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A PRESERVATION OF INTEGRABILITY CHARACTERIZATION
THEOREM

WILLIAM D.L. APPLING

ABSTRACT. Suppose N is a positive integer and Q denotes the set
to which g belongs if and only if g is a function from RV*! into R
such that for some (wy, ...,wy)in RY and d > 0, g(wy, ..., wy)
is bounded on[—d; d]. A characterization is given of those elements
fof Q having the property thatif U is a set, F is a field of subsets of
U,eachof @,, . .. ayis a function from F into a collection of subsets
of R with bounded union, £ is a real-valued, bounded finitely ad-
ditive function defined on F and each of the set function integrals
Sva(DED), . . ., Svan(DE() exists, then the integral fy f(e,(D), .. .,
an(I), £(I)) exists, these integrals being limits for subdivision refine-
ment.

1. Introduction. Suppose N is a positive integer. In a previous paper
[5] (see [2] for the earlier interval function version) the author showed the
following preservation of integrability characterization theorem (see
§2 for the notion of integral.

THEOREM 1.A.1. If fis a function from RN into R, then the following two
statements are equivalent.

1) If F is a field of subsets of a set U, & is a real-valued bounded finitely
additive function defined on F, and each of ay, ..., ay is a function from
F into a collection of subsets of R with bounded union (in [5] the a's were
single valued, but the argument carries over for this version with trivial
modifications) such that each of the integrals [yay(DED), . . ., [ya(DEI)
exists, then the integral [y flay(I), . . ., ay(I))E(I) exists.

2) The function f is continuous.

In this paper we extend the above theorem. Notice that if f is given
as above and 4 is a function from RN*! into R such that for each
(x1, ..., Xy, 2) in RNFL h(x,, ..., xy, 2) = f(x1, ..., Xy)z, then the
conclusion of statement 1) above has the form “[yh(ay(1), ..., ay(I),
&(IN) exists”. The question naturally arises as to whether there exists
a class, O, of functions from RN+l into R that includes the functions
of the form “f(x;, ..., xy)z”, and a subset which has the integrability
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preservation property described in statement 1) with the conclusion
of the form given above for 4, such that this subset can be characterized
in a ‘“sequence vs. convergence”” manner similar to continuity. To
this end we notice that for 4 defined as above, trivially there are
some (wy, ..., wy) in RY and d > 0 such that A(w;, ..., wy) is
bounded on [—d, d]. Accordingly, we shall let Q denote the set to which
g belongs if and only if g is a function from R¥*! into R such that for
some (Wy, ..., wy) in R¥ and d > 0, g(wy, ..., wy) is bounded on
[—d, d]. Our generalization of Theorem 1.A.l is a characterization of
those elements g of Q such that if F, U, £ and a3, ..., ay are as in
the hypothesis of statement 1) of Theorem 1.A.1, then the integral
fuglar(D), . . ., ay(I), &(D)) exists. We shall first describe in general terms
what this generalization is. To begin with, it is an assertion of the equiv-
alence of three statements. The first of these statements is the imme-
diately preceding remark about integrability preservation. The second is
an analogue of the first statement for bounded interval functions and
functions of bounded variation on the interval [0, 1]. The third is a
“sequence vs. convergence’’ condition.

As the reader might guess at this point, even without an explicit rendi-
tion of the above three statements, the deduction of the second statement
from the first is fairly routine, and we dispose of it (see §3) with relative
ease. However, the fact that the first statement follows from the second,
even though intuitively plausible, is quite another matter, and its proof
involves some fairly intricate considerations, of which one type is the
third statement. Thus our arugment for the characterization that we shall
state immediately below will proceed as follows: 1) = 2) = 3) = 1).

THEOREM 3.1. Suppose g is in Q. The following three statements are
equivalent.

1) If F is a field of subsets of a set U, & is a real-valued bounded finitely
additive function defined on F, an each of ay, ..., ay is a function from
F into a collection of real number sets with bounded union such that each
of the integrals [yay(DED), ..., [yan(DEI) exists, then the integral
fvglea(D), .. ., ay(), &I)) exists.

2) If t is a real-valued function defined and of bounded variation on
[0; 1], each of Ay, ..., Ay is a function from the subintervals of [0; 1] into
a collection of real number sets with bounded union such that each of
the integrals (i) AW(Ddt, ..., [0 Ax(I)dt exists, then the integral
fo::8(A1(D), ..., AN(), dt) exists.

3) The following statements hold.

a) The function g is continuous.

b) If 0 < min{c, M}, then there is d > O such that if {(a?, ..., a,
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X))o, is a sequence of elements of RNt with max{la{’|: i=1, ..., N,
j=1,...,n} £ Mand 3"_\|x;| < d, then

”
Z_Il lg@@?, ..., af, x)l < c.

c) Suppose {D(j)}, is a sequence of interval subdivisions of [0; 1] such
that D(n + 1) < D(n) (see §2) for all n, and h is a real-valued function
defined on W = {x: x in {p, q}, [p; q] in D(n) for some n}. Suppose for each
[p; q] such that {p, g} = W, v[p; q] = sup{XZ pmyp;al(s) — A()|: m a
positive integer, {p, 4} S Upicinpom {r 5} D(m)[p; g1 = {Ir; 5] : [r: 5]
in D(m), p < r <s = q}} < oo. Suppose M > 0 and for each positive
integer n, each of ay(n), ..., ay(n) is a function from D(n) into R such
that max{|a,(n)(D)|, ..., lay(n)|} < M for all Iin D(n). Suppose

[ = 10X = @l + DD < o

k=1 j=1 D(HLDG+1U)

(again, see section 2 for notation). Then, if 0 < c, there are a real number
d > 0 and a positive integer N* such that for any positive integer m greater
than or equal to N* and D(m)* = {I: I in D(m), v(I) < d},

D(Z:). [g(@(m)(D), ..., a(m)I), 4;h)

— 2 gla(m + 1)), ..., ax(m + 1)), 4;h)]| < c.
Dim+1)(D)

The author wishes to thank the referee for his many helpful suggestions
for the improvement of this paper, as well as for pointing out at least one
forgetful omission. The referee has suggested that certain observations be
made about Theorem 3.1. We now complete this introduction with state-
ments of these observations.

Theorem 3.1 remains valid if in statements 1) and 2), respectively, a;,
..., ay and A4y, ..., Ay are singleton-valued, so that we really have five
equivalent statements, the first three of which are Theorem 3.1, and the
last two of which are the above assertions about singleton-valued func-
tions. We leave to the reader the fairly easy task of modifying the ap-
propriate portions of the proof of Theorem 3.1 for singleton-valued func-
tions.

In Theorem 3.1, statement 1) implies statement 2) independently of
whether the function g, from R¥*1into R, is in Q.

Suppose that a < b, f'is a function with domain the set of all subinter-
vals of [a; b] and range a collection of real number sets with bounded
union, and 4 a function from [a; b] into R having bounded variation.
Let B= {(r; s]: a = r < s £ b}, and F be the field of subsets of (a; 5]
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which is the collection of all unions of finite subcollections of B. Let &
denote the bounded, finitely additive function from F into R such that if
a<r<s=b, then &(r; s]) = h(s) — h(r). Then [y, f(I)dh exists
if and only if [ g(J)&(J) exists for some g from F into exp(R) such
thata < r < s < b implies g((r; s]) = f([r; s]), in this case equality holds.

Q 2 Q, = the set of all functions g from R¥*1into R such that for some
f from RV into R, g(xi, ..., Xy, X) = f(X1, ..., xy)x for all (xy, ...,
Xy, X) in R¥+1, By Theorems 1.A.1 and 3.1, for each such g and f, f'is
continuous if and only if the third statement of Theorem 3.1 holds. On the
other hands, it follows from Theorem 3.1, independently of Theorem
1.A.1, that for each such g and f, fis continuous if and only if the third
statement of Theorem 3.1 holds; thus Theorem 1.A.1 is a consequence of
Theorem 3.1.

2. Preliminary theorems and definitions. For the notions of subdivision,
refinement and integral, we refer the reader to [1] as they apply to real
number set-valued interval functions, and to [3] and [6] as they apply to
real number set-valued set functions.

In this section we shall state set function theorems that we shall use in
§3. Each of these has an interval function version, the stating of which
we leave to the reader. Throughout this paper, when in a given discussion,
the context of set function versus interval function is clear, we shall refer
to such notions as “‘subdivision”, “refinement”, “integral”, etc., without
preamble and with at-most minor notational changes. In either setting
“«” shall mean “refinement of”. If E <« D and Iis in D, then E(J) de-
notes {J: J in E, J € I}. In certain computations involving real-valued
functions defined on number intervals we shall use the “4” notation in
the standard way to denote differences; when there is possibility of con-
fusion as to which subdivision the differences arise from, appropriate sub-
scripts will be attached. Finally, in the matter of terminology, if S is a
set and « is a function from S into a collection of sets and T £ S, then
the statement that g is an @-function on T mean that q is a function with
domain 7 such that if x is in T, then a(x) is in a(x).

The following is one of many well-known characterizations of integral
existence, and we shall use both its set function and interval function
versions.

THEOREM 2.P.1. If U is a set, F is a field of subsets of U, « is a function
from F into a collection of subsets of R, then the following three statements
are equivalent.

1) _[Ua(l) exists.
2) If 0 < c, then there are K in R and D < {U} such that if E < D
and a is an a-function on E, then |K — Y ga(I)| < c.
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3) If 0 < c, then there is D < {U} such that if H < E < D, a is an a-
Sfunction on E, a* is an a-function on Hand G S E, then

%}Ia(V) - a(Dl<c

HW)
(see [10]).

Suppose U is a set, F is a field of subsets of U, « is a function from F
into a collection of real number sets with bounded union, and each of
& and y is a real-valued bounded finitely aditive function defined on F
with 4 nonnegative-valued.

THEOREM 2.A.1. [7] (see [1] for interval function version). [ya(1)é(1)
exist if and only if [ya(I) [11E(J)| exists.

We now state two consequences of the Bochner-Radon-Nikodym The-
orem.

THEOREM 2.A.2. [6]. If [ya (1) (1) exists, then

-"Ul:."v a (D) ~ j,“(J)#(J)':I =0,

ie., if 0 < c, then there is D < {U} such that if E < D and for each V in
E,a(V)isina(V), then

};Lla(V)p(l) = L“(J)ﬂ(-’)) <ec.

THEOREM 2.A.3. (Michael Keisler, class presentation, also see [8] and
9. If [y (Du(I) exists and O < ¢, then there is D < {U} such that if
E < D, for each V in E, aX(V) is in a(V), H(V) < {V} and for each I in
H(V), a(I) is in a(I), then

2 2 la* (V) — aD)lpd) < c.
E H®V)

We shall need the following theorem in showing that 3) implies 1) in
Theorem 3.1.

THEOREM 2.A.4. [4]. Suppose that for each V in F, p*(V) =
inf{max{g(1): I in D}: D < {V}}. Then [, [u(I)? — p*(I)¥] =0, which
implies that for 0 < c, there is D <« {U} such that 0 < u(I) — p*(I) < ¢
if E< DandlisinE.

We now consider the interval [0; 1] and the well-known “standard”
associated field of sets. We let G,;; = {(p; 9]: 0 < p < ¢ < 1}. and
F,1; denote the collection of all unions of finite subcollections of G,;;.
The collection F,;, as is well known, is a field of subsets of (0; 1]. For
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each Vin F,;, we shall let C;, denote the collection of all components of
¥V, note that Cy S G y;;3, and wesshall let Cp(i) denote {[p; q]: (p;¢q]in Cy}.

Once again, we remind the reader that if 0 < p < ¢ < 1, then a sub-
division of [p; ¢] is a finite collection of nonoverlapping intervals whose
union is [p; ¢], and that if F is a field of subsets of a set U and W is in F,
then a subdivision of W is a finite collection of mutually exclusive sets of
F whose union is W.

Finally, suppose that D is a subdivision of [0; 1] and 4 is a function
from D into R. We shall let 45 denote the function of subintervals of
[0; 1] such that if I is a subinterval of [0; 1], then A4() = A([p; q)) if
[p; qlisin D and I € [p; q], and Ag(I) = O otherwse. We note the im-
portant fact that if fis a function from [0; 1] into R and E <« D, then

DAL S = T AN = [ A

3. The preservation of integrability characterization theorem. In this
section we prove Theorem 3.1, as stated in the introduction. Throughout
this paper we adopt the convention that a/b = 0 if b = 0, and has the
usual meaning otherwise.

Proor oF THEOREM 3.1. We first show that 1) implies 2). Suppose
1) is true. Suppose that h is a real-valued function defined and having
bounded variation on [0; 1], and each of A4;, ..., Ay is a function
from the subintervals of [0; 1] into a collection of real number sets with
bounded union such that each of [i.14;(D)dh, ..., [ro;13AN(D)dh exists.
Let v denote the variation function of 4. By Theorem 2.A.1, each of
fosAs(Ddv, ..., foAn(I)dv exists.

For each V in F;, we let hy(V) denote 3¢, ,,4h, and for each W
in Fg,y we let v (W) = [ylhe(D)| and note that v (W) = X, 4v.
For each V in Fy,4; and k =1, ..., N, welet ay(V) denote {x: x =
(Xe,aNdv[ve(V), such that for each I in Cy(i), a(l) is in Ay (I); or
x is in A,(I) if Cy(i) = {I}}. |

Suppose 0 < ¢ and k = 1, ..., N. There is D < {[0; 1]} such that
if E « Dand foreach I'in E, a(I)is in A,(]), then

U[o;uA”(I)dv - %: a(I)Av, <ec.

Let Dy = {(p; ql: [p; q] in D}. Suppose H < D,, and for each V in
H, b(V) is in (V). There is a function a from | J5Cy(i) such that if
Vis in H, then either C, = {V}, a(l) is in AI) for Cy(i) = {I} and
V) = a(l), or B(V) = (Xc,»al)4v)/v.(V). Note that for each Vin
H, b(V)v4(V) = Do, a(Ddv. Now, | JzCy(i) < D, so that
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|| Anas = 3 o)
[051]

- U[O;nAk(ndV B ; c;;) a(I)Av' =<

Therefore [ ,12:(T)v4(I) exists, so that [ 10,(I)hy(]) exists.

Therefore [.1;8(ea(1), ..., an(I), hy(I)) exists. So suppose 0 < c.
There is D « {(0; 1]} such that if £ < D and for each k =1, ..., N
and I'in D, by(I) is in a(I), then

\ j @), - s an), h) = T gBi(D, -, by(D, hulD) | < .
(0;1]

Let D(i) = JpCy(i). Suppose H < D(i), and foreach /in Hand k = 1,
...s N, ay(I)is in A(I). Let Hy = {(p; q): [p: q)in H}. For each(p; g] in
Hy, a(p; q)) is in a,((p; q]) and A ((p; q]) = h(q) — h(p). Therefore,
since Hy < D,

” (o-ng(al('])’ s (), ha(J)) — ; glay(), - . ., ay(I), 4h)
- U @D s and), b)) = Zig(a(W), ...,
©:13 o

an(W), hy(W))| < c.

Therefore (i.:8(41(J), ..., Ax(J), dh) exists. Therefore 1) implies 2).

We now show that 2) implies 3). Suppose that 2) is true. Let w denote
wy, ..., wy. We begin by showing that g(w, x) - 0 as x — 0, and
g(w, 0) = 0. Suppose not. Then, by some conventional observations, it
follows that there are ¢ > 0 and a sequence {x,}32; of numbers such that
the g(w, x,)’s are of consistent sign and for each v, |g(w, x,)| = ¢ and
[x,] < 1/22.

There is a function 4 defined on [0; 1] such that A(0) = 0 and if n is
a positive integer such that 1/(n + 1) < x < 1/n, then A(x) = 112, x,-
Clearly A(1/n) — A(1/(n + 1)) = x, for all n, & is of bounded variation on
[0; 1], A(x) — 0 as x — 0, and trivially, each of the integrals [y, widh,
.+ +» Jto;11 wydh exists. Therefore the integral [g.,; g(w, dh) exists. From the
afrorementioned properties of 4 and given boundedness conditions on g,
it follows that there are D « {[0; 1]} and M = 0 such that if E < D and
[0; s]is in E, then

max{|g(w, h(s) — h(0)), IZEI gw, 4h)|} = M .

There are [0; ¢] in D and a positive integer v such that 1/v < ¢. From the
conditions on g at the end of the previous paragraph and on 4 at the
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beginning of this one, it follows that there are a positive integer ¢t > v
and Q < {[1/¢; 1/v]} such that

e 0] = Bl )

> 2 +| g0, hq) — W(1[9)| + |D_(§;q])g(w, an),

so that
M < =M~ 1g0n, Wa) = KA = | 3 gln, 28)| +| 32 g0n, 28)
< — lgv. A(1/1) = HO)| + | gv, hg) — K(1j3)
o gln dh) + Nl Ah)‘
<[ 8w, K1) — HO) + 3 8w, )

+ gw, h(g) — h(1/v)) + D5 g(w, 4h)
D—{[0;¢7}

s

a contradiction, inasmuch as
{[0; 1/t1} U @ U {[1/v; q1} U [D — {[0; q]}] <« D.

Therefore g(w, x) — 0as x — 0, and g(w, 0) = 0.

We now show part a) of 3), i.e., that g is continuous. Suppose not. Then
there are (ay, . . ., ay, b) in R¥+1, ¢ > 0 and for each odd positive integer v,
(ai(v), ..., ay(v), b,) in RN+1 such that |g(ay, ..., ay, b) — g(ay(v), ...,
aN(v)’ bv)l ; c and Ib - bvl + Zfz\,:llak(v) - alzl < 1/29

There is a function 4 defined on [0; 1] such that #(0) = Oand if nis a
positive integer such that 1/(n + 1) < x < 1/n, then A(x) = b, if n is
odd, and A(x) = b if n is even. From the second of the immediately pre-
ceding inequalities it is clear that 4 is of bounded variation on [0; 1] and
that #(0+) = b.

For each k = 1, ..., N, there is a function P, of the subintervals of
[0; 1] such thatif 0 < p < g < 1, then P,[p; q]) = w, when 0 < p, and
if n is a positive integer such that 1/(n + 1) < g < 1/n, then P,([0; ¢q]) =
ay(n) when n is odd and P,([0; g]) = a, when n is even. If D <« {[0; 1]},
k=1, ..., Nand [0; q] is in D, then

; Py(Ddh = Py([0; gDIr(g) — h(O0)] + wilh(1) — h(g)],
which easily implies that [, Py(I)dh exists and is a;b + wy[b; — b].

Therefore f:o;n g(Pi(D), ..., Py(I), dh) exists, so that there is D «
{[0; 1]} such that if £ < D and E* < D, then
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| S0, o PAD). 4D = T g(Pi0), . Py, )| < 4.

There is d > 0 such that if |x| < d, then |g(wy, ..., wy, X)| < c/4. There
are t and g with 0 < ¢t < gand [0; g] in Dsuchthatif 0 < r < s < ¢,
then |A(s) — A(r)] < d. There is an odd positive integer zsuch that 1/z < ¢.
Let

E = [{0;1/(z + DI} U {1/(z + 1); 121} U {[1/z; q1} U (D — {[0; ¢}
and

E* = {[0; 1/z]} U {[1/z; g1} U (P — {[0; qI}) -
Clearly E « D and E* < D. Therefore

/4 > ‘ L8P, s PAD, A1) = T g(PD) .., Py(D), 4h)

= |gay, ..., ay, b) + g(wy, ..., wy, h(1/z) — h(1/(z + 1))
— g(ay(2), ..., aN(2), b))

2 Ig(ay, - .., ay, b) — gay(2), .. ., an(2), b))
— Ig(wy, ..., wy, h(1/2) — h(1/(z + D)

=c— c/d = 3c/4,

a contradiction. Therefore g is continuous.

We now show that part b) of 3) is true. Suppose not. Then there are
M > 0 and ¢ > 0 such that for 0 < d there are a positive integer m and
a sequence {(ay(s), . . ., an(s), x;)}, of elements of RN+1 with max{|a,(s)|:
k=1,...,N;s=1,...,m} £ Mand 17, x| < d, but 17 |g(ay(s),
vy an(s), x| = 2¢. It follows that for each d > 0 there is a sequence
{(ay(s), - . ., an(s), x,)}7, of elements of R¥N+1such that max{|a,(s)|: k = 1,
o Nys=1,...,m} =M, Xmx,| < d, the values of {g(ay(s), ...,
ay(s), x,)}m, are either all nonpositive or all nonnegative, and Y;7.,[g(ay(s),
.« o an(s), x,)| Z c. It therefore follows by some routine observations that
for each positive integer p there is a sequence {(ay(p, s), -.., ax(p, 5),
x(p)}™P of elements of RN+!such that max{|ayp, s)l: k =1, ..., N;
s=1,...,m(p)} = M, ZmDlg(ayp,s), ..., an(p,s), x(p))| Z ¢, and such
that 3352, 27P|x,(p)| < oo and either thevalues of {g(a:(p, ), . . ., an(p,s),
x,(p))}™® are all nonpositive for all p or are allnonnegative forall p. Now,
letty, ..., ¢,, ... denote x1(1), ..., x,,y(1), x1(2), ..., X,,»(2), ..., and
for each k = 1, ..., N, let by(1), ..., b(w), ... denote a1, 1), ...,
a (1, m(1)), a2, 1), ..., a2, m(2)), ... . From the preceding statements
we clearly see that };32,|¢,| < oo and that if each of n and ' is a positive
integer, then
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ntn’ ntn’
wZn’ g(bl(w)s AR bN(w)s tw) = anlg(bl(w)a AR bN(W)a tw)l - ©
asn — 0.

There is a function 4 defined on [0; 1] such that A(0) = 0andif0 < x <
1, then A(x) = X%, t,, where 1/(v + 1) < x £ 1/v. Clearly 4 is of
bounded variation on [0; 1]. For each k = 1, ..., N, there is a function
A, of the subintervals of [0; 1] such that if Iis a subinterval of [0; 1], then
A (I) = by(w) when I = [1/(w + 1), 1/w], and 4,(I) = 0 otherwise.

Suppose k = 1, ..., N. Let 4 denote A,. We show that [y, A(I)dh
exists. Suppose 0 < ¢. There is a positive integer X such that 332 4|z, | <
¢/(1 + M). Let D denote {[0; 1/(X + D], [1/(X + 1); (1/2A/(X + 1) +
X)), [(1/DA/(X + 1) + 1/X); 1/X], ..., [1/2; (1/2)(1/2 + D], [(1/2)
(1/2 + 1); 11}. Suppose E < D. Clearly, if I is in E and for some positive
integer w, I = [1/(w + 1); 1/w], then 1/w < 1/(X + 1), so that for E' =
{I: I'in E, A(I) # 0},

’ };;A(I)Ah[ < 3[4k < M ;:Hltwl < Mc/(1 + M) < c.

Therefore {g,1; A(I)dh exists and is 0.

Therefore (i1, 8(A1(D), ..., AN(I), dh) exists. However, suppose D <«
{[0; 1]} and 0 < P. We shall show that there is E <« D such that P <
| 2 5g(A41(D), ..., AN(I), 4h)|. Because g is continuous, there is S = 0 such
that if (by, ..., by, t).is in RVt! and max{|dy|, ..., |byl} £ M and [¢]| <
1 + X=,t,l, then |g(by, ..., by, t)] < S. There atre H < D and g > 0
such that [0; g] is in H and ¢ < 1. Let L denote the number of elements in
H. There is a positive integer v such that 1/v < ¢q. There is a positive integer
vsuch that # > v such that

23 b1 -, bW, 1)
Let E denote (H — {[0; q1}) U {[0; 1/(u + D)}, [1/(u + 1); l/u], ey
[1/(v + 1); 1/v], [1/v; q1}. Then
| S e, ... AnD), 4b)|
= 18(Ay([0; 1/ + D), ..., Ay((0; 1/(u +1)]), 2h)

+ 30 g(ATUOw + 1); UwD), ..., An(1/Ow + 1); 1jw), 4b)

w=v

+ g(4y(1/v; qD, - .., AN([1/v; q)), 4h)

H—{[0;¢1}
-85+ Z g(bl(w)s ey bN(w)’ tw) e (L - l)S
> _S+(L+DS+P—8—(L~-1S=P.

>(L+1)S+P.

v
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Therefore (.47 8(41(1), ..., Ay(I), dh) does not exist, a contradiction.
Therefore b) of 3) is true.

We now show that c) of 3) is true. Suppose that the hypothesis is
satisfied, but that the conclusion is not. Then, if 4 > 0 and N* is a positive
integer, there is a positive integer m = N* such that for D(m)* = {I: I
in D(m), v(I) < d},

‘D%‘ [g(al(m)(l), ey aN(m)(I), Arh)

- glay(m + 1)(J), ..., ay(m + 1)(J), 4;h)]| = c.
DD

Now, for each x in [0; 1], let ¢(x) = inf{z: x < z, zin W}. In a fashion
similar to showing that a function having bounded variation on an
interval is quasi-continuous on that interval, it follows that if x is in
[0; 1] and ¢(x) is not in W, then there is a number r(¢(x)) such that A(z) —
r(¢(x)) as z — ¢(x) for zin W and ¢(x) < z.

There is a function ¢ from [0; 1] into R such that if x is in [0; 1], then
t(x) = h(¢(x)) when ¢(x) is in W, and #(x) = r(@)x)) when ¢(x) is not in
W.

We shall now show that ¢ has bounded variation on [0; 1], and that
fipiqldtl = v([p; q)) for all [p; q] such that {p; g} & W. Suppose D <
{[0; 1]}. Let Z denote the number of elements of D. Suppose 0 < c.
Beginning at the right-most interval of D, we see that there is a non-
decreasing function 8 from ( J,{p, g} into W such that if x isin )5 {p, ¢},
then x < f(x) and [t(x) — A(B(x))| < ¢/(2Z), so that

); 1t(@) = #(p)l = 2;1(q) — h(B(q)) + h(B(@)) — h(B(p)) + h(E(p)) = 1(p)]
< Ze/Q2Z) + ‘,; I(B(g)) — h(B(P))| + Zc/2Z)
< c+v(0;1].

Therefore ¢ has bounded variation on [0; 1] and [y,jldt| < v([0; 1]).
Since k& < ¢, it follows that v([p; q) < [i,;ldt| for all [p; ] such that
{p, q} = W. Therefore v([p; q]) = [,,,ldt| for all [p; ¢] such that {p, g}
S W.

Now, for each [p; q] < [0; 1], let y[p; g] denote the smallest positive
integer n such that some interval of D(n) & [p; q], provided there
is such; otherwise, let y[p; g] denote the smallest positive integer >
1/(q - p).

For each [p; q] € [0; 1]and k =1, ..., N, let

Allp; ) = Geex = { S an [ arl]} /o

for some n 2 y[p; q], or x = a,(n)([p; q]) for some n = ¢{p; ¢] such that
[2; qlis in D(n)}.
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Suppose k =1, ..., Nand 0 < ¢'. Let 4 denote 4, and a denote a,.
There is a positive integer T such that

5 o[ 3 1aGXD — i+ DO | < ¢’
J=T D(;) LDG+DW)

There is D <« D(T) such that the length of each interval of D is less
than the length of each interval of D(n) for which n < T, and such that
the reciprocal of the length of each interval of D > T.

Now suppose E < D and for each [p; q] in E, b[p; q]is in A([p; q)].
For each [p; q] in E, there is a positive integer n*[p; q] = r[p;q] > T
such that either

tpsal={, 2 laortp; 0 1]}/,

or b[p; q] = a(n*[p; q])([p; q)) with [p; q] in D(n*[p; q]); note that in
either case

blp; g1t = [{D("Zh{]);q])a(n*[p; q])(])slﬂ[P;q] dt |}/j[p;q]|dt I]At'
Thus, for [r; s]in D(T) and [p; ¢q] in E,

| %) sDh|” - 3 blps q1di] = | 3 () s
D(T) r D(T)

- ; [{D(n§;q]) a(n*[p; q])(I) Slﬂ[p;q] |dt l}/j‘[p;qlldt I]Atl
=| 2{an@ e - 2 % aeip; ad0)-

D(T) r Elr;s1L\D* p;q])

j‘lﬂ[p;q] |dt[}/j[p;qlldt ‘:ldt}

=12 S et - [{ T aeelp: D
D(n*(p3q])

D(T) Elr;s]

| PCL 70 RC

2 % ta—{ % awtlp;a) 0.

D(T) Elr;s] D(n*[p3q])

i 11/ § b1

2 la(m)(r; sh — a@*[p; gD

| D(T) Elr;s] {D(n'[p;q])

s Y/ )|
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S3 2| 5 (D - aeelps D@ jarl] -1

D) Elrs) | D(n*Tp3q])

SY XX 1T s) —a(n*[p;q]a)ljm ]

" D Elris1 D#*ThiqD) q

For each positive integer n, we shall let §(n) denote a(n)s (see §2). We
see that the preceding sum equals

= | 6@ - a01p; D) Jar

D(T) Elr;s]

= 2|, D ~oe1p; D) § jar
= 3 H)(J D d
<2 3160 — ot + D) | jal,

iq) H=T
where Q = max {n*[p; ql, [p; q] in E}, so that the preceding sum equals
Q
§ o 210G = a0 + D) | e

[0;1) H=T

Q
2 | 18 — o + D@ | el

H=T ¢ [0;

[ > Jamd - atH + DO |<e
H=T D(H) LDHTHD)
Therefore [y.;;4,(J)dt exists for k = 1, ..., N.

Therefore [o,178(A1(Y), . .., AN(J), dt) exists. However, suppose H <
{[0; 1]}. By b) there is d’ > 0 such that if {(z;(j), ..., zx(}), X))} is
a sequence of elements in RN*1 with max{|z,(j)| :k =1,..., N;j =
1,...,n} £ Mand X7 |x;| < d’, then

Z 8@, - - -» 280, X)) < /W),

where W equals the number of intervalsin H. There are a positive in-
teger m, and an I an D(m) such that v(I) < d’ and such that D(m)* =
{I: I in D(m), v(I) < d'},

| % [at@nd, ..., axom)d), 47
D(m)*

= % g@n+ D) -, ayn + D), 4]z ¢

D(m+1)(I)

Suppose D(m)** = {I : Iin D(m)*, I a subset of no interval of H}. D(m)**
contains not more than W elements. Furthermore,
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| % [e@in, ..., axonD), 4
D(m)**

D(m+1)(I)

— X glam + D), ..., ay(m + 1)), A,h)]\
< 3 le@nD. ... ay(mXD), 4ih)

+ 2 2 lgla(m + D), ..., ay(m + D), 4;h)|
D(m)** D(m+1)(I)

< We|8W) + We|8W) = c/4 .

Therefore D(m)** is a proper subset of D(m)*. Let E(m)* = D(m)* —
D(m)**. Then

| > [, ..., axom)1), 411
E(m)*

= I gln + D), o ay(m + D), Ajt)]‘

D(m+1)(I

= | % [etatmid, ..., aye)D), 4t
D(m)*

- X gam+ D), - aym + D), A,h)J

D(m+1)(I

= 3 [a@n)D, ..., a(m)D), 4;h)

D(my**

= I s@ln + D), s anlm + D) A,h)]‘

DmTHU
=c—c/4 =3cl4.

Therefore [i.; g(A41(J), ..., Ax(J), dt) does not exist, a contradiction.
Therefore 2) implies 3).

We now show that 3) implies 1). Suppose 3) is true. Suppose the hypo-
thesis of 1) is satisfied, but that [;(g(ay(D), ... an(l), £()) does not exist.
Then there is ¢ > 0 such that for D < {U} and K in R there is E < D
and for k = 1, ..., N there is an ,-function a, on E such that

K= Ze@d), .., an(d), &)z a.

Let » = (|¢]. By Theorem 2.A.1 each of [yay(D)y(D), ..., [yax(Dy()
exists.

By routine considerations involving common refinements, there is a
sequence { H(n)}2, of subdivisions of U such that if n is a positive integer,
then

) p(U) — ZuwléD| < 1/n,
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ii") if 7 in E < H(n), then y(I) — p*(I) < 1/2#, and
iii’) if E <« D < H(n), and for k = 1, ..., N, each of b(k) and a(k) is
an q,-function on D and FE respectively, then

5 3 bR — a0 < 12+
k=1 D E{)

By induction there is a sequence {E(n)};-, such that E(1) < H(l), for
alln, Em + 1) <« E(n), Em+ 1) < Hn + 1), and foreach k=1, ...,
N there is an a,-function a,(n) on E(n) such that

E(Z) g(al(n)(l)! ey aN(n)(I)’ 5(1))

= 2 @+ D), ..., ay(n + D), EU) 2 ¢
E(n+1)

By induction there is a sequence {D(n)}, of interval subdivisions of
[0; 1] and a sequence {X(n)};2, of functions such that for all n,

i)D(n + 1) < D(n),

ii) X(n) is a reversible function from D(n) onto E(n), and

iii) for each [p; gl in D(n), {X(n + 1) ([r; s]: [r; s] in D(n + 1), [r; s] €
[p;ql} = {I:IinE( + 1), I = X(n)((p; 9D}-
This implies that
2 EX(m+ 1)Ir; sD) = £X()Ap; qD) -
DHT) ([ pig))

For each positive integer n, [p; q] in D(n) and k = 1, ..., N, let by(n)
(p; 9D = aln)(X()([p; q))- Let W = {x : x in {p, q} for some [p; q]in
D(n) for some n}. Suppose 0 < x in W. For some u and v, [v; x] is in D(u).
Suppose n is a positive integer such that for some p, [p; x] is in D(n). Then
for some p*, [p*; x] is in D(n + 1). Now, for each m such that [w; x] is in
D(m) for some w, let D(m)(x) denote {[r; s] : [r; s]1in D(m), s < x}. We see
that D(n + 1)(x) = (Jpuw D + 1)(I). Therefore

2 X+ DArssh) = 23 2 X+ D(r; sD)

D(n+1)(x) D(#)(x) Dn+1)(I)

= ) X ().
D(n)(x)
It therefore follows that there is a function 4 defined on W such that
h(0) =0, and if 0 < xin W, then A(x) = X; iy E(X(m)(D)) for all msuch
that for some z, [z; x] is is D(m); note that if [r; s] is in D(m), then h(s) —
h(r) = &X(m)([r; s1)).

Suppose {p, g1} & W and p < q. There are positive integers n’ and n”
such that p is in (i, i pen{r, s} and g is in (). i poenir, s}. From
i) it follows that if » is a positive integer greater than or equal to
max{n’, n"}, then {p, g} S (J ;51 in pw {r> s}. If m s a positive integer
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and {p, 4} € Uiri51in pom (7> 8}, we shalllet D(m)[p; q] denote {[r; s]: [r;s] °
in D(m), p < r < s = q}. Suppose n is a positive integer, p < ¢ and
{p5 q} = U[r;s] in D(n) {r, S}. Then

2 i) =Kl = 3 : [EX)({r; s

D(n)(p;q] D(n)(p
= v( U Xm(lr;sh) £ 1n+ X E(X(n)([r;s]))l.
D(m)(p3q) D(#)Lpiql
Furthermore,

Xm+ D(v,wD) = | X@)r;s),

D(n+1)[p;q] D»)(p:q]

and we note that if z is a positive integer such that ¥ = | pomp; X (1)
([t; u) for allm = z, then (V) = v[p; q] = sup{Y pempialh(s) — h(r)| :m

a positive integer, {p, ¢} S Uit in bem{"> 53}-
Now, if n is a positive integer, then

2 lam(X()(p; qD) — axn + D(X(n + 1)([r; sDPIr; 5]

k=1 D(n) D(n+1)[p;q]

5T Y lamEep; 9)
k=1 D(n) D(n+1)[p;q]
— ayln + D(X(n + D03 DX (n + (s 5D)

SE YN e — e + DD < 127,
k=1 E#n) E(n+1)I)

which implies that

2 1blp; q] = by + DIr; slivlr; s] < oo
¥=1 n=1 D(n) DD Ip3q)
It follows that there are d > 0 and a positive interger »* such that if
m is a positive integer greater than or equal to n* and D(m)* = {[p; q]:
[p; q)isin D(m), v[p; q] < d}, then

2 [g<b1(m)[p; gl - .. by(m)p; q} h. :>

D(m)*

= 2 gby(m + DIr;s), ..., by(m + Dr;s], A1 < c/4.

D(m+1)[piq]

so that if E(m)* = {V :V in E(m), y(V) < d}, then E(m)* = {X(m)
(Ip; q] : [p; qlisin D(m), v(p; q] < d}, which implies that

| 2 [ s(a@. ... am), 60)

— 2 glaym + DA, ..., ay(m + D)D), e(z)m < /4.

E(m+1)(V)
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There is a positive integer 7'such that 7d > p(U). There is * > 0 such
that if max{|x; — xi|, ..., |xy — xyl, |z— 2’|} < d*, then |g(xy, ...,
xns 2) — g(x1, ..., Xy, 2')| < ¢/(AT). There is d** > 0 such that if
{(ar(i), ..., an(i), z;)}4, is a sequence such that foreachi=1,..., w
and k = 1, ..., N, a,(i) is in the range union of @, and Y%z, < d**,
then X %,1g(ai(i), ..., ay(i), z;)| < ¢/(4T). Note that if H £ D <« {U}
and 9(/) = dfor all 7in H, then there are not more than T elements in H.

There is a positive integer Q = n* such that 1/2° < min{d*d/4, d/4,
d**, d*}. Let E(Q)* = {V : Vin E(Q), (V) < d}. There are not more
than T elements in E(Q) — E(Q)*. Also,

N
d*dl4 > 1/22 > 3, 3 [ 2 la(@)(V) — a(Q + 1)(1)17/(1)],
=1 EQ-E@* LEQIDW)
and (V) — p*(V) < 1/22 for all V'in E (Q). Suppose V'is in E(Q) — E(Q)*.
For some I, in E(Q + 1)(V),
(V) = yy) = 9(V) — p*(V) < 1/29.
This implies that

d*did > 33 1a(OXV) = ai@ + DU
2 (2 1409 — a@ + DY) — 1129

2 (2 1000 - ai@ + NI - d4),

=1
so that Y3 |a(P)(V) — a,(Q + D) < d*/3; furthermore, |&(V) —
EI) | = 9V = Iy) = 9(V) — 9(Iy) < d*, so that [g(a(Q)(V), ...,
an(Q)(V), §(V)) — g(a(@ + DUy), - - ., ay(@ + 1) (Iy), EIy))| < ¢/(4T).

Moreover,

1| = V - I, = V) — T, d** ,
EQ+1—{Iy) (DI = ( v) = 9(V) — 9(ly) <

so that
1g(a(@ + D)D), - .., an(Q + 1)), E(D)| < ¢/(4T).

EQ+1)V)—Uy)
Therefore

| % [s(@@), -, a@), &)
E@Q)
— Y g@@+ D), ..., ay(@ + DD, ea))]l

E@+D(V)

<c/4 + . 2 o llg(@(@XV), ..., an(Q)U(V), (V)
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— 8(@(Q + DUy, .- ., an(@ + Dy), §UIy))
+ 2 lg@(@ + DA, ..., an(@ + DD, ED)I]

EQO+1)W)— Iy}
< c/4 + Tc/4T) + Tc/(4T) < c,

a contradiction. Therefore 3) implies 1), and therefore 1), 2) and 3) are
equivalent.
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