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SOME REMARKS ON THE ORIGINS OF THE THEORY OF 
FUNCTIONS OF A REAL VARIABLE AND OF THE 

DESCRIPTIVE SET THEORY1 

K. KURATOWSKI 

The descriptive set theory arose from the "theory of functions of a real 
variable" and this, in turn, had its roots in analysis—more particularly— 
in some erroneous statements of the calculus which appeared around the 
beginning of the XlXth century. 

The fact that even the greatest analysts were led to false statements is 
not surprising in view of the way in which the calculus was being devel­
oped. Tt is well known that at the time of Newton and Leibniz the funda­
mental notions of calculus were not well defined and its development was 
rather dictated by its striking applications to physics which called the 
attention of their creators and was not, and could not be, rigourous from 
the logical point of view. 

Nevertheless, the founders of the calculus and their immediate follow­
ers, like the Bernoullis, Euler, Lagrange etc., edified a wonderful building 
without taking care of its foundations. Generally speaking, their results 
were correct, which was certainly due to their infallible intuition. 

However, this pleasant time came to an end. The reasonings, not well 
founded, even of the most celebrated mathematicians, started to lead to 
false statements. 

May I mention two false theorems of Cauchy (theorems which played 
an important role in the creation of the Theory of functions of a real 
variable). 

In his fundamental "Cours d'Analyse", edited in 1821, Cauchy claims 
that: 

1. The limit of a convergent sequence of continuous functions is con­
tinuous [7, p. 120]. 

2. If a function / of two variables is continuous relatively to each vari­
able separately, then / is continuous (relatively to both variables simul­
taneously). 

Five years later, N.H. Abel gave a counter-example to the first of these 
statements. 

For a counterexample to the second statement, one had to wait longer. 
It seems (according to P. Dugac; many details contained in my paper are 

1 Lecture held on May 17. 1977, at the University of Kansas at the Conference in 
honour of Prof. N. Aronszajn on his 70th birthday. 
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due to this author, as well as to F. A. Médvédév.) that the first to give the 
required counterexample was J. Thomae, who did it in 1870. Two years 
later, H.A. Schwarz defined another and much simpler example, which 
became classical, namely, the function/defined as follows: 

/ ( x ) J ) = - 2
2 ^ y 2 - a n d / ( 0 , 0 ) = 0. 

The discovery of functions which do not satisfy statement 2 led to a 
study of functions of two variables which are continuous relative to each 
of these variables separately and to important results chiefly due to René 
Baire (1897). For example, a function of that kind always admits points 
of continuity (without—as we know—being necessarily continuous); 
such a function is the limit of a convergent sequence of continuous func­
tions. Also this kind of functions leads to the notion (introduced by Baire) 
of semi-continuity. 

This approach of Baire to the fact that there exist some peculiar func­
tions which can serve as counterexamples to some more or less intuitive 
statements is typical of Baire. He was not so much interested in the dis­
covery of "pathological" functions; rather the theory of arbitrary func­
tions which are not necessarily continuous attracted his attention. This 
attitude of Baire should be strongly emphasized. At this period of the 
development of mathematics, the search for pathological functions was 
very frequent; let us remember, for example, the work of H. Hankel, of 
P. du Bois-Reymond, etc., the numerous examples of continuous func­
tions without derivatives, starting with the Weierstrass function (presented 
to the Academy of Berlin in 1872), followed by Dini, Darboux and others. 

No wonder that among more conservative mathematicians there was 
some distrust for such a kind of investigations. So, for instance, Henri 
Poincaré wrote: "In the past, one invented new functions, for practical 
reasons; nowadays, it is done specifically for the purpose of finding errors 
in arguments of our fathers; nothing else will ever come out of it." (Cita­
tion from the introduction to the book of Saks.) 

This angry opinion of Poincaré could by no means be applied to Baire 
(nor to Borei or Lebesgue). He was not a hunter of pathological functions; 
his aim was much more serious : he became one of the creators of a new 
branch of mathematics: the Theory of functions of a real variable. (Besides 
the above cited authors who largely contributed (in the XlXth century) 
to the development of the Theory of functions of a real variable, one has 
to mention Darboux, Dini, and Volterra.) 

The investigation of functions of two variables we just spoke about 
formed a chapter of this new general theory. Even more important was 
the invention of several notions related to these investigations (like semi-
continuity) and the research on functions which are limits of sequences of 
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continuous functions (that is, functions of the first class according to the 
later terminology of Baire). 

This last area of research gave rise to a classification of a vast set of 
functions. Considering functions of the first class, one was led at once to 
functions which are limits of a sequence of functions of the first class. It 
was natural to call them functions of the second class. Automatically, 
Baire introduced the notion of function of the nth class for arbitrary posi­
tive integer n. Presumably functions of class a < co\ were not studied by 
Baire. Nor was it known to Baire whether there exist functions of any 
class n (n > 2) which are not of lower classes. For n = 2 the problem had 
been solved by Lejeune-Dirichlet: the characteristic function of the set 
of rationals is of the second class without being of class 1, since each func­
tion of the first class admits points of continuity (by a theorem shown also 
by Baire). 

It is remarkable that a classification of sets, parallel to that of functions, 
was proposed almost at the same time by E. Borei. He started with closed 
(or open sets) and proceeded, using two operations: the countable union 
and the countable intersection). 

The philosophies of these two classifications, of functions and of sets, 
were analogous. That became clearer on the basis of a fundamental theorem 
of H. Lebesgue. 

Namely, the function / is of class a if and only if the inverse image 
f~l(E) is a set of class a whenever E is a closed set (in the range of E). 

The Theory of functions of a real variable, and in particular the work 
of Baire (like that of Borei), had been highly influenced by the Cantor set 
theory. For his purposes Cantor even introduced some new set-theoreti­
cal (now we would prefer to say: some topological) notions. Such is the 
notion of sets of first category (also called meager sets). Baire'made fun­
damental use of this notion; let us cite three theorems involving that 
notion: 

(i) the interval is not of first category on itself, 
(ii) the set of points of discontinuity of a function of class 1 is of first 

category; i.e., almost all points are points of continuity, 
(iii) every function/which belongs to the Baire classification is continu­

ous neglecting a set of first category; i.e., there is a set E of the first cate­
gory such that the partial function f\Ec is continuous (Ec is the comple­
ment of E); this is called the Baire property off. 

Thus, in order to obtain these fundamental results of the Theory of a 
real variable, Baire not only had to use set theory (he seems to be one of 
the first in France to systematically apply set theory) but he also introduced 
and investigated some new notions in that theory. He did it—as we saw— 
with great success. Nevertheless, the use of set theory was met at that time 
with distrust by some mathematicians. Let us cite H. Poincaré once more. 
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At the International Mathematical Congress in Rome (1908), he said: 
"Set theory is like a childhood disease; one easily recovers and then one 
forgets it altogether". Poincaré predicted the same fate for set theory. . . 

The opinion of Lebesgue was just the opposite: he attributed the great 
success of Baire to the joined use of analysis and set theory (see [20]). 

Still one point seemed suspect even to the most prominent mathemati­
cians: namely the use of transfinite numbers. So, for instance, Borei (in 
1903) raised the question of avoiding transfinite numbers in the proof of 
the theorem on the characterization of function of class 1. A similar ques­
tion of eliminating from a proof given by Baire (also on functions of class 
1) was claimed by de la Vallée Poussin insolvable. This was erroneous: 
practically every time one applies transfinite numbers (at least this is true 
of applications made by Baire), these numbers can be eliminated using a 
general method (see [17]). 

This controversy was due to the fact that at that time the role of trans-
finite (countable) numbers was not yet well understood. 

The further development of the theory of real variables went in various 
directions. First of all, it ceased to be the theory of real variables. Several 
authors, among them Felix Hausdorff, extended it to the case where the 
range of the independent variable did not need any more to be restricted 
to the interval (or to the «-dimensional cube or to «-dimensional Euclidean 
space). One could assume quite generally that fis a mapping defined on a 
metric space, without affecting the essential results of Baire or Lebesgue. 

The next generalization of the theory of functions of a real variable 
concerned the values of the functions. Instead of restricting them to real or 
complex values, one can make practically no assumptions on their range 
(except for the assumption of metrizability or sometimes of completeness 
or separability). This important step was made essentially by Banach (see, 
for example, [18, §31]). 

In this way, the theory of functions of a real variable became a part of a 
larger chapter of mathematics, namely of the descriptive theory of sets. 

An important event for the development of descriptive set theory—and 
in particular for the theory of real variables—was the introduction in 
topology of two so-called hyper spaces, denoted Yx and 2X. The first 
denotes the space of all continuous mappings / : X -> F (it is essentially 
due to Fréchet); the second, the space of all closed subsets of X (sometimes 
supposed non-empty), is essentially due to Hausdorff and Vietoris. 

For the sake of simplicity, we shall assume Z t o be compact metric and 
Y metric. With these assumptions the hyperspaces are metrizable in a very 
natural way (the first is complete whenever Fis such, the second is com­
pact). 

The introduction of the space Yx (even E1, where E denotes the space 
of reals and J denotes the closed interval [0, 1]) had an immense influence 
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on the proofs of many existence theorems. So, for instance, the set of 
continuous functions which have a derivative at least at one point is a set 
of the first category in the space E1. Since this space is complete, it follows 
by the Baire theorem that almost every continuous function has no deriva­
tive at any point (This is a theorem of Mazurkiewicz and Banach; the 
problem was raised by H. Steinhaus [27]); of course, the Weierstrass 
function is one of them and—in view of this general theorem—it has lost 
very much of its interest (except its purely historical interest). 

The "pathological" function of Weierstrass was a counterexample to a 
statement of Ampere [2], who claimed that every function has a derivative 
except at some isolated points (the term "every" is not clear; let us 
remember that at that time the notion of a continuous function was not 
yet defined). That was the time when numerous mathematicians worked 
on this and related problems. The great and rather conservative mathe­
matician, Ch. Hermite wrote to Stieltjes: "I abhor this deplorable plague 
of functions without derivatives" (citation from S. Saks). One can wonder 
what Hermite would say if he learned that this "deplorable plague" con­
tains almost the totality of continuous functions? 

The above application of Baire Theorem in the space Yx is just one of 
numerous examples. This so-called first category method has been also 
successfully applied to functions of complex variables and to many other 
problems (see [18, §34], where numerous papers of Banach, Mazurkie­
wicz, Orlicz, Steinhaus etc. in that connection are cited). 

It is worth noticing that the category method may be used not only for 
defining pathological functions; sometimes it leads to positive results. 
Let us recall an example. By the Menger-Nöbeling theorem, every n-
dimensional metric separable space X can be topologically embedded in 
the (2n + l)-dimensional cube 72w+1. Now one shows (Hurewicz, in 1933 
and, in a more general form, myself in 1938, see [18]) that almost every 
fe (p»+i)x is the required homeomorphism. 

Much similar phenomena can be observed in investigating the hyper-
space 2X (in particular 27). Thus, the theorem about the existence of non-
Borel sets on the interval is given using rather artificial sets (whose only 
interest lies in being non-Borel). The situation in the space 21 is quite 
different. As was shown by Hurewicz (in 1930) the totality of all countable 
closed subsets of the space 21 is non-Borel. Alike, the family of closed sets 
containing no rational numbers is again an example of a non-Borel subset 
of 27. Both examples are certainly not artificial. 

The first category method has also interesting applications to the 
hyperspace 2X. Let us cite the following one. 

A continuum is called indecomposable if it cannot be represented as 
a union of two proper subcontinua. Very striking are hereditarily inde­
composable continua, i.e., continua all of whose subcontinua are inde-
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composable. The first example of this kind of continua was defined (in a 
very complicated way) by B. Knaster [16] in 1922. 

Now denote by C(X) the subspace of 2X composed of continua. Mazur-
kiewicz [21] showed in 1930 that almost all subcontinua of the square 
(considered as elements of C(/2)) are hereditarily indecomposable. This 
discovery of S. Mazurkiewicz was all the more striking because at that 
time the hereditarily indecomposable continua were considered as the 
most complicated geometrical figures (according to an expression of 
Steinhaus). On the other hand, they deserved—and still deserve—to be 
deeply investigated because of the multitude of their important properties 
(they have been used to solve many problems raised long before they were 
discovered). 

It is worth mentioning in that connection the Janiszewski curve. At the 
International Mathematics Congress in Cambridge in 1912. Janiszewski 
defined (or rather sketched a definition) of a curve on the plane which 
contains no arc. At that time, the existence of a curve of that kind seemed 
quite extraordinary. Now—since every hereditarily indecomposable con­
tinuum obviously contains no arc—we know that almost every continuum 
on the plane is a Janiszewski curve. 

These few examples of the application of the category method prove 
its strength beyond a doubt. Morever, contrary to the opinion expressed 
by some authors (e.g., Médvédév [23, p. 220]), this method does not lead 
to "pure existence" theorems; in fact, it is effective, meaning that the use 
of the method of category enables us to obtain a well-defined example 
having the property under consideration (e.g., a continuous function with 
no derivative at any point; see the Appendix). This is connected with the 
effectiveness of the Baire theorem asserting the existence of a point outside 
a set of the first category (this is true of any complete separable metric 
space where a countable dense subset is well defined). 

Set-valued mappings. It is natural to ask whether the elementary opera­
tions on sets : union {A [j B), intersection {A f] B) and the closure of the 
difference (A — B) are continuous or Baire functions from 2X x 2X to 
2X (here we assume that 0 e 2X). 

One shows that the union is a continuous mapping, while the inter­
section and the closure of the difference are of the first Baire class (which 
don't need to be continuous). The boundary F(A) = A f| Ac is of the 
second Baire class. So is also the derived mapping Ad (considered as func­
tion of A). On the other hand the mapping Acond (composed of condensa­
tion points) is not a ^-measurable function of A (which follows easily 
from the above cited theorem of Hurewicz). 

Thus far, we have considered problems of Baire or Borei classification 
which led to the descriptive set theory. 
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No less important from this point of view, are analytic (Suslin) sets, 
their complements and more generally projective sets (connected with the 
names of Lusin, Sierpinski, Alexandrov and others). However, we thought 
it reasonable to refrain from considering these kinds of problems in this 
talk, which was assumed to be rather short; they certainly deserve much 
attention, they are developing very fast, and they form a separate chapter 
for themselves. 

Appendix. We construct a well-defined continuous function having no 
derivative, with the help of the category method. 

Let <f> be the space of continuous functions / : / -> E which means that 
(f> = E1. First, let us note that if a function/has a derivative/'(A) in the 
point a, then the function g of h defined by the condition 

g(h) = f<e+-hl-#°i forA#0 

is bounded. 
There is namely, an e > 0 such that \g(h) — f\d)\ < 1 for \h\ < e, 

and on the other hand g is bounded for \h\ ^ e. 
So denote by Mn the subset of <f> composed of functions/for which there 

exists a point a such that |g| ^ n. Put S = Mx U M2 U ••• • Then our 
problem of defining a continuous function without derivative reduces to 
defining a function/e (f> — S. 

The property of Mn being closed in $ is almost obvious (see, e.g., [17, 
p. 421]). It is also quite easy to show that Mn is nowhere dense (in view of 
the fact that the set of polynomials with rational coefficients is dense in <f>). 

It follows that S is of the first category in <j>. Since <j> is a complete space 
and the set S is of the first category, then the set <f> — S is non-empty (by 
the Baire Theorem). Our problem is to define an element of this set. 

We proceed as follows. Let us consider the (countable) set of all "balls" 
in <j) of the form APik = {/ : \f — p\ ^ 1/A:}, where p (the "center" of the 
ball) ranges over the set P of all polynomials with rational coefficients, and 
k = 1,2, . . . . Arrange the totality of the balls APtk in a well defined se­
quence Bh B2, ..., and define (by induction) the following subsequence 

°n\) JDn2'> " ' ' 

nx is the least index such that 

BH1 H Mx = 0 and 5(Bni) < 1. 

(Such an index exists since P is dense and Mx is nowhere dense.) 
w2 is the smallest index such that 

Bn2 fi M2 = 0 , Bn2 cz Bni and d(Bn2) < 1/2. 

Generally, nk is the smallest index such that 
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BHk H Mk = 0 , ^ c BHk_x and <?(iy < 1/fc. 

By a classical theorem of Cantor, the intersection 

Bni n Bn2 n ... 

is not-empty and hence consists of a single element of (j>. This element is 
the required element / of ^ — S. 

Otherwise stated, the function 

/ = " m Pnk 
Â=oo 

is a continuous function with no derivative (pnk is the center of Bnk). 
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