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A CLASS OF MEROMORPHIC STARLIKE FUNCTIONS 

ALBERT E. LIVINGSTON 

ABSTRACT. Let A*(p) be the class of functions/(z) univalent and 
meromorphic in A = [z/\z\ < 1} with simple pole at z - p, 0 < p 
< l,/(0) = 1 and which map A onto a domain whose complement 
is starlike with respect to the origin. We discuss the integral means 
S-x\f(p + reie)\xdO, ~ o o < ^ < o o , 0 < r < l - p, for a function 
f(z) in A*(p). The results for A > 0 are the best possible. Estimates 
on SU I fw(p + reie) | *d09 n = 1,2, . . . , X > 1 are also obtained. 

1. Introduction. Let 2(p) denote the class of functions f(z) which are 
meromorphic and univalent in A = {z/\z\ < 1} with a simple pole at 
z = p, 0 < p < 1, and with/(0) = 1. If, further, there exists d,p < ö < 1, 
such that Re(z/'(z)//(z)) < 0 and 

-l-$2*Re(zf'(z)lf(z))dd= - 1 

for ô < \z\ < 1 and z = reie, we say that /(z) is in A(p). We let A*(p) 
denote the class of those functions in 2(p) which map A onto a domain 
whose complement is starlike with respect to the origin. It is obvious 
that A(p) c A*(p). However, if p ^ \/3 — 2y r 2\ the containment is 
proper [5] and if 0 < p < </3 - 2 V

/ T, A(p) = ^*(/?) [8]. In [1] it was 
proven that A*(p) is equivalent to the class of functions /(z) which have 
the representation 

(1.1) f(z) = -pzg(z)/(z - p){\ - pz) 

where g(z) is in 2*9 the class of normalized starlike functions with pole 
at the origin. 

We note at this stage that from (1.1) it is easily seen that 

F(z)= -/>(1 + z)2/(z - p){\ -pz) 

and 

G(z)= -/7(1 - z ) 2 / ( z - / , ) ( l - / ; z ) 

are in A*(p). In the sequel, F(z) and C7(z) will always designate these 
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functions. 
The purpose of this paper is to discuss the behavior of f(z) in A*(p) 

when z is near the pole z = p. Some immediate results can be obtained 
from the representation (1.1) and known properties of functions in 
2*. For example, making use of the inequalities (1 — |z|)2 ^ |zg(z)| ^ 
(1 + |z|)2 we obtain 

(1 2) PQ-P- r>2/r(1 -P2+ /"*> ^ \fiP + rei6)\ 
gp(l +P + r)2/r(l -p2 - pr) 

for r < 1 — p and 0 ^ 0 5 ^ 2%. Equality is attained on the right side 
of (1.2) by F(z) at the point z = p + r. The left side does not appear to 
be sharp. It is likely that \f{p + reid)\ ^ min {\G(p + reid)\ : 0 ^ 0 ^ 2%). 

If /(z) is in A*(p) and /(z) = £~ = _A(z - />)" for |z - />| < 1 - />, 
then making use of (1.2) and the integral formula for bn it follows that 
\bn\ = 0((1 — /?)-(w+2)) as p -> 1. However, this result is also true for 
the larger class of functions in 2{p) which are different from 0, as we now 
prove. 

THEOREM 1. Iff{z) is in 2(p) with f(z) ^ 0 andf(z) = ££L_i6„(z - p)n 

for \z - p\ < (1 - /?), then \bn\ = 0((1 - /?)-<»+2>) as /? -> 1. JAe order 
estimate is best possible. 

Proof. Let 2 be the class of functions g(z) analytic and univalent for 
0 < \z\ < 1 with a simple pole of residue one at the origin. If /(z) is in 
2{p) and /(z) # 0, it is easily seen that f{z) = (è_x/l - />2)g((z - p)j 
(1 — /?z)) where g(z) is in 2* and g(z) # 0. Let w = (z — p)j{\ — pz) and 
z = /? + re1'0, then for r < 1 — /?, |w| à r/3(l — p). Since g(z) is in 2 and 
*(*) * 0, |g(w)| g (1 + |w|)2/|w| ^ 3(1 - p)/r + 3. Therefore 

< 2 r 3 ( l - n ) + 3 1 
= (1-/>)2L r + J J * 

where we have used the fact that \b-i\ ^ p{\ + p)/(l - p) ^ 2/(1 - />)• 
This can be seen by noting that (/(z) — l)//'(0) is *n £(/>)> a c ' a s s discussed 
by Kirwan and Schober [4]. They proved that the residue of a function 
in S(p) is bounded in absolute value by/?2/(l — p2). Combining this with 
the fact that | / ' (0) | ^ (1 + p)2jp [5] gives the bound on \b_x\. Since bn = 
Ißxfcxfip + reie)/rne^dd we obtain \bn\ ^ 2/(1 - p)2 [3(1 - p)\r + 3] 
1/r». Letting r -> (1 - /?) we obtain |6J ^ 12/(1 - /?)»+2. 

To see that the order is best possible, we note that if F(z) = 
Ln=-i bj[z - PY, \z-p\<{\- p\ then bn = -/>*/(! - />)»+2(l + pY 
for « ^ 1. 

I/Q> + re»)\ ̂  T % ^ 
30-/>> + 3 

r 

2. Integral means of f(z). The integral means 
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L |/(*>(r**)|V0 

have been discussed in [1] and [6]. 
In this section we consider the integral means $Wf(p + reiff)\xdd for 

f(z) in A*(p) and — oo < X < oo. We will prove that F(z) maximizes the 
integral means when X > 0 and conjecture that G(z) maximizes the integral 
means when X < 0. We will make use of the following result [3]. If f(x) is 
nonnegative and measurable on [—a, a], let/*(x) denote its symmetrically 
decreasing rearrangement as defined in [3, p. 278]. 

LEMMA 1. Iff(x) and g(x) are nonnegative integrable functions on the 
interval [-a, a], then \taf(x)g(x)dx ^ fcaf*(x)g*(x)dx. 

THEOREM 2. Iff(z) is in A*(p), then 

(2.1) J** \f(p + re*)\*dO è i* \F(p + re*)\*dO 

forO < r < l - p and X > 0. 

PROOF. Since/(Z) is in A*(p) it has the representation (1.1). Since g{z) 
is in 2* there exists m(t) increasing on [—%, TU] with J^ dm(t) = 1 such that 

g(z) = -i-exp J^log( l - e-«z¥dm(t). 

Thus 

/(*) - ( z - ^ f - ^ ^ L l o g O - e-«Z)>dm(t). 

Making use of the continuous form of the arithmetic geometric mean 
inequality [11], we have 

\f{p + re«>)\* 

(2.2) = rm-P?-Pre»\>eXPLl0ëil ~ *** ~ """W) 

Integrating (2.2) over [—%, %] with respect to 0 and changing the order 
of integration we obtain 

far Pit fa nM\ — np~it -_r^»^-«|2A 

(2.3) Ijfip + re»)W è L L r>\l-?-^ ^ < f ) ' 
We let 

/(f) = J"1 |1 -/?€-'' -re '«-»F/ l l - / > 2 -pre»\*d6 



232 A.E. LIVINGSTON 

and note that the theorem will be proven if we can prove that 

(2.4) 7(f) ^ r |1 + p + ré°\™l\\ - p2 - /?rctfp</0 

for — % ̂  f ^ %. We make use of Lemma 1 to prove (2.4). The rearrange
ment of 11 — p2 — preie\-x is itself and the rearrangement of 11 — pe~H — 
reiw-t)\x is |[1 — pe~ü\ -f re*°\x for any fixed t, -% <L t -$>%. Thus by 
Lemma 1 

(2.5) 7(f) ̂  f* ||1 - /*r-"| + r^ | 2V|l - p2 - />re«|V0 • 

It is easily seen that ||1 — pe~u\ + re1'0! ^ |1 + p 4- re'ö| for any fixed t9 

-% ^ t ^ jr. and thus (2.4) follows from (2.5). 

The methods of Theorem 1 will not quite give the best possible estimates 
on JlJ/Cp + reid)\*d6 when X < 0. One suspects that J^|/(/7 + r&*)\xdO 
^ $-JG(P + r&Wdd where ^ < 0 and G(z) = -p(\ - z)2/(z - />) 
(1 — /?z). The next theorem comes very close to giving this. 

THEOREM 3. Iff(z) is in A*{p\ then 

for X < 0 andO < r < 1 - p. 

REMARK. The only difference between the inequality given in Theorem 
3 and the conjectured inequality is that the term |1 — p2 + preid\x would 
be replaced by |1 — p2 — preid\x. 

PROOF. AS in Theorem 2 we have the existence of m{t) increasing on 
[ — 7U, %] with \%_% dm{t) = 1 such that 

Letting fx > 0 and again making use of the continuous form of the arith
metic geometric mean inequality we have 

|/(/> + re<°)\-M 

^ r^-p2-pre^\^^ (1 _ pe_it _ r ,-<^|-2 /tfm ( 0 . 

Thus 

where 
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I(t) = f* 11 — 7̂ 2 — preiO\M/\\ _ pe-it _ re^-v^dO 

for — # g f ^ jr. We note at this stage that if one could prove that 
/(*) ^ 1(0) for — % 5; f ^ AT, then the conjectured inequality would follow. 
It can be proven that 1(0) is a local maximum of I(t) but the author was 
unable to prove that it is an absolute maximum. However an application 
of lemma 1 gives us the inequality of Theorem 3. We note that the rear
rangement of |1 — p2 — pre'6^ is J1 — p2 + pre*6^ and the rearrangement 
of |1 - pe-» - r^ ( ö -" | - 2^is | | l - / N ? - " | - reie\~2t> for each fixed/, -% ^ 
t ^ %. Thus by Lemma 1 

/(*) ^ r |1 - / > 2 + / > r ^ / | | l - />e-* | - r^l^rffl. 
J —% 

It is easily proven that ||1 — pe~u\ —reid\ ^ |1 — p — re*0| for — # ^ t ^ 
TT. Therefore 

7(f) g f* |1 - / ? 2 + pret°\r/\l - p - re^dO, 
J —TT 

giving us 

rjA*+^«*grj,',-.^;#> 
for ^ > 0. This is equivalent to the inequality given in the theorem. 

3. Integral means of the derivative and arc length. In this section we con
sider estimates on the integral means J*J/ '(/* + reid)\xdd, 0 < r < l—p, 
X ^ 1. For the case X > 1 the order estimates obtained are the best pos
sible. The case X = 1 gives us some information on the arc length of the 
image of the circle \z — p\ = r, 0 < r < 1 — p, for a function/(z) in A*(p). 
Sharp results concerning the length of the image of \z\ = r, 0 < r < 1, 
were obtained in [1]. 

We will make use of the following result of Pommerenke [9]. For 0 < r 
< 1, 

f i-^r(fjL - i) 

M iLTn^F~[W2)]2(1~r)"' 
1(1/») log (1/(1 - / • ) ) , , 1 = 1 . 

This implies the existence of positive constants C^ and C so that 

r3 2i r '* < {c*(1 - r)~(*"1)' * > * 
<• • } J * |1 - re»|* = I d l o g C l / O - r ) ) + C, ß=l. 

In what follows K and C represent constants which are independent of 
f(z) and r, though they may change their values from line to line. 
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THEOREM 4. Iff(z) is in A*(p), then for 0 < r < \ — p 

w x > 1 

r)) + C], A = 1 , 
(3.3) f \f'(p + re-*)\*dd gl'Hl-p-O*-1 ' 

wAere Cx and C are constants dependent on p but independent off(z) and r. 
Moreover |Q | S Dx(l — p)~3X where Dx is a constant depending only on X. 

PROOF. AS observed in [1] the function P(z) = —(z—p)(l — pz)f'(z)l 
f(z) has positive real part in A with P(0) = pf'(0). Hence 

(3.4) f'(z) = -/(z)P(z)/(z- p)(l - pz) = pzg(z)P(z)/(z-p?(l -pzY 

where g(z) is in 2*. Using the fact that \g(z)\ ^ (1 + |z|)2/|z| we obtain for 
0 < r < 1 - p, 

!/'(, + ̂  s * +V-gTO reie)i 

\P(p + re«>)\. 
= r\\ -pf 

Thus for 0 < r < \ — p, 

(3.5) £ |/'(/> + re«>)\*d6 £ ^ ^ p)2X j ^ IA/> + «*)|V0 • 

Since Re P{z) > 0 for z in A with .P(O) = pf'(0), it follows from the 
Herglotz representation for normalized functions of positive real part 
[10] that there exists an increasing function m(t) on [—jr, it] with ^dm(t) 
= 1 such that P(z) = ^(A + Ae^'z)/^ - e-itz)dm{t) where A = pf'(0). 
Using Holder's inequality we have for X ^ 1 

(3.6) 

Integrating (3.6) with respect to 0 and interchanging the order of integra
tion we obtain 

[' \P(p + re«>)\idO 
(3.7) 

We will make use of Lemma 1 to estimate the integral on the right side 
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of (3.7). For each fixed t the rearrangement of |1 - per** - rë®-*^1 is 
||1 - pe-t*\ - rë'\-K Thus by Lemma 1 

{3'8) J_, |1 - pen* - ré<»-»\* de - J-* ||1 - pe-«\ - ré» de. 

However, for each fixed t, — n^t^x, ||1 - pe~H\ —rëe\ ̂  
11 - p - rë*\ for 0 < r < 1 - p. Thus from (3.8), (3.7) and (3.2) we obtain 

LlP(p+rei°Wdd=»M'Lii-p1-«-? de 

(3.9) ~ (1 -p)A J_, |i - (r/(l-/0)e»|* W 

Q / ( l - / 7 - r y - i , X>1 
log(l/(l - p - r ) ) + C, A= 1 

where we have used the fact that \A\ ^ (1 + p)2 [5]. Combining (3.5) 
and (3.9) gives (3.3.) 

We now consider the sharpness for the case X > 1. Since f'(z) has a pole 
of order two at z = p it is easily seen that the term l/r2X is necessary. We 
will now prove that the exponent (X — 1) on (1 — p — r) cannot be re
placed by a smaller exponent. For this purpose we use a function which 
was used in [1]. It is easily seen that the function g(z) = (1 — z)s(l — pz)/z, 
0 ^ s ^ 1 is a member of 2*. Thus the function f(z) = — p(l - z)s/ 
(z — p\ 0 ^ 5 ^ 1 is a member of y!*(/0, and 

f'(p 4- re") = /?r-2(l - p - re'^-iO - /> - (1 - ,s)r^). 

Let 5,0 < ö < X— 1, be given and chose s so that 0 < s < (X - 1 - ö)/ 
X. With s fixed and (1 - p)/2 < r < (1 - p) we have 

^ C r Ti 1 imi n à» • 

By the choice of s, A — As > 1, and thus by (3.1) 

\f'(p + re»)\*dO è C/(l - p - ry-**-1. 

Therefore, by the choice of s, 

lim (1 - p - rf V \f\p + ré»)\*dO = oo . 
r-Kl—p) J —ic 

Let L(r) be the length of the image of the circle \z — p\ = r for a 

r. 
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function/(z) in A*(p). The case X = 1 of Theorem 4 gives us the following 
corollary. 

COROLLARY. Iff(z) is in A*{p\ then 

L{r) = £ / ! / ' ( / > + r*)\dO = o ( 4 - l o g ( l / ( l - p - r ) ) . 

4. Integral means of higher order derivatives. We will make use of a 
method employed by Feng and MacGregor [2] and also utilized in [1], to 
discuss the integral means J fJ /°°0> + reie)\xdd, X ^ 1, 0 < r < (1 — p). 
We first need two lemmas similar to those proven in [1]. Again in this 
section letters signifying constants do not necessarily have the same value 
each time they appear. 

LEMMA 2. Let 0 < p < 1 and h(z) be analytic for 0 < \z — p\ < 1 — p. 
If there exist positive constants A, a and ß such that 

(4.1) \h(p + reid)\ ^ A/r«(l - p - r)ß 

for 0 < r < \—p and —% 5* d ^ ic, then there exists a positive constant 
B so that 

(4.2) \h'{p + re^)\ ^ B/ra+1(\ - p - r)0+i 

for 0 < r < 1 — p and — % ^ 0 g #. 

PROOF. Let /(z) = /*(/? + (1 - p)z\ then /(z) is analytic for 0 < \z\ 
< 1 and (4.1) implies that \f(z)\ ^ C|z|-«(1 - \z\)~ß. Therefore the an
alytic function g(z) = zaf(z) satisfies |g(z)| g C(l - |z|)-0. Thus \g'(z)\ 
^ C(l - |z|)-<0+1> [7]. The last inequality implies that \f\z)\ è 
C|z|-<«+i)(l - |z|)-<0+1> which implies (4.2). 

LEMMA 3. Let 0 < p < Ì and let h{z) be analytic for 0 < \z — p\ < 1 -
/?. If there exists a constant Ax such that 

(4.3) |A'(/> + reif>)lh{p + reiQ)\ ^ A^]r{\ - p - r) 

for 0 < r < \—p and —TC^O^TU, then for each n = 1, 2, . . . there 
exists a constant An such that 

(4.4) \h^(p + reie)/h (p + r<*°)\ ^ AJr»{\ - /> - r)» 

/orO < r < l—p and —TU ^ 0 ^ #. 

PROOF. Assume that (4.4) holds for some w. Let g(z) = /z(w)
 (Z)/A(Z), 

then by lemma 2 

(4.5) \g'{p + r ^ ) | ^ Ä„/r»+Kl - /> - r)w+1 

for some constant i?w. Since 
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h^^(z)/h(z) = g\z) + h^(zW(z)/h(zy, 

we have, making use of (4.3), (4.4) and (4.5) 

h<"+»(p + ré9) 
h(p + ré9) 

B^ 
- rw+1(l - p - r)w+1 r» (1 - /? - r)n r(l - /> - r) 

< ^n+l 
= r «+l ( l - p - r)«+l 

for some constant îff+i. This completes the proof of Lemma 3 by induc
tion. 

The following lemma is similar to one proven in [1]. 

LEMMA 4. Iff (a) is in 2(p) andf(z) ^ 0, there exists a positive constant 
A such that 

\f"(p + re«>)/f'(p + re*)\ g A/r(l - p - r) 

for 0 < r < 1 — p and — % ^ d ^ n. 

PROOF. If F(z) is in 2 and F(z) # 0, then \zF"(z)IF'{z)\ g 10/(1 - |z|). 
This inequality can be obtained by noting that g(z) = l/^z) is in S, 
the class of functions analytic and univalent for \z\ < 1 with g(0) = 0 
and g'(0) = 1. Since zF'\z)\F\z) = zg"(z)lg\z) - 2zg\z)\g{z\ apply
ing well known bounds for functions in S gives the desired inequality 
on \zF"(z)/F'(z)\. Applying this inequality to the function F(z) = 
f(p + (1 — p)z) gives Lemma 4. 

THEROEM 5. Iff(z) is in A*(p)9 then for X ̂  1, n = 1,2, . . . , ÖW/0 < r < 

j: 

£l 
r(»+l)A(i — p — r)nl-1 ' 

Ai 

X> 1 

HT^TF) + 4 ' = 1 
r » - l ( l - /? _ r )«- 1 

w/tere CJI, yii andBi are constants independent off(z) andr. 

PROOF. Let h(z) = /'(*)» then by Lemma 4 

|A'(/> + ré°)/h(p + re")| ^ A/r(\ - p - r) 

for 0 < r < 1 — /?. Thus by Lemma 3 

\h<n-i)(p + r^)/A(/? + ré*)\ g ^ / r » " ^ - p - r)»-i 
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or 

|/<">Q> + re*)lf'{p + r<*)\ è ^ „ - i / r ^ O - p - r)^ 

for some constant An-i and 0 < r < 1 — p. 
Thus 

i | / ( w ) 0 + r̂ OÎ Ö 

è ,MKl I V - r ) ^ L"'<* + re*Wd • 
An application of Theorem 4 then gives Theorem 5. 

Since/(z) has a simple pole at z = p, it is easily seen that the exponent 
(n + l)A on r cannot be reduced. We now prove that for A > 1 the ex
ponent nX—l on (1 —/? —r) cannot be reduced. For this purpose we use 
once again the function/(z) = (1 — z)s/(z — /?), 0 ^ s ^ 1. 

LEMMA 5. Let f(z) = (1 - z)s/(z - p) and g(z) = (z - p)/(z) = 
(1 — z)s, 0 < s < 1. Then for s sufficiently close to 0, fAere exist r(s) < 
\ — p and a constant k so that 

P \fin)(p + re*)\*dO ^k\* \g^(p + reP)\*dO 

for r{s) < r < Ì — p. 

PROOF. We have 

J K) ~ s(s - 1) • • • (s - n + l)(z - />)»+! 

where 

P(z) = (1 - z)» + S («!/£!>(* - 1) • • • (5 - jfc + 1)(1 - z)»"*(z - />)*• 

Thus 

J KP I" re ) - ^ _ j) . . . ^ _ n + 1yB+v<»+i>« 

and hence there exists a positive constant C so that 

(4.6) |/<»>(/> + re'OI è C|g<»>(/> + re'OI |P(/> + re*)| 

for 0 < s < 1. 
Now 
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P(p + re9) = (1 - p - refi*)* 

+ Ê (nl/kl)s(s — 1) — (jr — ik + 1)(1 - /> - rë*)r*r*é» 

Since P(l) # 0, there exists a: so that P(/> + (1 - p)eie) ^ 0 for |0| < a:. 
If |0| ^ a, there exists 7- so that |1 - p - (1 - />)^|* ^ 7-. Moreover 

|P(/> + (1 - />)«") - 0 - P - (1 ~ />y)"l 

^ j ] n\\s(s - 1) - . . (s - k + 1)|2«-*(1 - />)« . 

Since the right side of the above inequality approaches zero as s approaches 
zero, it follows that there exists 5 so that 

\P(P + (1 - P)eie - (1 - P - (1 - P)e<0)»\ < r/2 

for 0 < s < ö and all 0. Thus 

l*(P + 0 - P)eie)\ £ II - /> - (1 - />)«*l" - r/2 è r/2 

if |0| ^ a and 0 < s < <?. Therefore P(/> + (1 - p)eie) # 0 for all 0 
if 0 < s < 5. Thus for each fixed .s, 0 < s < 5. there exists r(s) < 1 — p such 
that P(/7 + re9'*) # 0 for all 0 and r(.y) ^ r ^ 1 —/>. Therefore there exists 
D(s) so that |P(/7 + reie)\ ^ Z)(̂ ) > 0 for r(s) ^ r ^ 1 - p. Thus from 
(4.6) if follows that there exists a constant K(s) so that 

(4.7) f* l/^Cp + r^0P^^ #(*) f* \g<*>(p + r̂ OPd» 

for 0 < .? < 5 and r(.s) < r < 1 — p. This then proves the lemma. 

Since sharpness of the exponent nX—\ in Theorem 5 was discussed 
earlier for n = 1 and X > 1, we restrict our attention to n ^ 2 and 
^ ^ 1. Let ^ ^ 1 be given and let y < /^ — 1. Choose s so that 0 < s < 
min [ 1, n — (f -f 1)/A] and also close enough to 0 so that (4.7) holds. Then 
with s fixed 

V \g{n)(p + re«>)\*dd 

^ C/(l - /1 - r)^»-^"1 

for some constant C and r sufficiently close to (1 — /?). Here we have 
used the fact that A(n-s) > 1 and (3.1). Since (4.7) holds we have 

f* \f{n){p + reie)\xdO £ CKji} -p - r)^-^-1 
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for r sufficiently close to (1 — p). Thus 

lim (1 - p - r)r f* \f{n)(p + reie)\*d6 = oo 
r-+(l-p) J -ic 

by the choice of s. 
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