \in M_{k+1}(F)$. Now let $k^{(1)}=\max \left\{\rho(T(A)): A \in R_{E}\right\}$ and let $j^{(1)}=\min \left\{\rho(A): \rho(T(A))=k^{(1)}\right\}$. If $j^{(1)} \geqq k^{(1)}$, then let $k^{(2)}=\max \left\{\rho(T(A)): A \in R_{E}\right.$ and $\left.\rho(T(A))<k^{(1)}\right\}$ and let $j^{(2)}=\min \left\{\rho(A): \rho(T(A))=k^{(2)}\right\}$. If $j^{(2)} \geqq k^{(2)}$, continue the process until either $k^{(\kappa)}=q$ where $q=\min _{j \in E} j$ or $j^{(/)}<k^{(\kappa)}$.

CASE 1. $j^{(\kappa)} \geqq k^{(\kappa)}=q$. If $q \neq 1$, then $T\left(R_{q}\right) \cong R_{q}$. By [1, Thm. 2.1] either T is nonsingular or there is $B \in M_{m, n}(F)$ such that $\rho(B)<q$ and $\rho(T(B))=q$, contradicting that $j^{(\kappa)} \geqq q$. Thus T is nonsingular. If $q=1$, then by Theorem $1, T$ is nonsingular.

Case 2. $j^{(\kappa)}<k^{(\kappa)}$. In this case we can assume without loss of generality that $\ell=1$ (i.e., $j^{(l)}<k^{(l)}$). Choose $H \in M_{m, n}(F)$ such that $\rho(H)=j^{(l)}$ and $\rho(T(H))=k^{(l)}$. Let

$$
T(H)=K=\left[\begin{array}{ll}
K_{1} & K_{2} \\
K_{3} & K_{4}
\end{array}\right]
$$

where K_{1} is $\left.(k+1) \times k \times 1\right)$. Let $U_{1}, V_{1} \in M_{k+1}(F), U_{2} \in M_{m-k-1}(F)$ and $V_{2} \in M_{n-k-1}(F)$ be nonsingular matrices chosen so that:

$$
\begin{aligned}
U_{1} K_{1} V_{1} & =\left[\begin{array}{ll}
0 & I_{u} \\
0 & 0
\end{array}\right], \\
U_{1} K_{2} V_{2} & =\left[\begin{array}{ll}
0 & K_{1}^{(2)} \\
I_{v} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

where $K_{1}^{(2)}$ is $u \times(n-k-1-v)$

$$
U_{2} K_{3} V_{1}=\left[\begin{array}{lll}
0 & I_{w} & 0 \\
0 & 0 & K_{1}^{(3)}
\end{array}\right]
$$

where $K_{1}^{(3)}$ is $(m-k-1-w) \times u$ and

$$
U_{2} K_{4} V_{2}=\left[\begin{array}{ll}
K_{1}^{(4)} & K_{2}^{(4)} \\
K_{3}^{(4)} & K_{4}^{(4)}
\end{array}\right]
$$

where $K_{1}^{(4)}$ is $w \times v$.
To see the existence of U_{1}, U_{2}, V_{1} and V_{2}, let

$$
U_{1}=\left[\begin{array}{cc}
I_{u} & -K_{2}^{(2)} \\
0 & I_{k+1-u}
\end{array}\right]\left[\begin{array}{ll}
I_{u} & 0 \\
0 & P_{2}
\end{array}\right] P_{1},
$$

and

$$
V_{1}=Q_{1}\left[\begin{array}{ll}
Q_{2} & 0 \\
0 & I_{u}
\end{array}\right]\left[\begin{array}{llc}
I_{k+1-u-w} & 0 & 0 \\
0 & I_{w} & -K_{2}^{(3)} \\
0 & 0 & I_{u}
\end{array}\right]
$$

where P_{1} and Q_{1} are chosen so that

$$
P_{1} K_{1} Q_{1}=\left[\begin{array}{cc}
0 & I_{u} \\
0 & 0
\end{array}\right],
$$

then P_{2} and V_{2} are chosen so that

$$
\left[\begin{array}{ll}
I_{u} & 0 \\
0 & P_{2}
\end{array}\right] P_{1} K_{2} V_{2}=\left[\begin{array}{ll}
K_{2}^{(2)} & K_{1}^{(2)} \\
I_{v} & 0 \\
0 & 0
\end{array}\right] .
$$

Choose Q_{2} and U_{2} so that

$$
U_{2} K_{3} Q_{1}\left[\begin{array}{ll}
Q_{2} & 0 \\
0 & I_{u}
\end{array}\right]=\left[\begin{array}{lll}
0 & I_{w} & K_{2}^{(3)} \\
0 & 0 & K_{1}^{(3)}
\end{array}\right] .
$$

Now

$$
\begin{gathered}
U_{1} K_{1} V_{1}=\left[\begin{array}{ll}
I_{u} & -K_{2}^{(2)} \\
0 & I_{k+1-u}
\end{array}\right]\left[\begin{array}{ll}
I_{u} & 0 \\
0 & P_{2}
\end{array}\right] P_{1} K \\
\cdot Q_{1}\left[\begin{array}{ll}
Q_{2} & 0 \\
0 & I_{u}
\end{array}\right]\left[\begin{array}{lll}
I_{k+1-u-w} & 0 & 0 \\
0 & I_{w} & -K_{2}^{(3)} \\
0 & 0 & I_{u}
\end{array}\right] \\
=\left[\begin{array}{cc}
I_{u} & -K_{2}^{(2)} \\
0 & I_{k+1-u}
\end{array}\right]\left[\begin{array}{ll}
I_{u} & 0 \\
0 & P_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & I_{u} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
Q_{2} & 0 \\
0 & I_{u}
\end{array}\right] . \\
{\left[\begin{array}{ccc}
I_{k+1-u-w} & 0 & 0 \\
0 & I_{w} & -K_{2}^{(3)} \\
0 & 0 & I_{u}
\end{array}\right]=\left[\begin{array}{cc}
I_{\sigma} & -K_{2}^{(2)} \\
0 & I_{k+1-u}
\end{array}\right]\left[\begin{array}{ll}
0 & I_{u} \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
I_{k+1-u-w} & 0 & 0 \\
0 & I_{w} & -K_{2}^{(3)} \\
0 & 0 & I_{u}
\end{array}\right]} \\
\end{gathered}
$$

Also, $U_{1} K_{2} V_{2}$ and $U_{2} K_{3} V_{1}$ have the desired forms.
Now

$$
\left[\begin{array}{ll}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right] K\left[\begin{array}{ll}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & I_{u} & 0 & K_{1}^{(2)} \\
0 & 0 & 0 & I_{v} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & I_{w} & 0 & K_{1}^{(4)} & K_{2}^{(4)} \\
0 & 0 & K_{1}^{(3)} & K_{3}^{(4)} & K_{4}^{(4)}
\end{array}\right]=C_{1} .
$$

Let

$$
U_{3}=\left[\begin{array}{ccc}
0 & -K_{1}^{(4)} & 0 \\
-K_{1}^{(3)} & -K_{3}^{(4)} & 0
\end{array}\right] \in M_{m-k-1, k+1}(F)
$$

and

$$
V_{3}=\left[\begin{array}{cc}
0 & 0 \\
0 & -K_{2}^{(4)} \\
0 & -K_{1}^{(2)}
\end{array}\right] \in M_{k+1, n-k-1}(F) .
$$

Now

$$
\left[\begin{array}{ll}
I_{k+1} & 0 \\
U_{3} & I_{m-k-1}
\end{array}\right] C_{1}\left[\begin{array}{ll}
I_{k+1} & V_{3} \\
0 & I_{n-k-1}
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & I_{u} & 0 & 0 \\
0 & 0 & 0 & I_{v} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & I_{w} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & L
\end{array}\right]=C_{2},
$$

where $\rho(L)=k^{(1)}-u-v-w=x$. Let $U_{4} \in M_{m-k-1-w}(F)$ and $V_{4} \in$ $M_{n-k-1-v}(F)$ be nonsingular matrices such that

$$
U_{4} L V_{4}=\left[\begin{array}{cc}
I_{x} & 0 \\
0 & 0
\end{array}\right] .
$$

Now

$$
\left[\begin{array}{cc}
I_{k+1+w} & 0 \\
0 & U_{4}
\end{array}\right] C_{2}\left[\begin{array}{ll}
I_{k+1+v} & 0 \\
0 & V_{4}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & I_{u} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{v} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & I_{w} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{x} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=C_{3},
$$

where $u+v+w+x=\rho(K)=k^{(1)}$. Define $T_{2}: M_{m, n}(F) \rightarrow M_{m, n}(F)$ by

$$
\begin{aligned}
T_{2}(X)= & {\left[\begin{array}{ll}
I_{k+1+w} & 0 \\
0 & U_{4}
\end{array}\right]\left[\begin{array}{ll}
I_{k+1} & 0 \\
U_{3} & I_{m-k-1}
\end{array}\right]\left[\begin{array}{ll}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right] T_{1}(X) } \\
& \cdot\left[\begin{array}{ll}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right]\left[\begin{array}{ll}
I_{k+1} & V_{3} \\
0 & I_{n-k-1}
\end{array}\right]\left[\begin{array}{ll}
I_{k+1+v} & 0 \\
0 & V_{4}
\end{array}\right]
\end{aligned}
$$

for all $X \in M_{m, n}(F)$. Hence $T_{2}(H)=C_{3}$.
Define $T^{\prime \prime}: M_{k+1}(F) \rightarrow M_{k+1}(F)$ by

$$
T^{\prime \prime}(Y)=T_{2}\left[\begin{array}{ccc}
Y & 0 & 0 \\
0 & y_{11} I_{s-1} & 0 \\
0 & 0 & 0
\end{array}\right][1, \ldots, k+1 \mid 1, \ldots, k+1] .
$$

One sees by the structure of T_{2} and the definition of T^{\prime} that $T^{\prime \prime}(Y)=$ $U_{1} T^{\prime}(Y) V_{1}$ for all $Y \in M_{k+1}(F)$. Since T^{\prime} is nonsingular, $T^{\prime \prime}$ is and thus, for every pair $(i, j), 1 \leqq i, j \leqq k+1$, there is a matrix in $M_{k+1}(F)$ whose image has a nonzero (i, j) entry. Therefore, for any pair $(i, j), 1 \leqq i, j \leqq$ $k+1$, there is a matrix in $M_{m, n}(F)$ whose image under T_{2} has a nonzero (i, j) entry. Since every matrix in the image of T_{2} is the sum of images of rank 1 matrices, there is a rank 1 matrix $P \in M_{m, n}(F)$ such that $T_{2}(P)=$ R has a nonzero $(k+1,1)$ entry. That is, $\rho(z H+P) \leqq j^{(1)}+1$ for all $z \in F$ and $T_{2}(z H+P) \geqq k^{(1)}+1$ for some $z \in F$ since $\operatorname{det} T_{2}(z H+P)$ $\cdot[1, \ldots, u+v, k+1, k+2, \ldots, k+1+w+x \mid 1, k+1-w-u, \ldots$, $k+1+v+x]=\operatorname{det}\left(z C_{3}+R\right)[1, \ldots, u+v, k+1, k+2, \ldots, k+$ $1+w+x \mid 1, k+1-w-u, \ldots, k+1+v+x]=z^{k^{(1)}} \cdot r_{k+1,1}+$ $f(z)$ and $\operatorname{deg}(f(z))<k^{(1)}$, and thus for some choice of z, the above determinant is nonzero. That is $\rho\left(T_{2}(z H+P)\right) \geqq k^{(1)}+1$. However since $T\left(R_{E^{\prime}}\right) \cong R_{E^{\prime}}$ (and hence $\left.T_{2}\left(R_{E^{\prime}}\right) \cong R_{E^{\prime}}\right)$ where $E^{\prime}=\left\{0,1, \ldots, k^{(1)}\right\}$ and $j^{(1)}<k^{(1)}$, we have a contradiction. Thus T must be nonsingular.

The following corollary is a special case of Theorem 4.
Corollary 1. If $T\left(R_{k}\right) \cong R_{k}, k>0$, then either T is nonsingular or $\rho(T(A)) \leqq k$ for all $A \in M_{m, n}(F)$.
Corollary 2. If $T\left(R_{k}\right) \leqq R_{k}, k>0$, and if $\operatorname{dim} \operatorname{ker} T \leqq(m-k) n$, then T is nonsingular.

Proof. Suppose T is singular. From Corollary $1, \rho(T(A)) \leqq k$ for all $A \in M_{m, n}(F)$. Thus, by [4, Theorem 1] $\operatorname{dim} \operatorname{im} T \leqq n k$, and therefore $\operatorname{dim} \operatorname{ker} T=m n-\operatorname{dim} \operatorname{im} T \geqq m n-n k=(m-k) n$, a contradiction.

Theorem 5. If D and E are nonempty disjoint subsets of $\{0,1, \ldots, m\}$, $D \neq\{0\}, E \neq\{0\}, T\left(R_{D}\right) \cong R_{D}$ and $T\left(R_{E}\right) \cong R_{E}$, then T is nonsingular.

Proof. Let $k=\max \left\{\rho(T(A)): A \in R_{D}\right\}$ and let $t=\max \{\rho(T(A))$: $\left.A \in R_{E}\right\}$. Now $k \neq \ell$ since D and E are disjoint. Assume $k>\ell$. By

Theorem 4, T is nonsingular since there exists a matrix $A=M_{m, n}(F)$ such that $\rho(T(A))=<>k$.

Corollary 3. If $T\left(R_{k}\right) \cong R_{k}$ and $T\left(R_{j}\right) \cong R_{j}$ where $k \neq j$ and $k, j>0$, then T is nonsingular.
If E is a subset of $\{0,1, \ldots, m\}$, we define E^{c} to be the complement of E in $\{0,1, \ldots, m\}$.

Theorem 6. If $E \subset\{0, \ldots, m\}, E \neq \varnothing, T\left(R_{E}\right) \cong R_{E}$ and $T\left(R_{E} c\right) \cong$ $R_{E c}$, then T is nonsingular.

Proof. By Theorem 5 either T is nonsingular or $E=\{0\}$ or $E^{c}=\{0\}$ Since $T\left(R_{E}\right) \cong R_{E}$ and $T\left(R_{E}\right) \cong R_{E c}, T(A) \cong R_{\{0}$ if $A \neq 0$; that is, T is nonsingular.

I would like to thank the referee for his valuable suggestions.

References

1. L.B. Beasley, Linear transformations on matrices: the invariance of rank k matrices, Lin. Alg. and Appl. 3 (1970), 407-427.
2. -, Linear transformation on matrices: the invariance of sets of ranks, Lin. Alg. and Appl. (to appear).
3. P. Botta, Linear maps that preserve singular and nonsingular matrices, Lin. Alg. and Appl. 20 (1978), 45-49.
4. H. Flanders, On spaces of linear transformations with bounded rank, Journal London Math. Soc. 37 (1962), 10-16.
5. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964.
6. M. Marcus and B.N. Moyls, Transformations on tensor product spaces Pac. J. Math. 9 (1959), 1215-1221.
7. R. Westwick, Transformations on tensor spaces, Pac. J. Math. 23 (1967), 613-620.

Department of Mathematics, Utah State University, UMC 41, Logan, UT 84322.

