CERTAIN FUNCTIONALS ON /...

F. S. CATER

- 1. Introduction. In [2] Albert Wilansky observed that if A is a linear functional on the Banach space of bounded sequences, ℓ_{∞} , such that
- (*) Ax is a limit of some subsequence of x for each $x \in \mathcal{L}_{\infty}$,

then A is multiplicative on ℓ_{∞} . In this note we show that any additive real valued function satisfying (*) on ℓ_{∞} must be linear and multiplicative on ℓ_{∞} . We also show that if G denotes the subgroup of ℓ_{∞} composed of all sequences with finite range, then any additive real valued function of G satisfying (*) extends to a unique additive real valued function satisfying (*) on ℓ_{∞} . We will show that there is a canonical correspondence between the linear functionals on ℓ_{∞} satisfying (*) and the nontrivial ultrafilters in the set of positive integers. Finally, we extend all this work from sequences to nets on a directed set.

- **2. Notation.** Throughout this note, D will be a nonvoid set directed by the ordering < such that D has no greatest element. Let S be the set of all bounded real valued nets on D [1, p. 65]. We make S a Banach algebra under the sup norm by defining vector addition, multiplication, and scalar multiplication pointwise. Let G_0 denote the additive subgroup of S consisting of those nets that take only integer values. If G is an additive subgroup such that $G_0 \subseteq G \subseteq S$, then by a *special* function on G, we mean a real valued function f on G satisfying
- (*) fx is the limit of some subnet of x for each $x \in G$.

Fix a $d \in D$. Then the set of all subsets of D containing d is (trivially) an ultrafilter in D. By a nontrivial ultrafilter in D, we mean an ultrafilter with void intersection. By a *special* ultrafilter in D, we mean a nontrivial ultrafilter every set of which is cofinal in D. (Of course, if D is the set of positive integers with the usual ordering, then any nontrivial ultrafilter in D is a special ultrafilter.)

A simple example of a special ultrafilter in D can be constructed as follows. Let \mathscr{F} be the family of all subsets of D containing sets of the form $\{x\colon x>d\}$ for $d\in D$. Then \mathscr{F} is a filter in D. Extend \mathscr{F} to an ultrafilter by Zorn's axiom.

2 F.S. CATER

If $F \subseteq D$, then χ_F will denote the characteristic function of the set F on D.

3. Special functions. Our first order of business is to establish a canonical correspondence between the additive special functions and the special ultrafilters. This will be done in two lemmas.

LEMMA 1. Let A be an additive special function on an additive subgroup G of S containing G_0 . Then there is a unique special ultrafilter \mathscr{F} in D such that for any $\varepsilon > 0$, $g \in G$, we have $g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \in \mathscr{F}$.

PROOF. Let $F \subseteq D$. Then $\chi_F \in G_0 \subseteq G$ and $A\chi_F = 0$ or 1. If $A\chi_F = 1$ put $F \in \mathscr{F}$. If, on the other hand, $A\chi_F = 0$, put $D \setminus F \in \mathscr{F}$. In the latter case, note that

$$1 = A1 = A(\chi_F + \chi_{D \setminus F}) = A\chi_F + A\chi_{D \setminus F} = A\chi_{D \setminus F}.$$

Thus \mathscr{F} is a family of cofinal subsets of D, and for any $F \subseteq D$, either $F \in \mathscr{F}$ or $D \setminus F \in \mathscr{F}$.

Suppose $F \subseteq F_0 \subseteq D$ and $F \in \mathcal{F}$. Then

$$A\chi_{F_0} = A\chi_F + A\chi_{F_0\backslash F} = 1 + A\chi_{F_0\backslash F}.$$

But $A\chi_{F_0}$ and $A\chi_{F_0\setminus F}$ are either 0 or 1, so $A\chi_{F_0\setminus F}=0$ and $A\chi_{F_0}=1$. Hence $F_0\in \mathscr{F}$. Now suppose that $F_1\in \mathscr{F}$, and $F_2\in \mathscr{F}$. Then

$$\chi_{F_1 \cap F_2} = \chi_{F_1} + \chi_{F_2} - \chi_{F_1 \cup F_2}$$

and

$$A\chi_{F_1\cap F_2} = A\chi_{F_1} + A\chi_{F_2} - A\chi_{F_1\cup F_2} = 1 + 1 - 1 = 1.$$

Hence $F_1 \cap F_2 \in \mathscr{F}$. We have shown that \mathscr{F} is a filter in D. But for any $F \subseteq D$, either $F \in \mathscr{F}$ or $D \setminus F \in \mathscr{F}$. So \mathscr{F} is in fact an ultrafilter. And every member of \mathscr{F} is cofinal in D, so \mathscr{F} is finally a special ultrafilter.

Take any $\varepsilon > 0$ and $g \in G$. Suppose that $F = g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \notin \mathscr{F}$. We assume, without loss of generality, that $\varepsilon < 1/2$. Then $A\chi_F = 0$. Put $f = g + \chi_F$. Then $Af = Ag + A\chi_F = Ag$. Clearly f is bounded away from Ag on F and on D. Thus f has no subnet that converges to Ag = Af, contrary to hypothesis. This contradiction proves that $g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \in \mathscr{F}$.

Now suppose that \mathscr{F}' is a special ultrafilter in D and $\mathscr{F}' \neq \mathscr{F}$. Say $F \in \mathscr{F} \backslash \mathscr{F}'$. Then $A\chi_F = 1$. But $\chi_F^{-1}(1-1, 1+1) = F \notin \mathscr{F}'$. This proves the uniquencess of \mathscr{F} .

Lemma 2. Let \mathscr{F} be a special ultrafilter in D. Then there exists a unique special function A on G related to \mathscr{F} as in Lemma 1. Moreover, A is additive on G.

PROOF. Take any $g \in G$ and any integer n > 0. Then exactly one of the sets

...
$$g^{-1}(-2 \cdot 2^{-n}, -2^{-n}], g^{-1}(-2^{-n}, 0], g^{-1}(0, 2^{-n}],$$

 $g^{-1}(2^{-n}, 2 \cdot 2^{-n}], g^{-1}(2 \cdot 2^{-n}, 3 \cdot 2^{-n}], g^{-1}(3 \cdot 2^{-n}, 4 \cdot 2^{-n}], ...$

lies in \mathscr{F} . Call it E_n . Clearly $E_1 \supseteq E_2 \supseteq E_3 \supseteq \ldots$ and each E_n is cofinal in D. By [1, Lemma 5, p. 70], there is a subnet of g which is eventually in g E_n for all n. This subnet evidently converges to a real number. Let Ag denote its limit. For any $\varepsilon > 0$, clearly $g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \in \mathscr{F}$.

Suppose that B is a real valued function on G and $A \neq B$. Say $g \in G$ and $Ag \neq Bg$. Then there is an $\varepsilon > 0$ such that $|u - Ag| < \varepsilon$ implies that $|u - Bg| > \varepsilon$. Then $g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \cap g^{-1}(Bg - \varepsilon, Bg + \varepsilon) = \emptyset$. Since $g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \in \mathscr{F}$, it follows that $g^{-1}(Bg - \varepsilon, Bg + \varepsilon) \notin \mathscr{F}$. This proves the uniqueness of A.

It remains only to prove that A is additive on G. Suppose, on the contrary, that there exist $g \in G$, $f \in G$, such that $A(f+g) \neq Af + Ag$. There is an $\varepsilon > 0$ such that $|u - Af| < \varepsilon$, $|v - Ag| < \varepsilon$ imply that $|u + v - A(f+g)| > \varepsilon$. Consequently

$$f^{-1}(Af - \varepsilon, Af + \varepsilon) \cap g^{-1}(Ag - \varepsilon, Ag + \varepsilon)$$
$$\cap (f + g)^{-1}(A(f + g) - \varepsilon, A(f + g) + \varepsilon) = \emptyset,$$

contrary to the fact that this intersection is in F.

Lemmas 1 and 2 establish our canonical correspondence between the additive special functions on S and the special ultrafilters in D.

LEMMA 3. Let \mathscr{F} and A be related as in Lemmas 1 and 2. Let U be a continuous real valued function on the Euclidean plane. Let $f \in G$, $g \in G$, such that $U(f, g) \in G$. Then AU(f, g) = U(Af, Ag). Thus in particular, A(fg) = (Af)(Ag) if $fg \in G$, and A(cg) = cAg if c is real and $cg \in G$.

PROOF. Suppose, on the contrary, $AU(f, g) \neq U(Af, Ag)$. Put w = AU(f, g). Since U is continuous, there is an $\varepsilon > 0$ such that $|r - Af| < \varepsilon$, $|s - Ag| < \varepsilon$ imply that $|w - U(r, s)| > \varepsilon$. Thus

$$f^{-1}(Af - \varepsilon, Af + \varepsilon) \cap g^{-1}(Ag - \varepsilon, Ag + \varepsilon) \cap (U(f, g))^{-1}(w - \varepsilon, w + \varepsilon) = \emptyset.$$

But this is impossible since the intersection lies in \mathscr{F} . Hence AU(f,g) = U(Af, Ag).

For A(fg) = (Af)(Ag), let U(r, s) = rs. For A(cg) = cAg, let U(r, s) = cs.

It is worth noting that additive special functions on G (as in Lemmas 1, 2, 3) have norm 1 on G. For $F \in \mathcal{F}$, $|A\chi_F| = 1$. And for $g \in G$, $|Ag| \le$

||g|| because a subnet of g converges to Ag.

If G = S in Lemma 3, then A is linear and multiplicative on S. Thus we have the following theorem.

THEOREM 1 (WILANSKY). Let A be an additive special function on S. Then A is linear and multiplicative on S.

PROOF. A is associated with a special ultrafilter as in Lemma 1. By Lemmas 2 and 3, A is linear and multiplicative on S.

Now we have the extension theorem we promised in the introduction.

THEOREM 2. Let G be an additive subgroup of S containing G_0 , and let A be an additive special function on G. Then A has a unique special extension A_0 on S. Moreover, A_0 is linear and multiplicative on S.

PROOF. A is related to a special ultrafilter \mathscr{F} as in Lemma 1. Then \mathscr{F} in turn is related to a special function A_0 on S by Lemma 2, and indeed A_0 coincides with A on G by uniqueness. By Lemmas 2 and 3, A_0 is linear and multiplicative on S.

Our next result will show, among other things, that if f is a fixed net in S and if w is the limit of some subnet of f, then there is a linear special function A on S such that Af = w.

THEOREM 3. Let X be a subset of S such that for each $f \in X$ there is a real number w(f) satisfying (i) for any $\varepsilon > 0$ and any finite number of members of X, f_1, \ldots, f_n , we have

$$f_1^{-1}(w(f_1) - \varepsilon, w(f_1) + \varepsilon) \cap \cdots \cap f_n^{-1}(w(f_n) - \varepsilon, w(f_n) + \varepsilon)$$

is cofinal in D. Then there is a linear special function A on S such that Af = w(f) for all $f \in X$.

PROOF. Let \mathscr{F}' be the smallest filter in D containing all the sets of the form $f^{-1}(w(f) - \varepsilon, w(f) + \varepsilon), f \in X, \varepsilon > 0$, and of the form $\{x \in D : x > d\}$ $d \in D$. We extend \mathscr{F}' to an ultrafilter \mathscr{F} by Zorn's axiom. Then \mathscr{F} is a special ultrafilter. Let A be the linear special function given by Lemma 2.

Let f be any member of X. It remains only to show that Af = w(f). Suppose, on the contrary, that $Af \neq w(f)$. Then for some $\varepsilon > 0$,

$$f^{-1}(w(f) - \varepsilon, w(f) + \varepsilon) \cap f^{-1}(Af - \varepsilon, Af + \varepsilon) = \emptyset.$$

Since $f^{-1}(w(f) - \varepsilon, w(f) + \varepsilon) \in \mathscr{F}' \subseteq \mathscr{F}$, we have that $f^{-1}(Af - \varepsilon, Af + \varepsilon) \notin \mathscr{F}$, which is impossible.

In conclusion we show that there must be uncountably many linear special functions on S.

THEOREM 4. There are at least c linear special functions on S.

PROOF. By transfinite induction we construct a cofinal subset E of D well ordered by \ll such that

- (i) if $x, y \in E$ and x is a \ll limit point and $y \ll x$, then $x \not < y$, and
- (ii) if $x, y \in E$ and y is the \ll successor of x, then x < y.

By a type 0 element in E we mean the \ll first element of E or any \ll limit point in E. By a type 1 element of E we mean the \ll successor of a type 0 element. In general, by a type n+1 element of E we mean the \ll successor of a type n element.

Let $E_0 \subseteq E$ consist of all the type 0, type 2, type 4, type 6, type 8, etc., elements. Let E_1 consist of all the type 1, type 5, type 9, type 13, etc., elements. Let E_2 consist of all type 3, type 11, type 19, type 27, etc., elements. Let E_3 consist of all the type 7, type 23, type 39, etc., elements. We continue in this way to construct a sequence E_1 , E_2 , E_3 , ..., E_n , ... of pairwise disjoint cofinal subsets of E and of D.

We construct $f \in S$ by making f constant on each E_n so that f(E) is dense in (0, 1) and $f(D \setminus E) = \{0\}$. By [1, Theorem 6, p. 71], for each number $w \in (0, 1)$ there is a subnet of f converging to w. And by Theorem 3 there is a linear special function A on S satisfying Af = w. Thus there are at least as many linear special functions on S as there are real numbers between 0 and 1.

A possible topic for further study would be to find exactly how many linear special functions on S there are. This will depend, naturally, on D and its ordering.

Note that complex scalars will suffice in this work as well as real scalars.

REFERENCES

- 1. J. Kelley, General Topology, van Nostrand, New York, 1955.
- 2. A. Wilansky, Problem E2712, The American Mathematical Monthly, 85 (1978), 277.

PORTLAND STATE UNIVERSITY, PORTLAND, OR 97207

