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ABSTRACT. By means of a change of variable along with ap­
propriate energy functions, criteria are obtained which guaran­
tee that all solutions of the second order nonlinear equation 
yn + p(x)yr = 0, p > 0, 7* > 1, are nonoscillatory. These results 
strengthen known nonoscillation criteria. 

1. Introduction. Consider the nonlinear second order equation 

(1.1) y» +p(X)yr = 0 

where p > 0 is locally integrable on [a, oo) and y > 1 is the quotient of 
odd positive integers. We shall be interested in obtaining criteria for all 
nontrivial solutions of (1.1) to be nonoscillatory (i.e., have only finitely 
many zeros). 

It was shown by Atkinson [1] that all solutions are oscillatory if and 
only if \™xp{x) dx = oo. We refer to the survey papers [14], [15] and [9] 
for detailed bibliographies. In contrast to the linear case y = 1, however, 
equation (1.1) permits the coexistence of both oscillatory and nonoscil­
latory solutions. Thus, while föxp(x) dx < oo guarantees the existence of 
at least one nontrivial nonoscillatory solution, it remains of interest to 
find criteria for the existence of an oscillatory solution to (1.1) or condi­
tions which imply that all solutions are nonoscillatory. These have been 
studied less frequently. For the former we refer to [5], [6], [7] and [8]. 
Nonoscillation criteria may be found in [4], [12] and [13]. 

Our technique is to employ a suitable change of variables along with 
an appropriate energy function. The results obtained strengthen known 
criteria. For example, Nehari [13] has shown that if p(x)(x log x)(r+3)/2 

is nonincreasing on [a, oo), then equation (1.1) is nonoscillatory. This 
was subsequently improved by Chiou [4] who showed that if p(x)x(T"i~3)/2 

(log xy is nonincreasing on [a, oo), where ß > {y + l)/4 — 1/(7* + 1), 
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then (1.1) is nonoscillatory. It was further shown by Nehari [11] that 
p{x)x^+Z)/2 nonincreasing with limx_+00p(x)x(r+Z)/2 = 0 is not in itself 
sufficient to guarantee that all solutions are nonoscillatory. In Nehari's 
example /?(x)x(^+3)/2 is a step function which is constant on intervals of 
ever increasing length. Here we show that if p(x)x(r+3)/2 decreases signi­
ficantly (in a sense made precise later) on sets of intervals of ever increas­
ing length, then all solutions are nonoscillatory. 

The techniques employed by the aforementioned authors and by Coff-
man and Wong who considered a more general version of (1.1) in [5] and 
[6] involve clever use of differential and integral inequalities and identities. 
We believe the method used below is simpler and gives more geometric 
insight. This procedure may be readily applied to more general equations 
(cf. [6]) but, for the sake of clarity, the emphasis in this paper is on (1.1). 

2. Results. In equation (1.1) we make the change of variables 

(2.1) x = e\ y = Wet/2 u, p ^ 0 

which transforms (1.1) into 

(2.2) (t2mj + a(t, u)u = 0 

where 

a(t, u) = t^laiOur-1 - A(t)] 

o(t) = p(ë) e<r+3)*/2 ^cr-i) 

and 

The special case JJL = 0 in (2.1) is the standard change of variables used in 
studying (1.1), for which the transformed equation is 

(2.3) u" + [p(ë) e<r+3)t/2 uT-i _ ^ _ ] w = 0 . 

It is useful to observe that 

(2.4) a{U u) > 0 o \u\ > a(t) = 

and 

(2.5) 1 a(t, s)s ds > 0 o \u\ > 
2 

PROPOSITION. Suppose that, for some fi ^ 0, 

|i/(r-D 

1/(7-1) 
ait). 
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(i) d[t^a(t)] ^ 0 

and 

(ii) lim inf [t+8d[s^(s)a(s)2] > 0 

for some 5, 

Then all solutions of '(2.2) are nonoscillatory. 

The proof of the Proposition is given in §3. Since, from (2.1), nonoscil-
lation of (2.2) is equivalent to nonosciUation of (1.1), this result may be 
restated as follows with ß = ß(f 4- 3). 

THEOREM. Suppose that, for some ß ^ 0 

(i) d[p(x)x<r+v/2(log xy] ^ 0 

and 

(ii) lim inf P* d[(log s)W«™l(p{s) ,?<r+3>/2)2/<r-i>] > o, 
*-»oo J x 

where K = e8 and ö is as in the proposition. Then all solutions of (I.I) are 
nonoscillatory. 

Corollaries 1 and 2 give concrete conditions for nonosciUation. 

COROLLARY 1. Ifp(x) > 0 is locally absolutely continuous and, for some 
k > 0, 

(/<x) x<r**>/2)' ^ -Z^-(^(x)x(r+3)/2)(r+i)/(r-i), 

then all solutions of (I A) are nonscillatory. 

COROLLARY 2. If ß > 0 and 7] are such that 2ßj{y + 3) + 237/(7- ~ l) 
^ 1, 

(i) p(x) x(^+3)/2(log xy is nonincreasing 

and 

(ii) p(x) jc('4"3)/2(log x)v is bounded, 

then all solutions of (I A) are nonoscillatory. 

Corollary 1 follows from the theorem with ß = 0 since the condition 
given implies that/?(x) x<r+3)/2 is nonincreasing and 
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J: ^(/?(s)^+3)/2)-2/(r-i) 

2 F ["(Pi?) **(r+3)/2y (p(s) ^(r+3)/2)-(r+i)/(r-i) <fc 
1 J x 

. 2& CKX ds 2k « ^ n 

^ r I — = r log A: > 0. 
r - ! J* s r - i 

Thus both conditions of the theorem are satisfied. 
To verify that the conditions of Corollary 2 imply the conditions of the 

theorem, observe that from (i) 
J[(log s)W<r+*>(p(s) ^(r+3)/2)-2/(r-i)] 

^ [p(s) s(r+3)/2(log s)ß]-2nr-i) d(log s)W<r+n +2 /̂(7-1) 

= [p(s) ^(r+3)/2(i0g ^]-2/(r-i) (log j)2(*-j8>/<r-i> J(logj)#'<r+3>+?ß/Cr-i> 

> M-2/ (r-D ( /
 4 ^ N /

+ ^ ixVlog *)2/3/ (r+3) + 2 ^ ( r _ 1 ) _ 1 — & 
V (r + 3)(r - 0 / * 

if/?(^) j<r+3)/2(i0g S)V ^ M . Therefore, 

r. J[(log^F /(r+3)(^)5(r+3)/2)-2/(r-D] ^ C log A; > 0 

for some C if 2/3/(7- + 3) + 257/(7- - 1) ^ 1. 
The special case tj = ß in Corollary 2 shows that (1.1) is nonoscillatory 

if /?(x)x(r+3)/2(i0g xy j s nonincreasing and ß ^ (7- + l)/4 — 1/(7- + 1), 
which is Chiou's result [4]. Note that, as pointed out by Nehari [11], 
Chiou's result in which the condition is given as ß > 0 is incorrect and his 
proof requires the condition cited here on ß. 

3. Proof of the proposition. We will assume throughout this proof that a 
is locally absolutely continuous on its domain. When this condition is not 
satisfied, the same results may be obtained by an integration-by-parts 
procedure replacing differentiation of energy functions (cf. [10]). 

Suppose u is an oscillatory solution of (2.2) and consider, for u = u(t)9 

E(t) = (fru'Y + 2f2/< ¥ a(t, s) s ds 

= (t2m')2 + — i - j t*Pa(t}ur+i _ t*«X(t)u2. 

The function E is nonincreasing because 

(2.6) E\t) = —^-y^t fO 'wrH _ (t^Xyu2 ^ 0 

since (t^a)' ^ 0 is given and (t^X)' ^ 0 from ft ;> 0. Since E = (t2m'(t))2 

> 0 if u(t) = 0, it follows that E(t) > 0 for all / i f u is an oscillatory 
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solution, because E is nonincreasing. Thus, whenever u'(t) = 0, E(t) = 
2t2^t)a(t,s)sds > 0 so that, from (2.5), 

MOI > X±l 
2 

11/(7—1) 
MO) 

at any local extremum of u. Thus, between successive zeros of«, there is an 
interval in which \u\ > a. We next show that the length of these intervals 
is ultimately greater than ö if 

y + l \ l / 2 [ - / r + 1 \l/(r-D Mf^-nm - i 

For fixed *, the minimum value of It2^ a{t, s)s ds is achieved if \u\ = 
a(t) and equals 

2fr Jo ^'^ 
(2.7) 

sds = ^Tfrff(iy
+1)/(^ - t ^ J ^ 

^\2/(r-i) 

t^Xa2. 

r + 
_ _ r - \ 

r + i 

Conditions (i), (ii) of the proposition imply a is nondecreasing and 

(2.8) lim t^l(t)a(ty = oo. 
* - > o o 

Now suppose t„, and tn+i are successive zeros of u and tn < rn < zn < sn 

< tn+1 where \u(rn)\ = a(rw), |wfe)| = afe), M > a on (rM, sw) and i/(V*) 
= 0 so that 

(2.9) 
/ r + 1 \i/<r-i> 

We further assume that u > 0 on (7M, fw+1) ; the same argument may be 
applied to — u if u < 0. Since a(/, u(t)) > 0 if rn ^ t ^ sn, it follows from 
(2.2) that t2i*u'(t) is decreasing on this interval. Therefore, 

(Tn - rn)u'{rn) à £ W J ^ ) 2 V ( 0 i// 

^ P V ( 0 * 
J rM 

= U(T„) - w(rM) 

/ r + l \ i / ( r - i ) 
> (^jL~2—J aW - a(0, 

from (2.9) and 
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r + iy/(r-D 
fa - 0"'fa) > m - 1 kfa) 

since a is nondecreasing. To estimate u'(rn) observe that E(rn) ^ E0 = 
E(t0), if rn ^ t0, and so 

(/>'(r„))2 -
1 

7 -+1 rin{rn)a{r»)2 < E0 

from (2.7). Thus 

K'W ^ 
- 1 

T T 1 

1/2 

and, if c > ((r - l)/(r + l))1/2/2, it follows from (2.8) that 

(2.11) u\rn)< ca{rn) 

for n sufficiently large. From (2.10) and (2.11), 

'7-4-1 \i/(r-D [m 1 
- 1 MO fa - ' > f̂a) > 

and hence 

(2.12) s„ - r„ > T„ - rn > ^ [ ( - I ^ - L ) 1 ' ^ -1 ] = Ö. 

Next we estimate E' in the interval (r„, s„) as follows. Since |«| > a in 
this interval, it follows from (2.6) that 

E' < 
r+i 

{t^a)'a.r+l - (t^X)'a2 

_ _ r - i rf 

r + i A 
[ / ( i r , 

where/(0 = f 4 ^(0andg(0 = r4^(r). Therefore, 

(2.13) dE(t) ^ - ü ^ l t / [ r ^ ( 0 a ( 0 2 ] ? r ^ ^ , B 

From (2.6) and (2.13), 
/•oo 

£(oo) - £(?0) = dE{t) 
J to 

m{5ndE(t) 
n J rn 
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J T 1 n J rn 

= — 00, 

from condition (ii). This contradicts E{t) > 0 for an oscillatory solution 
and so no such solution exists. 

4. Concluding remarks. As observed in the introduction, we have for 
purposes of simplicity confined our attention to equation (1.1). However, 
the above techniques would apply equally well (with appropriate modi­
fications) to the more general equation 

(4.1) (r(x)y')' + p(x)yr = 0 

where r > 0. We leave the details to the interested reader. Perhaps of more 
interest is the question of nonoscillation of (1.1) if p(x) x(r+3)/2(log x)ß is 
non-increasing and ß > 0. As noted above this was originally claimed by 
Chiou in [4] because of a computational error. Corollary 2 shows that the 
claim is true provided condition (ii) also holds where rj and ß satisfy the 
inequality given in the assumptions of the corollary. 

Of interest also is the application of the above change-of-variable tech­
niques to the sublinear case of (1.1), where 0 < y < 1. This has been done 
as far as the existence of oscillatory solutions is concerned (cf. [3], [6], [7], 
[8]). However, it appears that the nonoscillation problem in the sublinear 
case is more difficult. It was claimed in [6, Corollary 6] that (1.1) is non-
oscillatory if 0 < y < 1 and if for some j8 è (5 - 7O/2,/>(*)* (r+3)/2(iog xy 
is nondecreasing and bounded above. However, the validity of this claim 
as well as that of [6, Corollary 4] is still undecided since both resulted from 
a computational error in the application of Lemma 4 of [6]. Thus, as far 
as the authors are aware, there are as yet no known criteria, similar to 
those in the superlinear case, involving monotoneity assumptions on the 
expression p(x) x^+3)/2(\og x)ß, ß > 0. Therefore, the result of Belohorec 
[2], which states that (1.1) is nonoscillatory if 0 < y < 1 and x<r+3)/2+<3pipe) 
is non-decreasing and bounded above, where 0 < ö < (1 — y)/2, has yet 
to be improved upon. 
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