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1. Introduction. This paper is devoted to the study of the periodic 
boundary value problem for the Lienard differential equation 

(1.1) *"(0 +f(x(t))x'(t) + g{U x(t)) = 0 

and its special case, the Duffing equation 

(1.2) x\t) + cx'(t) + g(t, x(t)) = 0. 

Without loss of generality, we can assume that the boundary conditions 
are taken on the interval [0, 2%\ namely, 

(1.3) x(0) - X(2TC) = x'(0) - x'(2iz) = 0. 

Our results are only significant for the so-called forced case, i.e., when 
g{U 0) * 0. 

There is a vast literature dealing with problems (1.1-1.3) and (1.2-1.3) 
and we refer to [10] and its bibliography for further references. For / 
continuous and g of the form g(t, x) = h(x) — e(t) with h and e continu­
ous and e 2^-periodic, Reissig [9] has proved that problem (1.1-1.3) has 
at least one solution if 

0 < lim i n f ^ - g lim s u p ^ > _ < i. 
|X|-KX> X l#|->°0 X 

On the other hand, Amarai and Pera [1] have proved that problem 
(1.2-1.3) has at least one solution for the case where c = 0, g is 2%-
periodic in t and continuous, 

a g y St) = lim inf g^ ^ g lim sup g^ x>> = n(t) ^ ß < 1 
|x|->oo X |#|->oo X 

uniformly in t e [0, 2iv], for some a e R, and ffîT_Xt)dt > 0. 
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Both results are based on Leray-Schauder's type techniques and differ 
in the way of getting the required a priori estimates for the possible 
solutions. The aim of this paper is to adapt the approach introduced in 
[8] for semi-linear elliptic Dirichlet problems to prove existence theorems 
for (1.1-1.3) and (1.2-1.3) which unify the results of Reissig and of Amarai 
and Pera and extend them in various directions. Theorem 1 in §3 will 
prove the existence of a solution for (1.1-1.3) when / is continuous, g 
satisfies the Caratheodory conditions (see §3), and when the inequalities 

(1.4) y(t) S Hm inf g^ x ) g lim sup Éh*L ^ f(t) 
\x\-*oo X lxl->°o X 

hold uniformly a.e. in t e [0, 2%\ and y and r are measurable functions 
such that 

(1.5) r e Li(o, i%\ Pr(t)dt > o, r(t) g î, 
Jo 

for a.e. / e [0, 2%\ with the strict inequality 

(1.6) no < i 
on a subset of [0, 2%\ of positive measure. 

Theorem 2 in §4 will show that the existence result still holds for 
problem (1.2-1.3) with arbitrary c e R when one has \l*y(t)dt = 0 as 
soon as y(t) ^ 0 on a subset of [0, 2%\ of positive measure, or, equivalently, 
as soon as ffîy+(i)dt > 0, where we define, as usual, y+ by max(7*, 0) 
and y~ by max( — y, 0). All the conditions are in particular satisfied for 
y(t) = sin t. 

The approach used in this paper requires a preliminary study of prob­
lems of the form x"(t) + f(x(t))x'{t) + p{t)x(t) = 0 or x"(t) + cx'\t) + 
p(t)x(t) = 0 together with the boundary conditions (1.3). Results in 
this line are given in Lemmas 1 to 4 of §2 and §4, which can be of in­
dependent interest because the obtained results seem to be new even for 
the linear case. 

The conditions (1.5)—(1.6) relate the asymptotic behavior of g(t, x)jx 
to the two first eigenvalues 0 and 1 of the periodic boundary value prob­
lem on [0, 2n] for the linear operator —(d2/dt2). One shall notice that a 
crossing of the zero eigenvalue is allowed on subsets of [0, 2%\ of positive 
measure. Of course other results for (1.1)—(1.3) or (1.2)—(1.3) have 
been obtained or can be obtained when g(t, x)jx is compared for |x| large 
with other eigenvalues. In particular, it has been shown in [6] (see also 
[7]) that problem (1.1)—(1.3) has a solution for every continuous / and 
Caratheodory g if 

r+{i) = Hm sup ÉLA. ^ 0 
\x\—>°o X 
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uniformly a.e. in t e [0, 2%] and 

(1.7) r + eLi(0 ,2t f ) , £r+(t)dt<0. 

More generally, it is proved in [4] for (1.2)—(1.3) with c = 0 (but the 
result is easily extended to (1.1)—(1.3)), that existence still holds if (1.7) 
is replaced by 

n e LK0, l%\ f2* (r+)+(0* < 3/2*, 
J o 

J^(r+)+(0* - [i - ((2*/3) J2
o^r+)+(w)^)1/2]2J ,/r+)-(0^ < o. 

Those results, in which g(t, x)/x is compared for large \x\ with the first 
eigenvalue 0 can also be obtained by the approach of the present paper. 
For problem (1.2-1.3), an easy adaptation of the method used in [8] 
furnishes the existence of at least one solution if for some fceN* the 
functions y_ and y+ defined in (1.4), are such that, for a.e. / e[0, 2%\, 
one has k2 ^ j--(t), y+{t) ^ (fc + l)2, where in each relation, the strict 
inequality holds on a subset of [0, 2%\ of positive measure. 

We also mention that, in contrast with the techniques used for getting 
a priori bounds in [1] and [9], our approach allows the study of similar 
problems for some systems of Lienard and Duffing equations to which a 
future paper will be devoted. 

We end this introduction by mentioning that besides the classical spaces 
C([0, 2A;]), C*([0, 2?r]) and L*(0, 2%) of continuous, Ä:-times continuously 
differentiate or measurable real functions whose A>th power of the ab­
solute value is Lebesgue integrable, we shall make use in what follows 
of the Sobolev spaces W2^(0, 2%) and H^O, 2%) respectively defined by 
W2'l(0, 2%) = {x: [0, 2%\ -* R|JC and x' are absolutely continuous on 
[0, 2tf]}, with norm 

1*1̂ ,1 = P* \x(t)\dt + [2lC\x'(t)\dt + f2* \x"(t)\dt, 
Jo Jo Jo 

and H^O, 2%) = {x: [0, 2%\ -+ R\x is absolutely continuous on [0, 2%\ 
and x' G L2(0, 2%)}, with norm 

r/ T2TT \2 y C2TZ ~]l/2 

Mm = | ( ( 2 ^ ) " 1 J x(t)dt) +(2x)-1\ x'2(t)dt\ . 

In any used normed space, the strong and the weak convergence of 
sequences will be denoted respectively by -• and - s and we shall use the 
fact (see, e.g., [2]) that H*((), 2%) is compactly imbedded into C([0, 2x]) 
and is a Hilbert space with inner product defined by 
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(x,y)m = (Wr1 \2* x(t)dt)((2iz)-i \2*y(t)dt) + (2*)-* J**w(0*-

2. An inequality for some Lienard operators with periodic boundary 
conditions. If xeL^O, 2%), we shall write x = (ZTC)'1 ffix(t)dt, x(t) = 
x(t) - x9 so that, ffî x(t)dt = 0. 

LEMMA 1. Let y e L^O, 2%) and r e Lx(0, 2#) £e swcA f/ztff 

(2.1) f = (2^)"1f7rr(0*>o 

and such that for a.e. t e [0, 2#], 0«e has 

(2.2) no ^ i 
with the strict inequality on a subset of [0, 2%] of positive measure. Then 
there exists ö = d(f, T1) > 0 such that for all x e H^O, 2%), one has 

(2.3) Br,r(x) = fx2 + (2^r)-i f& [(*'(0)2 - r(t)x2(t)]dt ^ d\x\fa. 
J o 

PROOF. We first show that BrF(x) = 0 if and only if x = 0, the first 
part being trivial. Using (2.2) and Wirtinger's inequality [7], we see that, 
for all x e H^O, 2%), we have 

(2.4) (2*)-i Ptono)2 - www 
Jo 

-(27r)_i ir [ ( j" , ( r ) ) 2 - *2(')IA - ° 
with moreover ffî [(x'(0)2 - x2(f ) ] * = 0 it and only if 

(2.5) jc(0 = A sin(t + 0) 

for some A ^ 0 and ^ e R. Thus both terms in the definition (2.3) of 
Brp(x) are nonnegative, so that, for all x e H^O, 2TT), we have 

(2.6) BTyr(x) ^ 0. 

Moreover, if Br>r(x) vanishes, then, by (2.1), we must have x = 0 and 
by (2.4), we must have 

f 2 7 V 2 ( 0 ) 2 - r{t)x\t)]dt = r*[(* ' (0] 2 - x\t)]dt = 0. 
Jo Jo 

Consequently, x is of the form (2.5) and 

0 = j ^ ( l - r(t))x\t)dt = A2^(\ - r(t))sin2(t + fidt, 
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which implies A = 0, hence x = 0 and thus x = 0. Assume now that the 
conclusion of the lemma is not true. We can then find a sequence (xn) 
in H^O, 2%) and x e H1^, 2%) such that (see, e.g., [2]), 

(2.7) \xn\Hx = 1, xn -> x in C([0, 2*;]), xw - % in #!((), 2 r̂) 

and 

(2.8) 0 g £r,r(**) ^ 1/«, « e N*. 

From the Schwarz inequality in H 1(0, 2TT), we have 

(*„, *)#i ^ \xjfo \x\2m> n e N * 

and hence 

Ix&i g lim inf \xn\
2

Hi. 
»->oo 

By (2.7) and (2.8), we obtain 

(2.9) lim \xH\fa = - fx2 + (2^)-i f 2 > ( 0 x 2 ( 0 * , 
n-*oo J 0 

and hence 

\x\h ^ -f*2 + (2 )̂-i J^AO^O* 

i.e., Brp(x) S 0. By (2.6) and the first part of the proof, this implies that 
x = 0 and hence, by (2.7) and (2.9), x„ -> 0, |xj#i -* 0 for « -> oo, i.e., 
\xn\Hi -+ 0, a contradiction with the first equality in (2.7), which completes 
the proof. 

LEMMA 2. Let y and r be as in Lemma 1, let ö > Obe associated to y and 
r by that lemma and let e > 0. Then for all measurable real functions p on 
[0, 2%\ satisfying 

(2.10) r (0-e £p(t)£r(t) + e 

a.e. on [0, 2TT], all continuous functions f: R -• R a«t/ a// x e ^ ^ ( O , 2^) 

(2.11) x(0) - X(2TT) = x'(0) - x'{2%) = 0, 

owe has 

(InY1 j o (x - *(0)(*"(0 + / ( x ( 0 K ( 0 + />(0*(0* è (ô - e)\x\h. 

PROOF. If xe W2^(0, 2%) and satisfies (2.11), then we obtain easily, 
using integration by parts and Lemma 1, 

file:///xjfo
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(2TT)-1JO (* - x(t))(x"(t) + f(x(t))x'(t)+p(t)x(t))dt 

= px2 + (2«)-i P V ( ' ) ) 2 - p(tW(t)]dt 
Jo 

^ f*2 + (2W)-i (^[(x'co)2 - r(t)xH,t)]dt 
J 0 

Jo 

^ £r,r(*) - £ \x\fr Z(ö-e) \x\fa, 

and the proof is complete. 

3. Existence of periodic solutions for some forced Lienard equations. Let 
/ : R -• R be continuous and let g: [0, 2%\ x R -• R, (t, x) »-». g(t, x) be 
such that g(-, x) is measurable on [0, 2%] for each xeR andg(f, •) is 
continuous on R for almost each t e [0, 2%\. Assume moreover that for 
each r > 0 there exists yr e Lx(0, 2%) such that \g(t, x)\ g 77(f) for a.e. 
t e [0, 2%\ and all x e [ — r, r]. Such a function g will be said to satisfy the 
Caratheodory conditions. Consider the following periodic boundary-
value problem for the Lienard equation 

x"(0 + f{x(t))x\t) + g(t, x(t)) = 0,f e [0, 2%\ 

x(0) - X(2TÜ) = x'(0) - X\2TZ) = 0. 

We prove the following existence result for (3.1). 

THEOREM 1. Assume that the inequalities 

(3.2) r(t) ^ lim inf x~lg(U *) ^ Hm sup x^g^t, x) g r(t) 

/zo/d uniformly a.e. m f e [0, 2%\ and that y and T satisfy the following 
conditions : 

a. r e L!(0, 2ff) O/M/ J§* j-fr)* > 0; and 
b. /"XO ^ 1 w/fft f/ze sfncf inequality on a subset o/[0, 2%\ of positive 

measure. 
Then problem (3.1) has at least one solution. 

PROOF. We shall first write the equation in an equivalent more suitable 
form. Let ö > 0 be associated to 7* and T by Lemma 2; then, by (3.2) we 
can find r > 0 such that for a.e. t e [0, 2%\ and all x with \x\ ^ r, we have 

(3.3) r(t) - (5/2) ^ x-i g(f, x) ^ r(t) + (5/2). 

Define g on [0, 27r] x R by g(t, x) = f (t, x)x, where 

file:///x/fr
file:///x/fa
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fit, x) = I 

:-ig(t,x) if\x\^r 

- 1 g(t, r) if 0 < x < r 

~ r~l g(t, — r)if—r<x<0 

[r(t) if* = o. 

By construction, g satisfies the Caratheodory conditions and, by (3.3), 
one has 

(3.4) jit) - (5/2) ^ f(t, x) g r(t) + (5/2) 

for a.e. f e[0, 2^] and all xeR. Moreover, if h: [0, 2%\ x R -• R is 
defined by h(t, x) = g(t, x) - g(f, x), then, for a.e. t e [0, 2%\ and all 
/ e R, we have 

(3.5) \h(t, x)\ g sup \g(t, x) - £(/, x)\ ^ a{t) 
\x\^r 

where a e L^O, 2 r̂) only depends on y, T and j r . The equation in (3.1) is 
thus equivalent to 

*"(0 + / W 0 M 0 + f(*> *(0)*(0 + *(*, 40) = 0 

to which we shall apply coincidence degree theory [3,7]. (Leray-Schauder's 
degree [5], could also be used at the expense of a reformulation as an 
integral equation). Let X = CKIP, 2^]), Z = L\0, 2%\ dorn L -^ {xeX: 
x(0) — x(2iz) = x'(0) — JC'(2^) = 0 and x' is absolutely continuous on 
[0, In}}. 

L: dorn L cz X ~+ Z, x h* x" 

F:X->Z,x~f(x(.))x'(-l 

G;X-+Z, x ~ f ( - > *('))*(•)> 

# : X - > Z, J en A(.,x(0), 

^ : l H Z , X H f ( . , 0 W . ) = A - W 0 -

It is routine to check that F, G, H and y4 are well defined and /.-com­
pact on bounded subsets of X, and that L is a linear Fredholm mapping of 
index zero. We consider the homotopy 0: dorn L x [0, 1] -> Z defined 
by $(*, A) s Lx + AFx+ ( l - JO^x + AGx + Atfx, Ae[0, 1], x e dorn L, 
and, in order to apply Theorem IV.5 of [7] with Q = {xeX: \x\ci < R}, 
we have only to show that there exists R > 0 for which 0(x, X) ^ 0 when 
A e [0, 1] and x e dorn L with \x\ ^ iE. By construction, we have, for 
all x e dorn L, 

r(t) - {oil) < (l - A)A0 + *f(f, *(0) ^ A0 + 0/2), 



650 J. MAWHIN AND J.R. WARD 

and hence, by Lemma 2, denoting by < , > the inner product in L2(0, 2%) 
defined by 

<u, v} = ± ^* u(t)v(t)dt, 

we obtain 

(3.6) <x - x,Lx + XFx + (1 - X)Ax + XGx} g; (ö/2)\x\2
Hl 

for all x G dorn L and A G [0, 1]. Consequently, by (3.5) and the continuous 
imbedding of H^O, 2%) into C([0, 2^r]), we get, for all x G dorn L and 
A G [0,1], 

<x - x, 0(x, A)> §; (5/2) IxlLi - A|<x - x, Hx}\ 

^ 0/2)|x&i - labi* - x|c 

^ 0/2)1*1^ - ß\x\Hl. 

Thus, if 0(x, A) = 0 for some (x, A) G dorn L x [0, 1], we have 

(3.7) \x\m g 2/3/,? = dl9 

and hence 

(3.8) \x\c ^ ö2 

for some <52 > 0. From the relation 

x" + A/(x)x' + (1 - X)rx + Af(f, x)x + AA(f, x) = 0, 

this implies 

(3.9) |*"|L1 <k 53 

where <53 depends only on dl9 d2, r> T and a. By (3.7), (3.8) and (3.9) 
there exists R > 0 such that |x|ci < R for every A G [0, 1] and every 
x G dorn L for which @(x, A) = 0, and the proof is complete. 

4. A further result in the case of a Duffing equation. An existence result 
for the periodic boundary value problem (3.1) with / constant can be 
given in the case where \^y{t)dt = 0. Its proof depends upon the follow­
ing lemma for the linear periodic problem 

*"(') + cx\t) + p(t)x(t) = 0, 

x(0) - x(2x) = x'(0) - X'(2TC) = 0 

where p G L^O, 2%) and e e R is arbitrary. 

LEMMA 3. Assume that p satisfies the following conditions: 
1. \fp(t)dt = 0, 
2. pit) 5* 0 on a subset of[0, 2%\ of positive measure, and 
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3. p{t) g 1 for a.e. t e [0, 2%\ with strict inequality on a set of positive 
measure. 
Then problem (4.1) has only the trivial solution. 

PROOF. Let x be a solution of (4.1). Then, 

0 = (27T)-1 r V ( 0 + cx\t) + p(t)x(t))(x - x(t))dt 

where we have used assumption 1. By condition 3, this implies, using 
Wirtinger's inequality, 

0 g (2ff)-i f2?r [(Jc'(O)2 - * 2 ( 0 J * 
Jo 

-(2w)"1 j r ^ , ( o ) 2 " ^ ^ ^ = ° -
Consequently, Jc(f) = A sin(f + 0) and 

C2ic 

A2\ [1 - />(*)] sin2(f + <j))dt = 0. 

Using the second part of assumption 3, this implies A = 0, and hence 
x(0 = x. Introducing this expression in the equation (4.1), this gives 
p(t)x = 0 and then, by condition 2, x = 0, which completes the proof. 

REMARK 1. Assumptions 1 and 2 of Lemma 3 are clearly equivalent to 
ffip(t)dt = 0 and ffîp+(t)dt > 0 

LEMMA 4. Let y e L^O, 2%) and T e Lx(0, 2%) be such that y{t) g T(t ) 
g 1 a.e. m [0, 2TT], \fy{f)dt ^ 0, j ^ r + W * > 0, and r(t) < 1 on a subset 
of[0, 2%\ of positive measure. Then there exist e > 0 and rj > 0 ,swc/* fÄötf 
/or all measurable p satisfying y(t) — e ^ /?(f) ^ .T(0 -f e a.e. OH [0, 2%\ 
and for all x e W2^(0, 2n) such that JC(0) - x(2n) = x'(0) - X'(2TC) = 0, 
one has 

\x" + ex' + px\Li ^ 77 |x|ci. 

PROOF. Suppose that e and 57 do not exist. Then there will be a sequence 
(x„)'m W2^(0,2TC) with \xn\ci = 1 andxw(0) - xn{2%) = x;(0) - X'H{2K) = 
0 and a sequence (/?„) in 1^(0, 2%) with ^(f) - 1/« ^ /?M(0 ^ / \ 0 + \\n 
for all « e N* and a.e. t e [0, 2?r], such that 

(4.2) \x"n + cx'n + /vcJLi < 1/«. 

The boundedness of (x^) in L1-norm, of (xn) in C1-norm and the fact 
that, for a.e. t e [0, 27T], 
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\Pn(t)\ g max[2, 1 + r-(t)] = ß(t) 

with ß e L!(0, 2%\ imply that, by going to subsequences if necessary, we 
can assume (see, e.g., [2]) xn -> x in C([0, 2%\ X^ -> x' in C([0, 27r],/?„ -* p 
in L^O, 2#), where \x\ci = 1, and 

(4.3) rit) ̂  p{t) s no 
for a.e. t e [0, 2%\. On the other hand, for every (j> e L°°(0,2n), we have 

I C2jc I 
(pH(t)xn(t) - p(t)x(t))<p(t)dt\ 

I J O I 

^ I f* P»(tXxH(t) - x(t))<j>{t)dt\ + I f* (/>„(*) - p(t))x(t)<f>(t)dt\ 

I f 2?r I 

I J 0 I 

and hencepnxn -^ px in L^O, 2%). By (4.2) we deduce that x"n -^ —ex' — 
px in L^O, 27T), and the weak closedness of the graph of the linear operator 
d2/dt2 implies that x e WV(0, 2%\ x(0) - x(2x) = x'(0) - X'QTZ) = 0 
and x"(t) + cx\t) + p(t)x(t) = 0 for a.e. / e [0, 2n]. 

Using (4.3), we then see that %%p(t)dt ^ 0, ffîp+(t)dt > 0 and/?(f) ^ 1 
a.e. in [0, 2n] with strict inequality on a set of positive measure. Con­
sequently, Lemma 1 or Lemma 3 according to ffip(f)dt > 0 or ffip(t)dt = 
0 imply that x = 0, a contradiction which completes the proof. 

REMARK 2. One shall notice that the equation x"(t) + (sin t)x{t) = 0 
satisfies the conditions of Lemma 3. 

Consider now the periodic boundary-value problem for the Duffing 
euqation with arbitrary e e R 

*"(0 + cx\t) + g(t, x(t)) = 0 

JC(0) - X(2TC) = x'(0) - x\2it) = 0, 

where g: [0, 2#] x R -> R verifies the Caratheodory conditions. 

THEOREM 2. Assume that the inequalities 

y(t) = lim inf x'1 g(t, x) g lim sup x'1 g(t, x) ^ r(t) 
| * | - > o o | * | - > o o 

hold uniformly a.e. in t e [0, 2iu]\ where y and T7 satisfy the following condi­
tions : 

a. r e LK0, 2ff); Jg* r W è 0; Jg* r + ( 0 * > 0; and 
b. /"(J) ^ 1 with strict inequality on a subset o/[0,2%\ of positive measure. 

Then problem (4.4) has at least one solution. 

PROOF. Let e > 0 be associated to y and T by Lemma 4. Then, using the 
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approach and notations of the proof of Theorem 1, we can write the 
equation in (4.4) in the equivalent form 

(4.5) x"(t) + cx\t) + f (f, x{t))x(t) + h(t, x(t)) = 0, 

where 

(4.6) r(t) - e è ?(t, x) ^ r(t) + e 

for a.e. t e [0, 2%\ and 

(4.7) \h(t9 x)\ ^ a(t) 

for a.e. t e [0, 2%\ and all x e R, where a e Lx(0, 2%). 
To apply coincidence degree theory to (4.4) written in the form (4.5), we 

set X = C([0, 2^:]), Z = Ll(0, 2%), [dorn L = {x e X: x is absolutely 
continuous together with x' on [0, 2%\, and x(0) — x(2flr) = x'(0) — 
x'Q%) = 0} and 

L: dorn L e I - * Z , x i - * / + a ' 

G : I - > Z , X H 4 ^(. , *(.));*;(.), 

H:X-+ Z, x->Ä(. ,*( . ) ) , 

> 4 : I ^ Z , X H f ( . , 0)x(.) = /*( •)*(•)• 

Again, all those mappings are well defined and such that L is a Fredholm 
mapping of index zero, G, H and A are L-compact on bounded subsets 
of X. Moreover, problem (4.4) is equivalent to solving the equation 

(4.8) Lx + Gx + Hx = 0 

in dorn L. By Theorem IV. 5 in [7] with Û = B(R) = {xe C([0, 2TT]): 

|x|c < JR}, equation (4.8) will have a solution if we can show that for 
each X e [0, 1] and each x e dorn L such that 

(4.9) Lx + (1 - A^x + JIG* + A#x = 0, 

one has |x|c < R. Now, if x e dorn L satisfies (4.9) for some X e [0, 1], 
then 

x"(t) + cx\t) + [(1 - X)r(t) + af(f, JC(0)] *(0 + W / , *(/)) = 0 

and, by (4.6), 

r(t) - e g (1 - A)/X0 + Af(f, x(0) ^ / W + 5. 

Therefore, using Lemma 4 and (4.7), we get 

0 = \x" + ex' + [(1 - X)r + Af(-, *(•))]* + AA(-, x(.))|Li 
(4.10) 

è cibici - klLi, 
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and hence |x|co ^ |x|ci ^ \a\Li/7j. Thus it suffices to take any R > \CC\LI/T] 

to complete the proof. 

REMARK 3. It follows easily from Lemma 4 and Theorem 2 that prob­
lem (4.4) will have a unique solution if g satisfies the Caratheodory 
conditions and is such that 

( 0 < g(t, x) - g(t, y) < m 
/ w _ x — y ~ 

for a.e. t e [0, 2%\ and all x # y in R, where y and T7 satisfy the conditions 
of Lemma 4. 
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