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INTRODUCTION TO WAVES IN PLASMAS 

Plasma physics seems to provide an inexhaustible source of nonlinear 
problems. In the particular area of controlled thermonuclear fusion one 
important goal is to focus and to contain an intensely hot plasma. The 
mathematical formulation of this problem might well involve localized, 
stable (soliton?) solutions of terribly complicated nonlinear equations. Of 
course, no one expects the soliton to solve the energy crisis, but it 
might be a very useful concept in the analysis of simpler model prob­
lems. 

Some acquaintance with the fluid description of a plasma is helpful 
for an understanding of the articles in this section. The basic informa­
tion can be found in any recent text on plasmas (older books seem to 
pay less attention to the type of waves that evolve into solitons). For a 
first reading, a few definitions should suffice. 

A plasma is an ionized gas (a gas of positively charged ions and ne­
gatively charged electrons) whose behavior is dominated by the collec­
tive motion of the particles. Even though the gas consists of charged 
particles, it is electrically neutral on a macroscopic scale. If, for ex­
ample, electrons are displaced by an applied electric field so that a lo­
cal charge imbalance results, the ions will attempt to restore neutrality 
by returning the electrons to their original positions. This results in the 
so-called electron-plasma oscillations. These are not true propagating 
waves, in the sense that the plasma oscillates in unison: the wavelength 
is of the order of the plasma dimension. It is simple and instructive to 
derive this sort of disturbance from the governing equations. 

In one space dimension, assume the ions to be fixed (they are, indeed, 
much heavier than the electrons) with constant density N0. Let n, v be 
the electron number density and velocity, m the electron mass, E the 
applied electric field, — e the electron charge, and c0 the dielectric con­
stant. Then 

nt -h (nv)x = 0 (continuity) 

vt + vvx = — —E (conservation of momentum) 
m 

Ex = —(N0 — n)e I Maxwell's equation V • E = — p ) . 
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Linearize this system about the equilibrium solution n = N0> v — E = 0 
and seek solutions proportional to exp i (kx — ut). It is found that o) 
must satisfy 

CO2 = ^ O ^ ^ c o 2 . 

upe is the plasma electron frequency, which is seen to be independent 
of the wavelength 27r/k. (cope/27r ~ 9000 \^N0 oscillations per/second.) 

This derivation neglected the thermal motion of the electrons. One 
can incorporate this effect by adding a pressure term —px/nm to the 
right side of the momentum equation (nm is the number of electrons 
times the electron mass, i.e., the mass density p). One may take 
p = c2mn because of the ideal gas law; c2 is the local sound speed of 
the gas. Linearization of the resulting system leads to the dispersion re­
lation 

co2 = «I + W. 

For large k, the disturbances are high-frequency, short wavelength, 
electron waves. It is convenient to study modulations of these waves. 
One is led to envelope equations such as the nonlinear Schrödinger 
equation, and to the envelope solitons, called Langmuir solitons (see 
Morales and Lee). 

The above derivation of Langmuir waves pictured the electrons mov­
ing rapidly against a neutralizing background of stationary ions. In the 
ion-acoustic oscillations dealt with by Maxson, the ions move slowly 
against a background of electrons in rapid thermal fluctuation; in this 
instance, the electron cloud provides the neutralizing effect. One can 
obtain both types of waves from the coupled ion-electron fluid equa­
tions (capital letters denote quantities referring to ions): 

nt + (nv)x = °> 

vt-\-wx = —E px, 
m nm 

Nt + (NV)X = 0, 

Ex = —(N - n). 
€0 
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The last equation is Maxwell's equation V • E = p/e0; the charge den­
sity is p = Ne -h n( — é). Again, set p — c2nm. It is seen by thermody­
namic arguments that P, the ion pressure, is proportional to the ion ki­
netic temperature T{. The assumption of "cold" ions, made by Maxson 
for instance, means T{ — 0 (a "cold" plasma is still about 11,000° K). 
Linearization then leads to a fourth-order equation for co. One branch 
of solutions reproduces (with more precision) the Langmuir dispersion 
relation obtained earlier. The other branch gives, approximately, 

«L + V<? ' 
the dispersion relation for ion-acoustic waves. (œpi is the ion-plasma fre­
quency which is analogous to cope.) This relation is physically relevant 
for small k, or long wavelength. The weakly nonlinear, weakly dis­
persive approximation of these long waves leads, not surprisingly, to the 
KdV equation once more. 

To summarize, we have: Weakly nonlinear, strongly dispersive, short 
wavelength electron Langmuir waves described by their modulating en­
velope (nonlinear Schrödinger); weakly nonlinear, weakly dispersive, 
long wavelength ion-acoustic waves described by the KdV equation. 

These are the two basic sources of solitons in plasmas. More com­
plicated examples will be found in the papers which follow. 




