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THE STRUCTURE OF CODIMENSION ONE 
DISTAL FLOWS WITH NON-TRIVIAL ISOTROPY 

DENNIS F. DE RIGGI AND NELSON G. MARKLEY1 

This paper grew out of our work on the following problem: Given a 
minimal action of ß n - 1 ( ß = reals) on a compact n-dimensional mani­
fold X, what can you say about X. At present our results on the general 
problem are fragmentary, but with the additional assumption of dis-
tality we can completely determine the spaces and the structure of the 
actions, which is the subject of this paper. We proved in an earlier 
paper that distal minimal codimension one flows without any isotropy 
are equicontinuous; hence their structure is subsumed by the simple well 
known structure of minimal equicontinuous actions. This result plays a 
crucial role in our analysis when discrete non-trivial isotropy is present. 
In this situation we will show that X must be the n-torus or belong to a 
special family of nilmanifolds. 

In addition, these actions can all be realized as perturbations of ca­
nonical smooth distal codimension one flows. Alternatively, this says 
that regardless of the parameterization of the action we can always as­
sume the orbits are the leaves of a foliation coming from commuting 
left invariant vector fields on a Lie group. This is analogous to the clas­
sical result that one can always assume the orbits of a minimal flow on 
the two-torus are translates of a dense one-parameter subgroup. We do 
not know whether or not a similar result holds when the action is not 
distal. 

In section 1 we gather together the requisite basic facts about trans­
formation groups, codimension one flows, imbeddings of discrete actions 
in flows, and cocycles. The second section is a pivotal one. In it we 
prove the existence of nice cocycle representations of the flows we are 
studying and establish a connection between the homotopy of these co-
cycles and the rank of the isotropic subgroup. This latter result is the 
key to determining which nilmanifolds can support minimal distal co-
dimension one flows. The two natural classes—twist free and 
twisted—that arise from the representations obtained in section 2 are 
analyzed in sections 3 and 4. 

Some of the results in this paper were part of the first author's dis­
sertation [1], 
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1. Preliminaries. Let Y be a metric space, let T be a topological 
group, and let (Y, T) be a transformation group. In other words, impli­
cit in the notation (Y, T) is the existence of a continuous map (y,t)—* yt 
of Y X T into Y such that ye — y (e is the identity in T) and 
(yf)« = y(t + 5) for all y G Y and all t, s G T. The set {yf : f G T} will 
be denoted by yT. When Y is compact we will speak of minimal and 
distal transformation groups; specifically, (Y, T) is minimal if yT — Y 
for all t/ G Y and ( Y, T) is distal if ytn —* * and x£n —* z implies y — x. 

Let G be a compact topological group. By a bitransformation group 
we shall mean a triple (G, Y, T) such that (a) (Y, T) and (G, Y) are 
transformation groups, (b) (gt/)£ = g(j/f) for all g G G, y G Y, £ G T, and 
(c) gy — y for some y G Y implies g is the identity. 

We will denote the integers, reals, and complex numbers of modulus 
one by Z, R, and K respectively. The only topological groups that will 
occur are 77, Rr, Kr where r is any positive integer. The group oper­
ation in Kr will be denoted by z • w to avoid confusion with the action 
of a group on a space which is denoted by juxtaposition as in xt or gx. 

Let X be a compact n-dimensional manifold without boundary. A 
transformation group (X, ßn _ 1) will be called a codimension one flow. 
The subset lx — {v G ß n _ 1 : xv = x) is a closed subgroup of Rn~1. 
When (X, Kn_1) is minimal, Ix is independent of x and will be denoted 
by /. If (X, Rn_1) is minimal and I is not discrete, then the codimension 
one aspect of (X, Kw_1) is lost and the problem of determining the 
structure of (X, Rw_1) is considerably altered. Consequently, we will al­
ways assume that minimal codimension one flows have discrete iso-
tropy. 

The objects of primary interest in this paper are the minimal distal 
codimension one flows (X, fin_1) with non-trivial isotropy, i.e., / ¥= {0}. 
(If / = {0}, then X is homeomorphic to Kn and (X, R"-1) is equi-
continuous [2, Corollary 4.6].) Since the subspace spanned by I will 
play a special role, it will be convenient to represent (X, #n _ 1) as a bi­
transformation group. To do this choose a basis {ex'9 • • -, ep', • • -, e'n_^) 
for Rn~x such that ( e / , • •-, ep'} are generators for /. Let 
exp t = e2"» G K. Define (Kp, X, RQ) where q = n-l-pby(x, (vv 

'"> VQ))^x&ï=iviep+i) a n d ((*i> •'•> *p), *)-> *(2f=i*iO where 
exp si = z{, i — 1, • •, p. It is clear that this is a bitransformation 
group with the additional properties: 

(a) p + q = n - 1 = dim X - 1, q > 0, p > 0. 
(b) t G Kp, v E RQ, x <E X, and txv = x 

implies t = (1, • • -, 1) and v = (0, • • -, 0). 
(c) tafi« : f G P i s a partition of X. 
(d) (X, R«) is distal. 



CODIMENSION ONE DISTAL FLOWS 603 

Conversely, given a bitransformation group (Kp, X, Rq) on a compact ri­
dimensionai manifold as above, there is a natural minimal distal codi-
mension one flow (X, Rn_1) with non-trivial isotropy. Although most of 
the time we will use the bitransformation viewpoint, we will when nec­
essary shift back and forth between these two viewpoints. 

Let Y be a compact metric space. There is a standard construction for 
imbedding (Y, Z) in a continuous flow (Y, R) of the form Y X [0, l ] / ~ . 
If you try to generalize this to imbedding (Y, Zq) in a flow (Y, RQ) 
there is a more convenient way of making this construction, which we 
will now describe. Given (Y, Zq) define (Y x Rq, Zq) by (y,v)d-*(yd, 
v — d). This action of Zq on Y X RQ is clearly properly discontinuous 
and the quotient space Y x RQ/ZQ denoted by -^(Y; Zq) is a compact 
metric space. The RQ action on Y x Rq defined by 
((y, w), v) —• (y, v + i£>) commutes with the ZQ action and hence induces 
a flow (J^Y; Z% Rq). Letting <y, u> denote the point of J^(Y, Zq) deter­
mined by (y, v), it is easy to check that (y, 0) d = (yd, 0). If <> is a 
homeomorphism of Y onto itself such that <j>(yd) — §(y)d for all y G Y 
and d G D, then <£> induces a homeomorphism <£ of J^(Y; Zq) by 
<£((y, t>)) = (<!>(y), v). Moreover, (<£ ° \p) = <£ ° if and (<f>_1) = <f>-1. In 
particular, if (G, Y, ZQ) is a bitransformation group then there is a natu­
ral action of G on J^(Y, Zq) forming a bitransformation group 
(G^f(Y, Zq), Rq). We also have the following proposition. 

PROPOSITION 1.1. If H1 and H2 are subgroups of Zq such that 
Zq = Hx ® H2, then J^(Y; Zq) is homeomorphic to .y{f(Y; HJ; HJ. 
Moreover, if (G, Y, Zq) is a bitransformation group, then there is a G-
equivariant homeomorphism with respect to natural G actions on these 
spaces. 

PROOF. Use the map (y, v1 + v2) —» {{y, v^), v2) where vi is in the 
span of H{. 

If {\p1? • • -,^q} are commuting homeomorphisms of Y which gener­
ate (Y,Zq), then we will sometimes write J^(Y; ^ • •-, \pq) instead of 
jf{Y; Z% 

It is well known that if <j> and \p are isotopie homeomorphisms of Y, 
then ^ ( Y ; xp) and -^(Y; <f>) are homeomorphic. In fact, a home­
omorphism is given by 

<y>*)*-*<Ky> *)>*)*> o s * < i , 

where h : Y X [0, 1] —• Y is an isotopy with h(y, 0) = \f/(y) and h(y, 1) = 
<£(y). It follows that if \p is isotopie to the identity, then ^(Y, \p) is 
homeomorphic to Y X K. 
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Let (Y,T) be a transformation group with Y compact. A cocycle of 
(Y, T) into a compact group G is a continuous function TJ : Y X T—*G 
such that 

V(y> s + t) = i\(ys, t) ri(y, s) 

for all y E Y and s, t E: T. For our purposes we want to assume that 
both T and G are abelian. All the cocycles of (Y, T) into G form a 
group under multiplication in G. A constant cocycle is by definition a 
continuous homomorphism of T into G. Two cocycles TJ and o are co-
homologous (weakly cohomologous) if there exists a continuous func­
tion h : Y—» G (and an automorphism <£ of (Y, T)} such that 

Tj(t/, t)o(y, J)"1 = h(yt)h(t)-i 

Wy, Mm> t)-1 = HytMy)-1} 

for all y E Y and * E T. 
Let (G, Y', T) be a bitransformation group, let Y = Y'/G, let (Y, T) be 

the transformation group induced by (Y', T), and let TJ be a cocycle of 
(Y, T) into G. Then we can define a new bitransformation group 
(G Y', Tv) by (t/, £) —• ri(p(y), t)yt where p is the canonical map of Y' 
onto Y, and (G, Y', Tv) is called the perturbation of (G, Y', T) by the co-
cycle TJ. In particular, this makes sense when we are given (Y, T) and we 
consider (G, G X Y, T) with the obvious actions. We can also speak of a 
perturbation of a minimal distal codimension one flow (X, Än_1) with 
non-trivial isotropy. This means that we consider an associated bitrans­
formation group (KP, X, R% let TJ be a cocycle of (X/Kp, Rq) into Kp, 
form (Kp, X, ß^9), and from this obtain a comdimension one flow 
(X, Ry71-1). It is easy to check that (X, ßr;

n~1) will also be minimal dis­
tal. In fact, (X, R"-1) and (X, H / _ 1 ) will have the same orbits. 

PROPOSITION 1.2. Let (G, Y, T) be a bitransformation group. If 
(y, t)—*y*t is another action on Y such that g(y*t) = (gy)*t and G(yt) 
— G(y*t) for all y E Y and t E T, then there exists a cocycle TJ of 
(Y/G, T) into G such that y*t = i\(Gy, t)yt. 

PROOF. Given y and t there exists a unique k(y, t) E G such that 
y*t = k(y, t)yt. Since g{y*t) = (gy)*t, gk(y, t)yt = k(gy, t)gyt and hence 
k(y, t) = k(gyf t) for all g E G. Therefore there exists a function 
TJ : Y/G X T—* G such that y*t = TJ(GÎ/, %£. It is straightforward to 
check that TJ is a cocycle of (Y/G, T). 

PROPOSITION 1.3. Given (Y, Tj and two cocycles TJ and a of (Y, T) into 
G, tfien tfie bitransformation groups (G, G x Y , T ) and (G, G x ï , Ta) 
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obtained from the canonical (G, G X Y, T) are isomorphic if and only if 
17 and a are weakly cohomologous. 

PROOF. Let ^ be an isomorphism of (G, G X Y, Tv) onto (G, G X Y, 
Ta). Then ^ induces an automorphism ^0 of (Y, T) such that \//(g, y) = 
W& !/)& Wtf))- S i n c e *K& y) = ©K«. y)> one easily checks that 
^(g y) — He> y) a n ( î that fc is the required function relating TJ and a. For 
the converse one simply uses the above formula to define \p. 

2. Internal Structure. Let (Kp, X, Rq) be a bitransformation group 
associated with a minimal distal codimension one flow with non-trival 
isotropy of rank p. In this section we will prove the existence of a torus 
M in X and a discrete subgroup D of Rq of rank q such that M is in­
variant under both KP and D. The rest of the paper is based on the 
structure of (KP, M, D) which will also be exposed in this section. 

Let X/Kp denote the quotient space obtained by identifying the KP 
orbits. 

THEOREM 2.1. The space X/KP is homeomorphic to Kq+1 and (X/Kp, 
Rq) is equicontinuous. 

PROOF. Since (X/KP, Rq) is distal with trivial isotropy,, it suffices by 
[2, Corollary 4.6] to show that X/KP is a (q + l)-dimensional manifold. 
This is an easy consequence of the following facts: the canonical map 
from X to X/KP is open and there exist local sections for (X, JRW_1) 
homeomorphic to [0, 1] (See [2, Lemma 4.1]). 

It follows from this theorem and [2, Proposition 1.3] that there exists 
a discrete syndetic subgroup D of RQ such that X/KP is not minimal un­
der D and yt GyD implies t E D for any y E X/KP. Note that the 
rank of D must be q. Moreover, D can be chosen so that yD is home­
omorphic to K (see the proof of Theorem 4.2 in [2]). Pick y0 G X/KP 
and set C = y^D. There exists a lift C of C to X because p : X —• X/Kp 

is a fibration with an arcwise connected fiber. Set M = KPC = 
{wx :w E Kp and x Œ C}. Clearly M = p~\C). It is easy to see that 
(w, x) —» wx is a homeomorphism of KP X C onto M. Thus M is home­
omorphic to Kp+1, M is invariant under KP, and M is invariant under 
D. By choosing our basis {e{, • • -, e ^ } with a little more care we can 
assume without loss of generality that D = Zq. We can now form the 
bitransformation group (KP,Jf(M-, Zq), Rq). 

PROPOSITION 2.2. The bitransformation groups (KP, X, Rq) and (Kp, 
.y(M, Zq) Rq) are isomorphic. 

PROOF. The map A : M X Rq —• X given by A(m, v) = mv is a homo-
morphism of (KP, M X Rq, Rq) onto (Kp, X, Rq). Suppose A(m, v) = 
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A(m', v'), i.e., mv = m'v'. Then m = m'(v' — v) implies v' — v = 
d G Zq because p(m) — p(m!)(vf — v) with p(m) and p(m') in C. Thus 
(m, v)d = (m', v'). Conversely A(m, v) = A(md, v — d) for all d G RQ. 

Now we study (Kp, M, Zq). By Lemma 4.4 in [2] there exists a home-
omorphism /x : C —• K and a homomorphism (group) 0 : Zq—* K such 
that ju,(t/d) = ii(y) • 0(d). If 0(d) = 1, then fx(yd) = \i(y) implies yd — y 
and d G D H / = {0}. Define a homeomorphism fo : M - ^ K p + 1 by 
h(m) = (z0, --,zp) if and only if (zv • • -, zp)ra G C and fi(p(m)) = *o-
This forces h to be an isomorphism of (KP, M) onto (KP, Kp+1) where 
the latter action is coordinate-wise multiplication on the last p-coordi-
nates. Letting <j>d be the conjugate by h of the action of d on M, we see 
that 

*d(*o> *i> ' " •> *P) = Kh~\*<p '"> zp)d) 

= (zl9 '",zp)h(h-\z0,l, • • • , l)d) 

= (z1? . . -, zp)(z0 • 0(d), A(z0, d), •. -, /p(z0, d)) 

= (z0 • 0(d), zx • / ^ d), • • - , * „ • / p ( % d)) 

where each / ^ K x Z ^ K is continuous. Thus h allows us to repre­
sent (Kp, M, Zq) by complex multiplication and a skew product type 
construction. It is easy to check that f — (fv • • •, fp) is a cocycle of 
(K, ZQ) where (z, d)^z • 0(d). This establishes the following theorem: 

THEOREM 2.3. Let (X, # n _ 1 ) be a minimal distal codimension one flow 
for which the rank of I equals p > 0. Then there exists a basis {e / , 

' " "> en-ii o r R n _ 1 su°h t^iat the associated bitransformation group (Kp, 
X, RQ) is isomorphic to a bitransformation group (Kp, -^(Kp+1; Zq), Rq) 
for which the action of Zq on Kp+1 is of the form ((z0, • • - , 
ZP)> d) -> (zo ' 9(d)> /i(*o> $ ' zi> '"> fP(zo> d) ' zp)> where e:Z>9 -*K « 
an isomorphism and f : K X Zq —•» Kp is a cocycle of (K, Zq) given by 
(z, d) —» z • 0(d) and the action of KP on Kp+1 is given by ((wv • -, wp), 

(*o> -m>zp))^ (zo> wi ' zv" '> WP ' ZP)-

A representation of (X, R n _ 1 ) as a bitransformation of the form de­
scribed in he above theorem will be called a cocycle representation. 
We will say (X, Rn _ 1) is twist free if it has a cocycle representation giv­
en by a cocycle f — (fv * • *, fp) such that the degree of z -* fx(z, d) is 
zero for all d in Zq and 1 t=k i ^ p. If this is not the case we will say 
(X, Kw"1) is twisted. 

The integer p (and hence q) is an invariant of the original flow. The 
monomorphism 0 is a generalized rotation number, but it is not an in-
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variant because it depends upon our choice of basis for Kn_1 and of the 
discrete subgroup D. However, for each p, 0 < p < n — 1, and each 
monomorphism 0 : Zq —> K we can construct a class of minimal distal 
codimension one flows on n-dimensional manifolds by using the above 
procedure. We have already shown that every minimal distal codimen­
sion one flow with non-trivial isotropy belongs to such a class. In the 
remainder of this section we will begin our study of these classes by ex­
amining the underlying bitransformation (Kp, Kp+1, Zq). 

Let p be a fixed integer between 0 and n — 1 and let 0 : Zq —* K be 
a fixed monomorphism where q = n — 1 — p. Define (K, Zq) by 
(z, d)-*z- 0(d). For each cocycle / : K X Zq — KP of (K, ZQ) define the 
bitransformation group (KP, Kp+1, Zf

q) by ((wv • • •, wp), (z0, • • •, zp)) —* 
(z0, u^ • *1? • • -, u;p • zp) and ((z0? • • -, zp\ d) —(*0 • ö(d), ^ • ^ ( ^ d), 

-•>*p ' fpizo'd))-

THEOREM 2.4. Le£ f be a cocycle of (K, Zq) into KP. If for some 
d E Zq and i, 1 ^ i ^ p the degree of z-+ f{(z, d) is non-zero where 
f=(fv •••,fp),thenq=l. 

PROOF. Suppose deg/^ , d) — n ¥= 0. Choose d! so that 0(d) = a and 
#(d') = ß are rationally independent which is possible if q > 1. Let 
m = deg/^ , d!\ let F^x, d) and Fx(x, d) be lifts of f{(z, d) and /^zd'), 
and set F/(x, d) = Fi(x, d) — nx and F/(x, d') = Fx(x, d) — mx. Since / 
is a cocycle of (K, Zq), 

fi(z-a,d')-fi(z,d)=fi(z-ß,d)-fi(z,d') 

and there exists an integer N such that 

F{(x + a, d) + F^x, d) = F,(x + b, d) + F{(x, d) + N, 

where exp a — a and exp b — ß. From this we get 

F/(x + a, d) + F/(x, d) + ma 

= F/(x + 6, d) + F/(x, d') + nb + N. 

Since F/(x + 1, d) = F/(x, d) and F/(x + 1, d) = F/(x, d) for all x, 
upon taking the integral from 0 to 1 of the above we have 

ma = nb + N. 

This gives us the contradiction am — ßn, n ¥= 0. 

COROLLARY 2.5. If (X, Kn_1) is a twisted minimal distal codimension 
one flow, then the rank of its isotropy is n — 2. 
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THEOREM 2.6. There exist cocycles of (K, ZQ) into Kp which are not 
cohomologous to a constant. 

PROOF. Since a = (a1? • • •, ap) is a cocycle if and only if each ai is a 
cocycle, it suffices to assume p = 1. Also the proof for arbitrary q will 
be clear from the proof for q = 2. 

Let a = 0(dt) and ß = 0(d2) where dx = (1, 0) and d2 = (0, 1). It suf­
fices to find two continuous functions /, g : K —• K of degree zero such 
that 

/(*./*).g(z) = g(*. «)•/(*) 

because then we can set a(z, dt) = f(z) and a(z, d2) = g(z) and use the 
cocycle formula to define o(z, d) for arbitrary d in Z2. Let F,G:K—*R 
be lifts of / and g. Then 

F(z - ß) + G(z) - G(z • a) + ^ ) + N 

for some N Œ Z, and by taking the Haar integral of both sides we see 
that N = 0. Letting an and frn be the Fourier coefficients of F and G 
we have 

1 — ßn 

an = à-n> 

K = E_„. 

We must also ensure that for any constant J G K , 

f(z)/è = Kz • «)/Ä(«) 

has no continuous solution h: K —• K. Assume for the moment such an 
h exists. Then there exists H : K —* R which is continuous except at 
z = 1 and satisfies exp(H(z)) = h{z), and we have 

F(z) = H(z • a) - H(z) + N' 

for some AT. Clearly N' = a0. Letting cn denote the nth Fourier 
coefficient of H, we have 

Thus it suffices to find a sequence of positive integers {n;} such that 

00 

(a) 2 \ani - 1| < oo 
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and 

00 

is bounded, 

because we can set 

f an — 1 if n = ± n, 
a = \ } 

n LO otherwise 
which would determine both F and G and which would guarantee that 
ajan — 1 cannot be the Fourier coefficients of an L1 function. For 
each positive / in Z we can choose a positive n- in Z such that (an>, ßn>) 

is in the open set 

because a and /? are rationally independent. It follows immediately that 
such a sequence satisfies (a) and (b) to complete the proof. 

THEOREM 2.7. Let o : K x Zq — Kp be a cocycle of (K, Z9). TTien 
(Kp+1, Za) is equicontinuous if and only if o is cohomologous to a con­
stant. 

PROOF. The sufficiency is obvious and the necessity follows by ap­
plying a recent result of Ellis [3, Theorem 3.21] to a minimal subset of 
(Kp+1, Z*). 

3. The Twist Free Case. This section is devoted to determining the 
underlying space and the structure of the flow when (X, Rn_1) is a twist 
free minimal distal codimension one flow with non-trivial isotropy. 
When p = rank I = n — 2 it is obvious in this case that X is an n-
torus. Moreover, since -^(Y; <f>, \p) is homeomorphic to ^{^(Y, <£), $) 
(Proposition 1.1), we could get the same result for any p provided we 
know if is isotopie to the identity. In the beginning of this section we 
present a technical theorem which both resolves this difficulty and al­
lows us to show that these flows are perturbations of equicontinuous 
ones. 

Let S(ra, N) be the homeomorphisms of Km+N+1 which are of the 
form 

<t>(z0, zv • • • , zm, wv • • • , wN) = 

= ( « • * , / i ( * o > u>i> ' • • > ™N) ' zi> '"> 

/ m ( % WV '"> WN) • Zm> Wl> '"> WN\ 

(b) me5: 
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where a E K and each fx is continuous. For brevity, <j> will be written 
(a> fv ' ' ' fm)> anc* S°(m, N) will denote the subset of S(ra, N) for which 
every f{ is null homotopic. It is easy to check that S(m, N) is a group 
under composition of maps and S°(ra, N) is a subgroup. 

PROPOSITION 3.1. Lért </> = (a,/ l5 • • -, / J önJ i// = (ft gv • • -, g j foe 
fhe elements of S(m,N){S°(m,N)}. If fx is homotopic to g{ for i — 1, 
• • -, n, £nen <J> is isotopie to ip in S(m, N){S°(m, N)}. 

PROOF. Let h^z^ WV • -, wN, t) be a homotopy between f and g;. 
Choose a,b Œ R such that exp(a) = a and exp(fo) = ß and define 
a* = exp(to) and ßt = exp(tb). Set i/(^0, ^ • • •, zm, wv • • •, t%, f) = 
(a1- ' • ß* • z0, h^ZQ, wv • • -, t%, t) - zv • • -, /iw(z0, u;1? • • -, wn, t) • zm, 
M?l , '"> U>N)> 

COROLLARY 3.2. Let <f> = (a, fv • • -, fm) and ^ = (ß, gv • • -, g J foe 

elements of S(m, N). If fx is homotopic to g{ for i — 1, • • •, m, fften 
jT(xw+^+1; <f>) & homeomorphic to Jr(Km+N+1; $). In particular, if 
<j> G S°(m, n), then^(Km+N+1; <J>) is homeomorphic to Km+N+2. 

Suppose <t> G S°(m,N). We will need the explicit homeomorphism of 
/(KW + J V + 1 ; <J>) onto KW+JV+2 given by 

?(<!M>*) = (ff(M)>expt) 

where 7/ is the isotopy constructed in the proof of Proposition 3.1 such 
that H(y, 0) is the identity and where each n; is of the form n;(z0, wv 

• • -, wN, t) — exp(f^(z0, wv - - -, wN)). We also have 

f - 1 ( % *i> * ' S Zm> ^ 1 ' ' ' *' ^iV' e xPW) 

= <*0«^> exp ( -^ . ( a -%, u;1? •••,«;JV))-z1, • • -, u^, • • -, wN, f>0. 

THEOREM 3.3. Let $ = (a, fv • • -, / J a n d j / = ( ^ g 1 ? • • -, g J foe 
elements of S°(m, N). If <j> ° \p — \p ° <j>, then \p = f ° if ° f-1 is an eZe-
raenf of S°(m, N + 1). 

PROOF. From the commutativity of <J> and \p we see that 

/j(*0> ">1> " • > " f r ) = g j f a ^1> • " , Ufr) 

/ i (0 * *o> ^ i* ' * '> WN) &(« • % ">i> • • •> <%) 

and hence 

gi(*o> ^ i ' • * •> <%) - &(« * *o> ">i> • • -, ufo) + K 
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for some fce Z. By taking the Haar integral we see that k = 0. Define 
fc, : K*+1 X [0, 1] — R by 

HZ0> Wl> '"> WN> t) = UZ0 ' «"'» ̂ 1' ' * *> WN) 

+ *tfi(*o * a"' • ft u?!, • • -, t%) - / f ô , • or*, a^, • • -, ^ ) ] 

= gi(*o ' «"'» ">i> '"> ™N) 

+ *fei(*o * «1_t> ™i> • " s <%) - Hzo «"'» ">!> " • s <%)]. 

The last equality holds because k = 0. Note that w ^ , O^, • • -, t%, 0) 
= <ój(% wv • -, u;̂ , 1) = g^o, wv • • -, wN) and hence we can think 
of coi : K^+2 —» R. Let coi = exp(wi) which is clearly null homotopic and 
which can be written 

<*j(Z0> WV '"> WN> e X P ( ' ) ) = 

g/z - cr\ wl9 • • -, wN) • exp(f^.(z0 • ft - or', u^, • • -, wN)) 

exp('J*(*o ' <*'*> wi> '"> WN)) 

Let 0 = (ft co1? • • -, coTO) GS°(m,N+ 1). The proof is completed by 
the routine calculation that 0 ° f = f ° xf. 

COROLLARY 3.4. J/ (X, R*-"1) is a ftoisf free minimal distal codimen­
sion one flow with non-trivial isotropy, then X is homeomorphic to Kn. 

PROOF. This follows from Theorem 2.3, Proposition 1.1, and Corol­
lary. 

THEOREM 3.5. Given any positive integers p and n such that 
1 ^ p ^ n — 2 there exists a minimal distal but not equicontinuous 
codimension one flow on Kn whose isotropy has rank p. 

PROOF. This follows from Theorems 2.6, 2.7, and 3.4. 

We now turn to the dynamical structure of these flows. Let p and n 
be positive integers such that 1 = p = n — 2, and let 0 : Zq —• K be a 
monomorphism where q = n — 1 — p. The homomorphism of Rq into 
Kn given by (vv • •-, vQ) -+ (exp(2?=1 a^), 1, •-, 1, expt^, •-, 
expvq) where expc^ = 0(ei) and {ev • • -, eg} are the standard gener­
ators of Zq induces an equicontinuous flow (Kn, Rq) by multiplication in 
Kn. In what follows (Km, Km+r+1) will always denote the Km action on 
Km+r+l g i v e n b y ((Wi9 . . s ^ ( % . . s ^ + r ) ) _ ( ^ W i . %v . . . 9 

wmzm> zm+i> '"> Zm+r)' Hence (Kp, Kn, Rq) is a bitransformation group 
associated with a minimal equicontinuous codimension one flow whose 
isotropy has rank p. Let / : K X Zq -+ KP be a cocycle of (K, Za) such 
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that each/(-,d) has degree zero. We will show that (Kp, ^(Kp+1; Zf% 
Rq) can be realized as a perturbation of (Kp, Kn, RQ). 

Let ^ = (a{, fiv • • -, fim) i = 1, • • -, q be commuting elements of 
S°(m, N), and let $ / = (a,) G S°(0,2V). Define IT :.y(Km+N+1; ^ , • • -, 
<t>Q)-^(KN^; h', • • -, < '̂) by i r«z 0 , z1? • • -, zm, wv - • -, u ^ t>» -
<z0, wv • -, i%, f ) . It is immediate that IT is a homomorphism of 
^(Km+Jir+i. ^ . . .f ^ Äo) o n t o (^(K^+i; <£/, . . -, <?>;), R«) and identi­
fies the latter with {f(Km+N+1; <j>v • • -, <^)/Km, #«)• We can also de­
fine * : {f(KN+1; 4>t', • • -, <f>Q'), K«) — ( K ^ 1 ^ , Ä«), where the latter ac­
tion is defined by homomorphism v —-• (exp 2f_1ait>j, 1, • -, 1, exp vv 

- - -, exp t;g) with exp a{ = ax, by 

(̂  *o • e x P ( 2 « A y > ^i> • * •> *%> e x P ü i» • • •> e x P VQ ) • 
It is easy to see that \p is an isomorphism. Finally let 
Il : Km+N+1 -> KN+1 be the projection U(z0, zv • • -, zm, wv • • -, i%) = 
(ZQ, WV - • -, t%). In this context we have the following lemma: 

LEMMA 3.6. There exists an isomorphism 0 of (Km, •y(Km+N+1; <j>v 

'•',4>q) onto (Km, Km+N+(1+1) such that U ° 0 = * ° IT. 

PROOF. We use induction on q with m and N arbitrary. When q — 1, 
the conclusion holds with 0 = f because of the multiplicative nature of 
f. Assuming it holds for q — 1 we will construct 0 . First there exists a 
canonical isomorphism 0X : (Km, ^(Km+iV+1; «^ • •-, ^)) onto (Km, 

•J^(j^(Km+N+1; (j)^; 4>2, • • -, $q). From the 9 = 1 case we get a canoni­
cal isomorphism 0 2 of the latter onto (Km> .jf(Km+N+2; ~$2, • • -, ~$q)). 
Finally Theorem 3.3 allows one to apply the induction hypothesis to 
(Km,.y(Km+N+2; ^2 , • • -, ~$q) to get an isomorphism 0 3 of it onto (Km, 
Km+N+Q+1y L e t e = e 3 o e 2 o 0 r I t remains to show that II ° 0 = 
* ° IT. 

Each 0 induces a homeomorphism 4^. They go from ^(KAr+1; $./, 
• • -, *;) t o . y ^ K ^ 1 ; */), £2', - - -, £/), to-X(K^2;^2; - • -, *;) to 
îv+Q+i Clearly II ° 0 = ^ 3 ° ^ 2 ° S^ ° IT. A calculation shows that 

<f>/ = (o )̂ G S°(0,2V + 1), then the induction hypothesis applies to ^ 3 , 
and finally another calculation shows that ^ 3 ° >F2 ° ^f

1 = ^ . 

THEOREM 3.7. Every twist free minimal distal codimension one flow 
with non-trivial isotropy is a perturbation of an equicontinuous minimal 
co-dimension one flow with non-trivial isotropy. 

PROOF. By Theorem 2.3 it suffices to consider (Kp, Jf(Kp+1, Zf% RQ). 
Let <j>i= (apfil9 • • -, fip) = /(• , e>) and note <x{ = 0{e{). Now Lemma 
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3.7 applies and we can define (Kn, R*Q) by (z0, • •-, zn_1)*v = 
Q(Q~\z0, •••, zn_1)v). Then (Kp, Kn,R*Q) is a bitransformation group 
and Proposition 1.2 applies to it and (Kp, Kn, Rq) because 

n ° e = * » IT. 

COROLLARY 3.8. If (X, Rn_1) is a twist free minimal distal codimen-
sion one flow with non-trivial isotropy of rank p, then it can he as­
sumed that X = Kn and the orbits are cosets of a dense (n — ^-dimen­
sional connected subgroup of Kn containing a p-dimensional torus. 

4. The Twisted Case. Let (X, Kn_1) be a twisted minimal distal codi-
mension one flow with non-trivial isotropy. By Corollary 2.5 the rank 
of its isotropy is n — 2 and hence it has a cocycle representation of the 
form (Kn~2, .y(Kn-\ $), R) where <j> = (a, fv • • -, fn_2) and deg^ * 0 
for some i. Let mi = deg/ i? g{{z) = zm*, and i// = (a, gv • • -, gn_2). As 
in the previous section we identify (^(K""1; <j>)/Kn-2, R) with {f(K; a), 
H). 

PROPOSITION 4.1. There exists a cocycle a of {^(K, a), R) into Kn~2 

such that (Kn-2,J^(Kn-1; <f>), R) is isomorphic to (Kn~2, Jf (Kn~\ % Ra). 

PROOF. Let h{ : K x [0, 1] —• K be a homotopy with ^(z, 0) = g{(z) 
and 7 (̂2, 1) = f{{z). This provides a natural isotropy between \p and <f>, 
and using it we define a homeomorphism 9 of ^ (K w _ 1 ; <p) onto 
^(fc""1; $ by 

e«(% •••^n_2M>0) 

for t G [0, 1]. Clearly 0 is equivariant with respect to the Kn~2 actions. 
Now 0 induces the automorphism of {f(K; a), R) defined by 
(z, t) —> (a - z, t), and we can complete the proof by applying Proposi­
tion 1.2 as we did in the proof of Theorem 3.5. 

Consequently to obtain a result analogous to Theorem 3.5 in the 
twisted case we need a canonical representation of (Kn~2, •^(Kn~1; \p), 
R). To do this we shift to the ^ ( K " " 1 ; % K""1) viewpoint and de­
scribe its lift to Rn. 

Defining p : Rn — J^K*"1; \p) by p(v) = <exp v0> • •-, exp vn_2, t)^ 
we obtain the universal covering of ^ ( K n _ 1 ; \p). The group T of cov­
ering transformation is generated by L^v) = v + ej9 0 ^ \> ë n — 2 and 
$t>) = (Ü0 -ha, vt + m^o, • • -, ün_2 + mn_2s0, x n - 1 - 1) where 
exp a — a. Defining (Rn, Rw_1) by (x, v) —> (x0> xx -\- vv • -, 
*n_! + vn_J we get a lift of (^(K»"1; *), R""1). 
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Let N denote the nilpotent Lie group consisting of all matrices of the 
form 

1 

*0 

*1 

0 

1 

sm1 1 

0 

; _ 2 *™n-2 U 

where xi E R for i = 0, • • -, x - 2 and « G R. The map h:Rn-»N 
given by 

0 

h(t>) = | ^ (i - ü ^ i K l 

o 
ün-2 (1 - Vn-l)mn-2 ° 

is a homeomorphism of Kn onto N. Let y; denote the element of N 
such that s = 0 and Xj = 5i; for / = 0, • • •, n — 2 and let pa denote the 
element of 2V such that x{ — aòn and s — 1. It is easy to check that 
h° h.° h'1 is left multiplication by yj and h ° $ ° h'1 is left multi­
plication by pa. If we define (AT, Kn_1) by 

(A,»)-

1 

0 

vl 

vn-2 

0 

1 

- « n - l » 1 ! 

-»„_!»«„_! 

1 

0 

0 

then h is an isomorphism of (Rn, fin_1) onto (A/, Hn_1). The next step is 
to get rid of the a in the above description of T. Let T0 be the sub­
group of N such that xi G Z for i = 0, • • -, n - 2, and 5 G Z. Note 
that ro is generated by (y0, • • -, yn_2, p0}. Let £ be the automorphism 
of N defined by 
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1 

x0 — as 

xt + am^l — s)/2 1 

|(A) = I sm1 1 

0 1 

K
Xn-2 + flmn-2S(! ~ * ) / 2 «"»-2 ° 

and check that (-(y^) = y; for ; = 0, • •, n — 2 and £(pa) = p0. There­
fore, (r, Rn) is isomorphic to (T0, N) and J^(KW_1; \p) is homeomorphic 
to r o \ N = {T^'.A GN}. The Lie algebra ^ ( N ) of N consists of the 
matrices of the form 

0 0 

00 

K-1 

0 

0 

ßnml 

Kmn~2 

Let Xj denote the element of -/?(N) given by ßt = 8^. Then the con­
jugate of (N, ßn _ 1) under £ is given by commuting vector fields 

and induces an action on T 0 \ N isomorphic to (X(Kn_1; *//), Rn_1). We 
will denote this flow by JM (n, m, a, T) where n is a positive integer 
greater than 2, m = (m1? • • -, mn_2) is a non-zero element Zw_2, a is an 
irrational real, and T is a linear transformation of Rw_1 onto Rn _ 1 

which we use to change basis. The above with Proposition 4.1 proves 
the following: 

THEOREM 4.2. Every twisted codimension one flow is a perturbation 
of some J\!(n, m, a, T). 
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