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COMPACT OPERATORS, WEAKLY COMPACT OPERATORS, 
AND SMOOTH POINTS 

RUSSELL G. BILYEU AND PAUL W. LEWIS 

S. Heinrih [9] recently announced the following result. 

THEOREM. If E and F are Banach spaces and K(E, F) is the Banach 
space of all compact operators from E to F, then a compact operator 
L:E^>F is a smooth point in K(E, F) if and only if (a) there is a 
unique point (up to scalar multiples) XQ* G S(F*) so that ||L*x0*|| = 
||L*|| and (b) L*(x0*) is a smooth point in E*. 

In Theorem 2 of this note, we use this theorem to characterize those 
continuous function spaces C(H, E) whose duals contain smooth points, 
and we give an explicit representation of those compact linear oper­
ators T : C(H, E) —* F which are smooth points in K(C(H, F), F). The pa­
per then concludes with a proposition which shows how a deep geo­
metrical result of James [10]—together with a recent result of Diestel 
and Seifert [6]—can be used to easily obtain a characterization of 
weakly compact operators T : C(H) —» F. 

The general setting is as follows. Each of E and F is a Banach space, 
H is a compact Hausdorff space, and C(H, E) is the Banach space (sup 
norm) of all continuous F-valued functions defined on H. it E is the 
scalar field, we shorten the notation to C(H). If T : C(H, F) —• F is a 
continuous linear map (= operator), then the Riesz Representation The­
orem asserts that there is a unique finitely additive vector measure 
m : 2 —> B(E, F**) on the Borei a-algebra 2 of H with values in the 
space of operators from E to the bidual of F such that (i) m has finite 
semivariation [7, Chapter 1], (ii) \mz\ G rea(2) (— the Banach space of 
all regular countably additive real-valued measures on 2) for each 
z E F* (here \mz\ is the total variation of the measure mz : 2 —» F* de­
fined by mz(A)(x) = z(m(A)(x))), and (iii) T(f) = S Hfdm, / G C{H,E) 
(the integral converges in the norm). The reader may consult Goodrich 
[8], Brooks and Lewis [3], and Batt [1] for a full discussion of this set­
ting. In particular we note that (1) if m is the representing measure for 
T, then m(A)x = T**(£Ax), where £A is the characteristic function of the 
Borei set A and x G F, and (2) m is countably additive and takes its 
values in B(E, F) if T is compact or weakly compact. Further, if T is a 
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linear functional, then m maps to £*, and the semivariation coincides 
with the total variation of m [7, Chapter 1]. In fact, ||T|| = |m|(H) and 
\m\ G rea (2); consequently, C(H, £)* may be identified isometrically 
with rcabv (2, £*) in this case. 

A non-zero element x of the Banach space X is called a smooth point 
if the Gateaux derivative D(x, y)( = lim^0(||x + ty\\ — \\x\\)/t, t real) of 
the norm at x in the direction y exists for all y G X. Equivalently, 
o ¥* x is a smooth point if there is a unique (real) linear functional 
x* G S(X*) (= unit sphere of X*) such that x*(x) = ||x||. Since the no­
tion of smoothness is essentially a "real" concept, we shall assume all 
Banach spaces to be defined over the real field. We do note, however, 
that Theorem 2 is valid (with the same proof) when the scalar field is 
assumed to be the complex numbers. An exposition of smoothness and 
differentiability may be found in Chapter II of Diestel [5]. 

We remark here that the study of Gateaux differentiability of the 
norm in spaces of measures has recently been profitable in obtaining in­
formation about these spaces. We specifically mention [2] in which the 
connection between differentiability and absolute continuity proves to 
be the key idea in establishing the relationships between the Hewitt-
Yosida decomposition theorem and othogonality and [4] in which differ­
entiability is used to characterize weakly compact operators on C(H). 

In the sequel 2 will denote the Borei a-algebra of the compact 
Hausdorff space H By fabv(2, F) we shall mean the Banach space (total 
variation norm) of all finitely additive F-valued measures of bounded 
variation defined on 2 . 

LEMMA 1. If /i, v G fabv(2, F) and D(/i, V) exists, then v < /A. 

PROOF. The Lebesgue decomposition of Rickart [11], v = va + PS, has 
the property that for t real, 

||/i + tv\\ = ||/i + tva\\ + ||*FJ|. 

The one sided derivatives of the norm are 

D+(M, v) = D+(M, va) + IKII, 

D-(/i, v) = D-(ti, va) - \\vs\\. 

The conclusion then follows from the observation that D~ ^ D+ due to 
the convexity of the norm. 

We remark that if F is the real numbers, then D(jn, v) exists if and 
only if v < ju, [2]. In the remainder of the paper, we let /i denote the 
representing measure of T. 
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THEOREM 2. The dual of C(H, E) possesses smooth points if and only 
if H is countable and £* possesses smooth points. If T is a smooth point 
in K(C(H, E), F), then H — {hn} is countable, and there is a countable, 
set {Ln} of compact operators from E to F so that T(f) — 2Ln(f(ftn)), 
/ G C(H, E), 2 L n is unconditionally convergent, and \\T\\ = 
suP(llLn(*JII = 1 for each n}. 

PROOF. Suppose that T is a smooth point in K(C(H, E), F) and that y* 
is the essentially unique element of S(F*) so that \\T*y*\\ = \\T*\\. Then 
T*(y*) — y*[i is smooth point in C(H, E)*. Let v be a vector measure 
in C(H, £)*. Then v has finite variation \v\ and \v\ < \y*y\ by the lem­
ma. Now let h G H, let 8h be the point mass at h, and let x* be a norm one 
functional in E*. Then 8hx* G C(H, £)* and \8hx*\ < \y*fi\; hence 
|t/*/i|(/i) > 0. Since |f/*/x| is bounded and countably additive, H = {hn} 
must be countable. Now let Ln = ix(hn) :£—•£. Since T is a compact 
operator, Ln is compact for each n; e.g., see [1] or [3]. The countable 
additivity of m (since T is compact), the strong convergence of the in­
tegral [8], and the countability of H imply that 2 Ln is unconditionally 
convergent and that T(f) = 2 Ln(f(hJ), f G C(tf, £). The statement 
about the norm of T follows from Corollary 1 of Batt [1]. 

Our next assertion is that Ln*(y*) is a smooth point in E* for each n 
for which Ln*(y*) ¥= 0. Suppose to the contrary that 0 ¥= Lx*(y*) and 
Lt*(y*) is not smooth. Hence the measure 8hL1*(y*) is not smooth in 
rcabv(2, £*). Let u± and vt be different norm one functional such that 
u^LSiy*)) = v^LSiy*)) = H M « for » > L let "> a 

norm one functional such that ||t*n(SÄ Ln*(y*)) = \\Ln*(y*)\\. 
For *> G rcabv(2, £*), define <*>(*>) to be "2£=1ttn(8Ä v{hn)), and 
define T(V) to be t ^ V ^ i ) ) + ïn>1un{8hv(hn)). Then ||*|| = 
| |T|| = 1, <j>^ r, and <!>(T*(y*)) = r(T*(y*)) = \\T*(y*)\\, a contradic­
tion. The smoothness of Ln*(y*) follows, n = 1, 2, 

To complete the proof of Theorem 1, we suppose that H = {hn} is 
countable and that x* is a smooth point in £*, ||x*|| = 1, and we show 
that the measure defined by i\ 0 x*(A) = TJ(A)X* is smooth in C(H, £)*, 
where 7)(hn) > 0 for each n and 2îj(hn) = 1. Let <fc r G C(tf, £)** 
so that ||$|| = IMI = tin 0 x*) = T(V 0 x*) = TJ 0 x* = 1. Since H is 
countable (we suppose that H is infinite for definiteness), it is not diffi­
cult to see that C(H, £)* is isometrically isomorphic to fi(E% the space 
of absolutely summable sequences from £*. Hence C(H, £)** ~ /*(£**). 
Let (Xj**) and (t/j**) be bounded sequences from £** such that (1) 
2*? W i ) ) = *(/i) and 2t/f *(/x(hi)) = T(/X) for each /i G C(H, £)* and 
(2) sup{||xf*||} = sup{||yf*||} = 1. Thenar, 0 x*) = S i ^ x * ^ * ) - 1 
and rfa © x*) = 2T,(^)t/f*(x*) = 1. Since |xf*(x*)| ^ 1, \y**(t/*)| ̂  1, 
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and Tĵ i) > 0 for i ^ 1, the fact that STJ^) = 1 forces zf *(**) = 
yf*(x*) = 1 for each i. The smoothness of x* then implies that x** = 
y** for all i, and <£ = T. Thus 17 © x* is smooth, and the theorem fol­
lows. 

We now use the preceding results to construct an infinite dimension­
al example of spaces C(H, E) and F for which there is a smooth point in 
K(C(H, E), F). Let H — {hn} be a countably infinite compact Hausdorff 
space, let E = F = P, suppose that fi(hn) > 0 for each n, 2ju(hn) = 1, 
and put v(A) = 2 n ŒAli(hn)Pn, where Pn is the projection onto the first n 
components of elements of P. Let T be the compact operator repre­
sented by v, and suppose that y* E Z2, ||y*|| = 1. Then ||T*y*|| = 
\y*v\ (H) = 2fi(hw) ||Pn(*/*)||- It is clear that this last infinite series is 
maximized precisely when ||Pn(t/*)|| = 1 for each n. Hence y* = (1, 0, 
0, • • • ) or ( — 1, 0, 0, 0, • • • )(suppose the former), and T* achieves its 
norm at an essentially unique y* E S(F*). To see that T*(y*) is smooth 
in C(H,E)*, we note that y*v = fx 0 (1, 0, 0, • • •) and refer to the 
proof of Theorem 1. 

We remark that this example also shows that the operators 
Ln:E^> F, which appear in the representation of the operator T in 
Theorem 2, need not be smooth points in K(E, F), i.e., /x(/in)Pn fails to 
be smooth for each n > 1. 

We conclude with a characterization of weakly compact operators. 

PROPOSITION 3. The following are equivalent: 
(i) the operator T from C(H) to F is weakly compact; 

(ii) x*** attains its supremum on /x(2) for each x*** E F***; 
(iii) each sequence contained in /i(2) has a subsequence whose arith­

metic means converge. 

PROOF. We show that (i) is equivalent to (ii) and (i) is equivalent to 
(iii). 

Suppose that T : C(H) -> F is weakly compact and that x*** E F***. 
Then ft : S —> F ( C F**) is countably additive [3], and consequently 
there is a Hahn decomposition H+ U H~ of H relative to x***/x- Clearly 
x***ii(H+) = sup{s**V(A) : A E 2 } . 

Conversely, suppose that (ii) holds. But then each x*** attains its su­
premum on co(/i(S)), and co(/i(2)) is weakly compact by James' theorem 
[10]. Since T(U) C cö(/i(2)), where (7 is the unit ball in C(fl), it then 
follows that T is weakly compact. 

That (i) implies (iii) is precisely the content of Diestel and Seifert [6]. 
Therefore, to complete the proof, it suffices to demonstrate that (iii) 
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implies (i). And to achieve this, we use an argument similar to the 
proof of Theorem 2, p. 82 of Diestel [5] to verify the assertion: if K is 
a bounded subset of a Banach space X so that each sequence from K 
has a subsequence whose arithmetic means converge, then K is condi­
tionally weakly compact. In fact, if x* E X*, a = sup{x*(x) : x E K], 
and (xn) C K so that x*(xn) —* a, then we may assume that 
(l/m)(2%=1xn)^ x0 E cö(K). Then x*(x0) =JL = sup{s*(x) : x E cö(K)}; 
by another application of James' theorem, co(X) is weakly compact. 

REMARK. If the Banach spaces are defined over the complex field C, 
then one may replace (ii) by the following statement: (ii)' if 
**** E F***, then there is an A E 2 such that |x***/i(A)| = 
sup{|x***/i(JB)| : B E 2 } . To see that (i) implies (ii)' one may use 
Liapounoffs theorem which asserts that the range of X***/A is a com­
pact, convex set. And to see that (ii/ implies (i) we note that (ii)' im­
plies that every continuous real functional achieves its sup on 
{a/i(A):A E 2, a E C, \a\ = 1}. 
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