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LINEAR TRANSFORMATIONS PRESERVING SETS OF RANKS 

LEROY B. BEASLEY 

ABSTRACT. Let T be a linear transformation on Mm,„(F), the set 
of all m x n matrices over the algebraically closed field F, and let 
Rj denote the subset of all matrices of rank j . Further let RE = 
U/e£ Rj where E is a subset of {0,1, . . . , min(m, n)}. We explore 
the structure of Twhen T(RE) g RE. 

1. Introduction. Let Mm> n(F) denote the set of all m x n matrices over 
the algebraically closed field F and let p(A) denote the rank of the matrix 
A. Let Rj denote the set of all matrices A e Mmn(F) such that p(A) — j . 
If E is a subset of {0,1, . . . , min(m, «)}, let RE = \JjŒERj. In this notation 
consider the following problem : if T: Mmt n(F) -+ Mmt n{F) is a linear trans­
formation, E g {0, 1, . . . , min(m, ri)}, and T(RE) E RE> then what is the 
structure of Tl There are two trivial cases: E = {0, 1, . . . , min(m, ri)} 
and E = {1, . . . , min(/w, «)}. In the first case Tneed only be linear and in 
the second case Tneed only be linear and nonsingular. 

Throughout the remainder of the paper we will assume that r i s a linear 
transformation on MMt „(F) and that m = min(/w, ri). 

Some research has been done for the case E = {k} [1, 6, 7] and, in 
fact, in each known case when E is a proper subset of {1, . . . , m] the 
structure of T i s the same [1, 2, 3, 6, 7]. We demonstrate that structure in 
the following theorem of Marcus, Moyls and Westwick [6, 7]. 

THEOREM 1. If T(Ri) S Ri, then there exist mxm andnxn nonsingular 
matrices U and V respectively such that either 

i) T:A -• UAVforallAeMmt„(F) 
or 

ii) m = n and T: A -> UA^ for all A e Mmn(F) where A* denotes the 
transpose of A. 

For easy reference we define a transformation T satisfying (i) or (ii) in 
Theorem 1 as a rank-1-preserver. We note that as a consequence of [2, 
Thm. 4] we have the following theorem. 

THEOREM 2. If E is a subset of{091, . . . , m}, E ^ {1,2, . . . , m}, and ifT 
is nonsingular, then T is a rankA-preserver. 
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We use the notation A[cci, . . . , as\ßi, . . . , ßt] to denote the submatrix 
of A on rows aÌ9 . . . , es and columns ßh . . . , ßt. 

2. An extension of a result of Botta. In [3] Botta proves the interesting 
result that, if m = n and E = {0,1, . . . , m - 1}, and if T(RE) g RE, then 
either Tis nonsingular (hence a rank-1-preserver) or T(MMt„(F)) g i?^. 

THEOREM 3. If E = {0, . . . , £}, I ^ k ^ m, and T(RE) g Ä^, fAe/i 
either T(Mmtn(F)) g i?Ä or dim ker T ^ mn - {k + l)2. 

The proof of this theorem and a later one rely heavily on the following 
lemma. 

LEMMA 1. If T(RE) g RE, where E = {0, 1, . . . , k}, 1 ^ k ^ m, and 
T{Mmyn(F)) £ .#£, /Ae« f Aereex/stnonsingular matrices R, Ue Mm(F), S, 
Ve Mn(F), and a positive integer s such that 

UTIR-1 

0 0 
S-1 K = 

for some t > 0 awrf 

0 0 

r f [ i , ...,fc + if i, ...,k + i] 

w a nonsingular linear transformation ofMk+i(F) to Mk+i(F) mapping Ik+1 

to Ik+X. 

PROOF. Since T{Mm>n{F)) $ RE, there is G e Mmt„(F) such that p(T(G)) 
> k. Since T ( ^ ) g RE, p{G) > k. Choose B e Mmt n(F) of smallest rank 
such that p(T(B)) > k. Say p(B) = k + s and p(T(B)) = k + t. Let Ä, 
C/G MJJF) and S, F e Mn(F) be nonsingular matrices such that 

/ 
r04) = cm/t-i 

\ 

"^ 

0 

0 

0 

an^-i 
0 

0" 

0 

0 

RBS = 
0" 

0 0 
«*+j and UT(B)V = '/*+, o-

0 0 

Define 7*1 : Mm,„(F) ^ Mm,„{F) by ^ ( Z ) = C/TX/r 1^- 1) K for all 
X e Mmi„(F) so that, 

Ti 
~h+s 0" 
-0 0. 

= 
~h+t o-
.0 0 

Further, since R, S, U and F are nonsingular and T(RE) g RE, we have 
that Ti(Ä£) E Ä£. 

Now define 7": Mk+1(F) -+ Mk+l(F) by 

J'(^) = Tx 

A 0 0' 
0 an/ s-i 0 
0 0 0 

[1,2, ...,k+ 1|1, . . . , £ + !] 
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for all A eMk+l(F). It is easily checked that 7" is linear. Also, if Ce 
M^F) and p(C) g k, then 

C 

0 

0 

0 

0 

^k + s - 1 

so that 

P\Ti <k 

since the matrix of smallest rank whose image under T (and hence under 
Ti) has rank greater than k has rank k + s. Thus, p(r'(C)) ^ A:. That is, 
the image under 7" of any singular matrix is singular. By [3, Thm. 1], either 
T is nonsingular or p(T'{Z)) g k for all Z e Mk+1(F). Since 

TV»Ù = r j Jfc + 1|1, . . . , * + 1] 

fc + 1|1, . . . , * + 1] = /*+!, 

we must conclude that I" is nonsingular, and the lemma is proven. 

PROOF OF THEOREM 3. Suppose T(Mm>n(F)) $ RE. By Lemma 1, there 
exist nonsingular R, Ue Mm(F), S, Ve Mn(F), and a positive integer s 
such that 

YA 0 

T'(A) = UT\R-Ì0 on/,..! 

0 0 

5-1 \V[l, . . . , * + l | l , . . . , * + ! ] 

is nonsingular. That is, dim im T = (k + l)2. Now, dim im J ^ 
dim im T so that dim im T ^ (fc +1)2. Thus dim ker T ^ mn - (fc +1)2. 

3, Main results. One of our main results is contained in the following 
theorem. 

THEOREM 4. If 0 4 E, max{y : jeE) = k < m and T(RE) g RE, then 
either T(Mmt„(F)) g RG, where G = {0, 1, . . . , k} or T is nonsingular {and 
hence a rank-l-preserver). 

In developing the arguments for this theorem we use the following 
lemmas, which appear to have some importance in themselves. 

LEMMA 2. If p(A) = s and p(T(A)) = t for any linear transformation 
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T, then there exist A{ e Mmn(F), i = 1, . . . , w — s, such that p(At) = s + i 
and p(T(At)) ^ t. 

PROOF. Let U and V be nonsingular matrices such that 

Define 

B, = U-A 

V = 

os 
0 

0 

I, 0' 
_o o_ 

0 0" 

/ , 0 

0 0 
v-1, 

i = 1, . . . , m — s. Clearly, p(xA + Bt) = s + i whenever x ^ 0. Let R 
and S be nonsingular matrices such that 

RT(A)S = 

Further, define Tx: Mm n(F) -> Mm n(F)by T^X) = RT(X)S. Obviously, 
piUX)) = p(T(X)). Now det Tx{xA + £,)[1, . . . , *|1, . . . , /] = *< + /(*) 
where the degree of/(x) is less than t, since 

Ti{xA + Bt) = x\ W,) 

Thus there is some nonzero x, say #,-, for which det Ti(xtA + 2?,-)[l, . . . , 
f |1, . . . , t] is nonzero. That is p(2i(x#-i4 + £,) ^ f. Let 4̂,- = x{A + ,0,.. 
Herep(^) = s + / andp (7U) ) = ^ 0 4 , ) ) = piT^A + 2>,)) ^ f. 

LEMMA 3. Tf £ E {0, . . . , m}, msLxjŒEj = fc a«</ r ( i ^ ) E RE, then 
T(RG) g i*G, wAm? G = {0, . . . , k}. 

PROOF. If k = m, the lemma is trivial. Suppose k < m and T(RG) $ RG. 
In this case there is A e Mmn(F) with p{A) = s < k and p(r(,4)) = t > k 
Since s < k, there is some i such that s + i = &. By Lemma 2 there exists 
5 e Mm>n(F) such that ^(5) = s + / and p(T(B)) ^ t > k. That is, 5 e ^ 
and r ( 5 ) £ Ä£, a contradiction. 

PROOF OF THEOREM 4. Suppose T(Mmtn(F)) $ RG. By Lemma 3, T(RG) g 
i?G and hence by Lemma 1, there exist nonsingular matrices RyUe MJJF), 
S, Ve Mn(F), and a positive integer s such that 

UT[R-1 

0 0 s-1 )v = 0 0 

for some t > 0 and 
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~A 0 0" 

T'(A) - UT\ R-n 0 «„/_! 0 
0 0 0 

p-1 Hl, ...,k+ l|l, . . . , * + l] 

is a nonsingular linear transformation of Afj+^F). Let Ti: Mm>„(F) -+ 
MmJF) be defined by Ti(Z) = C/T(/?-1A'.S-1)F for all l e M J f ) . Here 
T'(A) = Ti(A)[l, ...,k + 1|1, . . . , k + 1] for all A e MM(F). Now let 
Jfc«> = m a x ^ T ^ ) ) : ^eJ? £ } and Icty"> = m i n ^ ) : p(T(A)) = &<*>}. 
If y<i> ^ £<i>( then let )t<2> = max{p(T(^)): ^ e i ? £ and p(T(^)) < &<«} 
and let / 2 ' = min{p(A): p(T(A)) = &(2>}. If j™ ^ fc(2\ continue the pro­
cess until either k(/) = # where # = miny^y ory'(/) < k(A. 

CASE 1. y(/> è &(/) = ?• If q * 1, then T(^) E /?,. By [1, Thm. 2.1] 
either T is nonsingular or there is B e Mm,„(F) such that p(5) < q and 
p(T(B)) = #, contradicting that/'* ^ <?. Thus T is nonsingular. If q = 1, 
then by Theorem 1, Tis nonsingular. 

CASE 2.y'(/) < £(/>. In this case we can assume without loss of generality 
that / = 1 (i.e.,./«' < jfc«'). Choose HeMmJF) such that pCff) = ./«' and 
p(T(#)) = Jfe«>. Let 

T(H) = K = 
K3 

K2 

Ki. 

where Kx is (fc + 1) x k x 1). Let (71; F : e MM(F), U2 e JI/„ 
F2 e M„_k_i(F) be nonsingular matrices chosen so that: 

U1K1V1 = 

UXK2VZ = 

where Ä|2) is u x (n — k — 1 — v) 

UKV _ r ° 7» ° 
where K[3) is (w — k — 1 — w>) x u and 

.*_i(F) and 

"0 
.0 

"0 

/, 
0 

/," 
0 5 

KP 
0 
0 

U2K4V2 = 
.#34) *14). 

where Ä]4' is w x v. 
To see the existence of Uh U2, Vx and V2, let 
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and 

Vx = oil 

where Pt and Qx are chosen so that 

PiKiQi = 

then i>2 and V2 are chosen so that 

h 
.0 

/ I 
i£2 

0 

-K Pi 
h+i-u] 

0 1 

hi 

[h 
Lo 

r^*+i-«-
0 

Lo 

0 _ 

Ŷ 

-u, 0 

4 
0 

Pi ? 

0 

0 " 

Pi. 
PXK2V2 = 

"tf2
2> KIP' 

h 0 

0 0 

Choose Q2 and l/2 so that 

U2K3Q 
Q2 0 
0 /„ 

0 Iw 

0 0 
KP 
Kf\ 

Now 

t^AKi = 
-KP 
h+i-uJU 

0 

P2J 
i » ^ 

•01 
r/i A ~i 

k?2 v 

_o /J 
"/. -AS 0 ! 
_0 A+I-KJ 

[h+i- u—w " 

0 /„ 

Lo o 
\h 0 ] 
Lo* Pzì 

ro /„i 
Lo o j 

o • 

- # 2 3 ) 

h _ 
[02 O"] 

Lo hi 
h+i-u-w 0 0 
0 Iw -Kf 

0 0 /„ 

- / , 
0 

[0 

Lo 

-Kl i2 ) 1 

^Är+1-fJ 

h~ 
0_ 

[0 lui 

Lo o j 

A+l-K-W 0 0 1 
0 /„ -KP I 
0 0 /„ 

Also, 1/^2 K2 and U2K^\ have the desired forms. 
Now 
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'Ux 0 
p u2j 

K 
Vx 0" 

o v2_ 

0 0 Iu 0 KJP' 

0 0 0 /„ 0 

0 0 0 0 0 

0 4 0 K[» K$> 

0 0 js:p> JSTII» #f _ 

= c, 

Let 

and 

C/3 

0 
L-/sf 

-*i« ff 
-Ä#> 0. 

eM„ -*-i, *+r .tf> 

Fs = 

0 

•Kf> 

•K[2\ 
e M*+i, n-k-i(F) • 

Now 

. ^ 8 

0 

Im-k-U 
C i 

0 
v3 " 
In-k-1. 

0 0 / „ 0 0 

0 0 0 /„ 0 

0 0 0 0 0 

0 4 0 0 0 

0 0 0 0 L 

= c2, 

where p(L) = ka) — M — v — w = x. Let £/4 e Mm_A_1_„,(F) and V4 e 
M„_*_!_„ (F) be nonsingular matrices such that 

Now 

p 

U4LV4 = 

0 1 
c2 

^*+i+» 0 
.0 vt_ = 

[7, 
Lo 

_0 
0 
0 

0 
0 
0 

0" 
0_ 

0 
0 
0 

0 
0 

/„ 
0 
0 

0 
0 
0 

0 

/„ 
0 
0 

0 
0 

0 
0 

0 
0 

/ , 
0 

0 

0 
0 
0 

0 
0 

= C3 > 

where u + v + w + x = p(K) = k™. Define T2: Mm „(F) -+ Mm „(F) 
by 
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RA+I+» 0 1 

LO Ui\ 

~VX 0 1 

.0 V2\ 

[/m 0 
LU* Im-k-

\h+x V3 ] 

Lo In-k-\A 

-d 
\Ux 

Lo 
r̂ *+i+» 

Lo 

o -
Uz_ 
0 " 

Vi. 

UX)-

for all XeMm,„(F). Hence T2(H) = C3. 
Define T": MM(F) - M m ( F ) by 

[1, 

W) 

r(F) = T2 

Y 0 
0 Jii/,-1 
0 0 

0" 
0 
0 

k+ 1|1, ...,fc + 1]. 

One sees by the structure of T2 and the definition of T that T"(Y) = 
UiT'WVx for all 7 e M w ( F ) . Since T is nonsingular, F" is and thus, 
for every pair (1,7), 1 ^ z,y*^ fc + 1, there is a matrix in MÄ+1(F) whose 
image has a nonzero (/, 7) entry. Therefore, for any pair (/, j), 1 ^ z, j ^ 
fc + 1, there is a matrix in Mmn(F) whose image under F2 has a nonzero 
(/, j) entry. Since every matrix in the image of F2 is the sum of images of 
rank 1 matrices, there is a rank 1 matrix P e Mmn(F) such that T2(P) = 
R has a nonzero (k + 1, 1) entry. That is, p(zH + F) ^ j a ) + 1 for all 
z G Fand T2(zH + F) ^ ka) + 1 for some z G F since det r 2 (*# + P) 
•[1, . . ., u + v, A: + 1, k + 2, . . . , A: 4- 1 + w + x|l, & 4- 1 — w — u, . . . , 
A; + 1 + v + x] = det(zC3 4- R)[l9 ..., u + v, k + 1, A; + 2, . . . , k + 
1 + w + x|l, A: + 1 -" w - w, ...., A: + 1 + v + x] = z*(1) • r m i l + 

/(z) and deg(/(z)) < &(1), and thus for some choice of z, the above deter­
minant is nonzero. That is p(T2(zH + F)) ^ ka) + 1. However since 
T(RE,) g FE,(and hence T2(RE) g #£,) where E' = {0, 1, . . . , &(1)} and 

j a ) < ka\ we have a contradiction. Thus F must be nonsingular. 

The following corollary is a special case of Theorem 4. 

COROLLARY 1. If T(Rk) g Rk, k > 0, then either T is nonsingular or 
p(T(A)) g k for all A e Mm>n(F). 

COROLLARY 2. If T(Rk) g Rk9 k > 0, and if dim ker F ^ (m - k)n, 

then T is nonsingular. 

PROOF. Suppose F is singular. From Corollary 1, p(T(A)) ^ k for all 
A G Mm>n(F). Thus, by [4, Theorem 1] dim im F g nk, and therefore 
dim ker T = mn — dim im T *i mn — nk = (m — k)n9 a contradiction. 

THEOREM 5. If D and E are nonempty disjoint subsets of {0, 1, . . . , m}, 
D # {0}, F ^ {0}, T(RD) g Ftf am/ T(RE) g F £ , fAe/i F is nonsingular. 

PROOF. Let A: = max{p(F(^)): AeRD} and let / = ma.x{p(T(A)): 
A G F^}. Now k 7* / since D and F are disjoint. Assume k > / . By 
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Theorem 4, T is nonsingular since there exists a matrix A = Mmt„(F) 
such that p(T(A)) = / > k. 

COROLLARY 3. IfT(Rk) E Rk and T(Rj) E Rj where k *j and kj > 0, 
then T is nonsingular. 

If E is a subset of {0, 1, . . . , m}, we define Ec to be the complement of 
E in {0, 1, . . . , m). 

THEOREM 6. If E c {0, . . . , m}, £ # 0 , r(ÄÄ) E Ife awrf T(JREC) E 
iÊ#r, fAe/* T is nonsingular. 

PROOF. By Theorem 5 either T is nonsingular or E = {0} or Ec = {0} 
Since T(RE) E Ä* and IXlfec) g i*Ec, T(^) £ Ä{0) if A ^ 0; that is, T 
is nonsingular. 

I would like to thank the referee foç- his valuable suggestions. 
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